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Quantum many-body systems have a rich structure in the presence of boundaries. We study the ground states
of conformal field theories (CFTs) and Lifshitz field theories in the presence of a boundary through the lens
of the entanglement entropy. For a family of theories in general dimensions, we relate the universal terms in
the entanglement entropy of the bulk theory with the corresponding terms for the theory with a boundary. This
relation imposes a condition on certain boundary central charges. For example, in 2 + 1 dimensions, we show
that the corner-induced logarithmic terms of free CFTs and certain Lifshitz theories are simply related to those
that arise when the corner touches the boundary. We test our findings on the lattice, including a numerical
implementation of Neumann boundary conditions. We also propose an ansatz, the boundary extensive mutual
information model, for a CFT with a boundary whose entanglement entropy is purely geometrical. This model
shows the same bulk-boundary connection as Dirac fermions and certain supersymmetric CFTs that have a
holographic dual. Finally, we discuss how our results can be generalized to all dimensions as well as to massive
quantum field theories.
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I. INTRODUCTION

Quantum many-body systems are often studied in infinite
space or on spaces without boundaries, like tori and spheres,
in order to simplify the analysis. However, introducing a
boundary is not only more realistic, but it can reveal novel
phenomena. For instance, gapped topological phases like
quantum Hall states often have protected boundary modes [1].
In fact, such topological boundary modes can often only exist
at a boundary of a higher dimensional system. In the gapless
realm that will be the focus of this work, boundaries can
give rise to novel surface critical behaviors. Generally, many
distinct boundary universality classes are possible for a given
bulk one, which leads to new critical exponents that are absent
in a bulk treatment, see, e.g., Ref. [2].

There has been a recent effort to understand the quantum
entanglement properties of critical systems in the presence of
a boundary, see, for instance, Refs. [3–12], which provides a
new viewpoint compared to the study of correlation functions
of local operators. This is partly motivated by the success
of entanglement measures in bulk systems. One example is
the construction of a renormalization group monotone for
relativistic theories in 3d (where d stands for the space-
time dimension) using the entanglement entropy for certain
spatial bipartitions, i.e., the F theorem [13–15]. We recall
that the entanglement entropy associated with a pure state
|ψ〉 and a subregion A of the full space A ∪ B is defined
as S(A) = −tr(ρA ln ρA), where the reduced density matrix is
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ρA = trB|ψ〉〈ψ |. An extension of this work to relativistic sys-
tems with boundaries results in a new proof of the g theorem
in 2d [9], and its generalization to higher dimensions [16].
However, the entanglement structure and its dependence on
boundary conditions remains largely unknown, the more so
for nonrelativistic theories.

In this work, we study the entanglement entropy (and its
Rényi generalizations) in ground states of gapless Hamilto-
nians in the presence of boundaries. An important role will
be played by entangling surfaces that intersect the physical
boundary. These lead to a new type of corner term that is
distinct from the corner terms that have been extensively stud-
ied in the bulk. The entanglement entropy of such boundary
corners has been studied for noninteracting CFTs [8,17,18],
certain interacting large-N superconformal gauge theories via
the AdSd+1/bCFTd correspondence [19–23], and a special
class of Lifshitz theories [24]. For noninteracting CFTs, we
find that the boundary corner functions are directly related to
the bulk corner function via simple relations. We successfully
verify our predictions numerically for the relativistic scalar
on the lattice, which requires a numerical implementation of
Neumann boundary conditions. For scalar and Dirac CFTs,
we show that the boundary corner function can be used to
extract certain boundary central charges.

Our paper is organized as follows. After the Introduction,
Sec. II introduces the relation between the entanglement en-
tropy of bulk subregions to that of subregions in a theory with
a physical boundary. In Sec. III, we study the bulk-boundary
relation for regions with corners in (boundary) CFTs, with a
focus on free scalars and Dirac fermions. A numerical check
on the lattice is presented for the scalar. In Sec. IV, we pro-
pose an ansatz in general dimensions, the boundary extensive
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mutual information model, for a CFT with a boundary whose
entanglement entropy is purely geometrical. In three space-
time dimensions, we obtain the boundary corner function
analytically, which gives a certain anomaly coefficient for
the theory. In Sec. V, we study the entanglement properties
of a gapless noninteracting Lifshitz theory. Using the heat
kernel method, we obtain the boundary corner function for
both Dirichlet and Neumann boundary conditions, and find
that these have the same qualitative features as the relativistic
scalar. In Sec. VI, we discuss the extension of our results to
massive quantum field theories, focusing on the relativistic
scalar. We conclude in Sec. VII with a summary of our main
results, as well as an outlook on future research topics. Four
appendices complete the paper: Appendix A deals with central
charges, Appendix B discusses the entanglement entropy of
cylindrical regions in 4d space-times for the relativistic scalar,
Appendix C shows our implementation of boundary condi-
tions for the discretized scalar field (Dirichlet and Neumann),
and Appendix D recalls the high-precision ansatz for the
scalar bulk corner function.

II. RELATING BULK TO BOUNDARY ENTANGLEMENT

A. (1 + 1)-dimensional systems

For one-dimensional quantum systems of infinite length
described by conformal theories, the n-Rényi entropy,
Sn(A) = ln(trρn

A)/(1 − n), of an interval of length � takes the
form [3,4]

Sn(�) = c

6

(
1 + 1

n

)
ln

�

ε
+ 2c0

n , (1)

where c is the central charge of the CFT, ε is a UV cutoff
and c0

n is a nonuniversal constant. If the system is not infinite
but has a boundary, say it is the semi-infinite line [0,∞], the
Rényi entropies of a finite interval adjacent to the boundary
[0, �] are now given by [3,4]

S(B)
n (�) = c

12

(
1 + 1

n

)
ln

2�

ε
+ ln gB + c0

n , (2)

where B is the boundary condition imposed at the origin, c0
n is

the same [25] nonuniversal constant as in (1), and ln gB is the
boundary entropy, first discussed by Affleck and Ludwig [26]
(see also Refs. [5,6]).

Looking at expressions (1) and (2), one immediately no-
tices that the Rényi entropies for 2d CFTs and bCFTs satisfy

Sn(2�) = 2S(B)
n (�) , (3)

at the leading order in ε. Indeed, the logarithmically diver-
gent part of the entropy of an interval in the presence of a
boundary can be obtained from the entropy of the union of that
interval with its mirror image (with respect to the boundary)
in an infinite system, i.e., by the formula (3) for an interval
connected to the boundary. In 2d bCFTs, the dependence of
the n-Rényi entropy on the boundary conditions appears in
the subleading terms to the logarithmic divergence, namely,
in the boundary entropy ln gB. Similarly, for d-dimensional
CFTs, the presence of a boundary affects the terms subleading
to the area law. This means that the analog of formula (3)
is valid at the area law level in higher dimensions, but does

not necessarily hold for subleading terms, which are the
interesting ones as they contain universal information. In this
work, we shall show that such a relation between the universal
part of the bulk and boundary entanglement entropies does
exist in general dimensions. Our results cover not only free
CFTs but also certain interacting ones, as well as Lifshitz
theories.

B. Free CFTs in general dimensions

For free theories, the n-Rényi entropy may be computed
using the heat kernel (or Green function) method together with
the replica trick. Essentially, one has to compute the trace
of the heat kernel on a manifold with a conical singularity
along the entangling surface. Let us take the free scalar field
as an example. For a base manifold that is the half-space in
Rd , we may impose either Dirichlet or Neumann BCs on the
boundary (conformal BCs). The (scalar) heat kernel is then
the sum1 of a “uniform” term, which equals the heat kernel
K on Rd (without boundary), and a “reflected” term K∗. The
reflected term satisfies the heat equation, with boundary data
canceling that of the uniform term. For Neumann (+) and
Dirichlet (−) BCs, one has KN/D = K ± K∗. Taking the trace
of these heat kernels one gets tr K = t̃r(KN + KD), where tr
stands for the trace over Rd and t̃r for the trace over the
half-space only. Thus, considering the entropy of a scalar field
for an arbitrary subregion A of Rd symmetric with respect to
some hyperplane, one may obtain the entropy of A as the sum
of the Neumann and Dirichlet entanglement entropies of the
two mirror subregions with a boundary being the hyperplane
of symmetry of A. In 1 + 1 dimensions, this reasoning leads
to (3) at leading order in �/ε for free CFTs, independently
of the boundary conditions. As was discussed, this holds for
general CFTs in 2d . These considerations, along with new
ones that we shall present in this work, motivate the following
conjecture relating bulk and boundary entanglement in d � 2.

C. Bulk-boundary relation

Consider some arbitrary co-dimension 1 spatial region (not
necessarily connected) in R1,d−1 which is symmetric with
respect to a co-dimension 2 plane. In other words, this region
is the union of two mirror symmetric regions A and A′, as,
for example, shown in Fig. 1. Then, for certain bQFTs, we
conjecture that there exist some boundary conditions B and
B′ that may be imposed on the plane of symmetry (physical
boundary) such that the following relation between Rényi
entropies holds

Sn(A ∪ A′) = S(B)
n (A) + S(B′ )

n (A′) , (4)

where Sn(A ∪ A′) is the n-Rényi entropy for the whole region
A ∪ A′ in the space-time without boundary, while S(B)

n (A) is

1In one spatial dimension, the “uniform” term is the well-known
solution of the heat equation on R with initial condition K (0, x, x′) =
δ(x − x′), i.e. K (s, x, x′) = 1√

4πs
e− 1

4s (x−x′ )2
, while the “reflected”

term is the mirror image through the boundary at, e.g., x = 0, that is
K∗(s, x, x′) = K (s, x, −x′). Also, tr K is the trace of the heat kernel
over the manifold M, tr K = ∫

M dx K (s, x, x).
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A

A′

∂M

FIG. 1. (b)CFT3 on the (half-) plane. The region A and its mirror
image A′ with respect to the boundary ∂M (dashed line) are shown
in blue.

the n-Rényi entropy for the region A with boundary condition
B imposed on ∂M, and similarly for S(B′ )

n (A′). One may think
that (4) strangely resembles the subadditivity property of an
extensive configuration. However, it is not so because we
compute entropies for different theories.

A particular case of (4) is given when the boundary condi-
tions coincide, B = B′:

Sn(A ∪ A′) = 2S(B)
n (A) , (5)

which can be seen as a generalization of (3). As we shall see,
this form of the bulk-boundary entanglement relation will be
realized for Dirac fermions, holographic CFTs, and the so-
called (boundary) extensive mutual information model.

For 2d bCFTs, our relation (4) would imply that gB′ =
g−1
B for certain pairs of boundary conditions B, B′. This is

actually the case for the XX chain and free fermions with
open boundary conditions for which gB = 1 [26,27]. This
condition on the boundary entropy can be seen as necessary
for the bulk-boundary relation to hold beyond the leading
logarithmic term. In higher dimensions, since the leading term
in the Rényi entropy is the area law, we expect that the bulk-
boundary relation implies a relation for a higher dimensional
analogue of the boundary entropy. Let us consider the case
of space-time dimension d = 3, which will be the focus of
the present work. We consider our region A to be a half-disk
attached to the physical boundary ∂M. Then its mirror image
is also a half-disk, and A ∪ A′ is a full disk, as illustrated in
Fig. 4. The left-hand side of (4) for the ground state of a CFT
is then (n = 1):

S1(A ∪ A′) = B
2πR

ε
− F , (6)

where R is the radius of the disk, and the universal R-
independent contribution features the RG monotone in d = 3,
F . In contrast, the right-hand side of the relation (4) will be
built from the half-disk entropy

S(B)
1 (A) = B

πR

ε
− s(B)

log ln(R/ε) + · · · , (7)

where we have omitted subleading terms in R/ε. The loga-
rithmic divergence comes from the two corners generated by
the intersection of the entangling surface and the physical
boundary. It was argued [8] that s(B)

log is proportional to the

boundary central charge aB that appears in the trace of the

B

Aθ

(a)

A

B

∂M

θ

(b)

FIG. 2. Spatial partitions of a (2 + 1)-dimensional space M with
boundary ∂M (black line). (a) The region A is an infinite wedge
which presents a bulk corner. (b) The region A is an infinite wedge
adjacent to the boundary of the space, and presents a boundary
corner.

stress tensor as a consequence of the conformal anomaly.
We see that in order for the bulk-boundary entanglement
relation (4) at n = 1 to hold, the logarithms must cancel,
implying:

aB + aB
′ = 0 . (8)

For example, in the case of a free scalar field, the central
charges for Dirichlet and Neumann boundary conditions have
opposite sign, which is a necessary condition for the relation.
If we are dealing with the relation for a single boundary
condition B = B′, (5), this implies that the boundary central
charge must vanish, aB = 0. This will indeed be the case for
Dirac fermions, certain holographic CFTs (with α = π/2, see
below), and the extensive mutual information model. It would
be of interest to find which bCFTs obey the relation (8), and
the much stronger condition (4). One useful avenue would
be to numerically investigate the quantum critical transverse
field Ising model in two spatial dimensions along the lines of
Ref. [28]. In any case, our conjectured relation (4) provides
a useful starting point to compare the bulk and boundary
entanglement entropies of QFTs.

III. CFTS IN 2 + 1 DIMENSIONS

In two spatial dimensions, there are many ways to partition
a domain. In this paper, we mainly study two different kind of
regions that contain corners, and which produce a logarithmic
correction to the area law in the entanglement entropy,

S = B
�

ε
− slog(θ ) ln

�

ε
+ · · · , (9)

with a certain corner function slog(θ ) as the cutoff independent
coefficient of the logarithmic term. The two corner geometries
of interest are depicted in Fig. 2. They may be classified
according to whether they touch the boundary of the space
(boundary corner), or not (bulk corner).

A. Bulk corners

The first partitioning of the space is the simplest one.
The region A is an infinite wedge with interior angle θ , see
Fig. 2(a), and thus presents a corner. Let a(θ ) be the bulk
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corner function. It only depends on θ , and by purity of the
ground state,

a(θ ) = a(2π − θ ) , (10)

which allows us to study this corner function for 0 < θ � π .
The bulk corner function a(θ ) has other interesting properties.
It is a positive convex function of θ that is decreasing on
[0, π ] [29], i.e.,

a(θ ) � 0 , ∂θa(θ ) � 0 , ∂2
θ a(θ ) � 0 , (11)

for 0 < θ � π . The behavior of a(θ ) is constrained in the
limiting regimes where the bulk corner becomes smooth (θ 	
π ), and where it becomes a cusp (θ → 0):

a(θ 	 π ) = σ (θ − π )2 , a(θ → 0) = κ

θ
, (12)

where we have introduced two positive coefficients, σ and κ .
Furthermore, the smooth bulk corner coefficient σ is universal
in the strong sense for general 3d CFTs,

σ = π2

24
CT , (13)

where CT is a local observable: the central charge appearing
in the two-point function of the stress tensor. This universal
relation was conjectured in Refs. [30,31] and subsequently
proven in Ref. [32] for general CFTs. Gapless QFTs that are
scale and rotationally invariant, but not necessarily conformal,
will also receive such a nearly smooth corner contribution to
the entanglement entropy. In that case, CT is replaced by a
positive coefficient that appears in the so-called entanglement
susceptibility [33].

B. Corners adjacent to the boundary

When the space has a boundary ∂M, one can consider a
wedge adjacent to ∂M. In other words, the entangling surface
intersects ∂M with an angle θ , see Fig. 2(b), defining what
we call a boundary corner. Then let b(θ ) be the boundary
corner function. Depending on the context, we sometimes
write b(B)(θ ) making the boundary condition explicit. The
boundary corner function depends on the interior angle θ and
on the boundary conditions imposed on ∂M. By purity of the
vacuum state

b(θ ) = b(π − θ ) , (14)

allowing us to only consider 0 < θ � π/2. Unlike its bulk
counter-part, b(θ ) can be either convex or concave depending
on the field theory and the boundary conditions. Its form is
also constrained in the orthogonal (θ 	 π/2) and cusp limits:

b(θ 	 π/2) = ηB + σB (π/2 − θ )2 , (15)

b(θ → 0) = κB

θ
. (16)

At exact orthogonality, it was argued that

b(π/2) = ηB ∝ a (17)

is proportional [8,17] to the boundary charge a (sometimes
called b in the literature) that appears in the conformal
anomaly in 3d . Although not written explicitly here, a does

TABLE I. Boundary corner coefficients in the orthogonal and
cusp regimes for different critical theories. “D/N” stands for
Dirichlet/Neumann, while “M” for mixed.

Theory aB ηB σB κB

Scalar D 1 1/24 3/128 0.044(4)
Scalar N −1 −1/24 −1/128 −0.024(5)
Dirac M 0 0 1/64 0.0180
z = 2 Scalar D NA 1/8 2/(3π 2) π/24
z = 2 Scalar N NA −1/8 −1/(3π 2) −π/48
bEMI 0 0 s04/3 s0π/2

depend on the boundary condition B. We refer the reader to
Appendix A for further details regarding how the anomaly
manifests itself in the trace of the stress tensor in the presence
of a boundary. Interestingly, a was recently proved to be an
RG monotone for boundary RG flows under which the bulk
remains critical. However, the coefficient ηB is not univer-
sal in the strong sense as its value differs for free scalars
(ηB = a/24) and for holographic bCFTs2 (ηB = a/96). In-
deed, for holographic bCFTs [21,22], ηB comes entirely from
the anomaly, whereas for free scalars it is not the case due to
the occurrence of the nonminimal coupling of the scalar field
to the curvature [8]. In Table I, we summarize our findings for
the coefficients appearing in the boundary corner function in
the orthogonal and cusp limits for various CFTs, and the z = 2
Lifshitz scalar.

In this manuscript, we are mostly interested in the logarith-
mic corner functions that appear in the entanglement entropy
for regions as pictured in Fig. 3. Then according to (4), bulk
and boundary corner functions should be related to each other
through

a(2θ ) = b(B)(θ ) + b(B′ )(θ ) , (18)

for some boundary conditions B and B′ depending on the field
theory under consideration. In what follows, we explore the
implications of relations (4) and (18) for various models.

2Whenever holographic bCFTs are mentioned in the present paper,
it refers to Takayanagi’s model [19], see Sec. III C.

θ

θ

A

A

B
B

∂M

FIG. 3. (b)CFT3 on the (half-)plane. The region A and its mirror
image A′ through ∂M each present a boundary corner of opening
angle θ , with boundary condition B and B′, respectively. Their union
forms a bulk corner with opening angle 2θ .

235112-4



RELATING BULK TO BOUNDARY ENTANGLEMENT PHYSICAL REVIEW B 100, 235112 (2019)

C. Holographic theories

Within the AdS/CFT framework, certain holographic
CFTs are described by a gravity theory coupled to a neg-
ative cosmological constant in one dimension higher. The
holographic entanglement entropy (HEE) of some region A
in the boundary CFT is computed using the Ryu-Takayanagi
prescription [34] as the area (divided by 4G, where G is the
gravitational constant) of the minimal co-dimension 2 surface
homologous to A on the conformal boundary of the AdS
space-time. The holographic bulk corner function aE (θ ) for
3d CFTs dual to Einstein gravity in AdS4 has been computed
in Refs. [29,35]. The holographic picture of AdS/bCFT was
introduced in Ref. [19] and can briefly be sketched as follows.
The dual of a bCFTd is given by a gravity theory in asymp-
totically AdSd+1 space-time restricted by a d-dimensional
brane Q whose boundary coincides with the boundary ∂M
of the bCFTd . The HEE is also computed according to Ryu-
Takayanagi prescription. For the simplest geometrical setup
in which the boundary of the bCFT3 is flat and its extension
Q into the bulk is completely determined by its slope α,
the HEE of an infinite wedge adjacent to the boundary was
computed in Ref. [22]. The corresponding boundary corner
function b(α)

E (θ ) depends on the extra parameter α, which
from a mathematical point of view controls the slope of the
brane Q in the bulk, but from a field theory perspective
should be related to the boundary conditions of the underlying
holographic theory.

Interestingly, for the value α = π/2, it has been observed
in Ref. [22] that b(π/2)

E (θ ) is related to the holographic bulk
corner function aE (θ ) as

aE (2θ ) = 2b(π/2)
E (θ ) . (19)

This equality satisfies our conjecture (4), with boundary con-
ditions given by B = B′ : α = π/2. This is the unique set of
values of α that leads to the relation (4).

Also shown in Ref. [22] was that the orthogonal-limit
boundary coefficient σ

(α)
E is related to the boundary central

charge A(α)
T in the near-boundary expansion of the stress

tensor,

σ
(α)
E = −πA(α)

T , (20)

where the general definition of AT in a bCFTd is [36]

〈Ti j〉 = A(B)
T

εd−1
k̂i j , ε → 0 . (21)

In the above, the stress tensor is inserted at a distance ε from
the boundary, where we have imposed boundary condition
B. k̂i j is the traceless part of the extrinsic curvature tensor
of the boundary, ki j . The relation (20) is valid for any value
of the continuous parameter α which encodes the BCs in the
holographic bCFT. A natural question to ask is whether (20)
holds for other theories. We address this question in Sec. III E.

D. Free CFTs

Let us first consider a noninteracting conformal scalar field
with Lagrangian density L = 1

2∂μφ∂μφ. Conformal invari-
ance restricts the possible admissible boundary conditions to

either Dirichlet or (generalized) Neumann3 BCs. Then, for
free scalars, we conjecture that the bulk corner function as(θ )
and the boundary corner function bs(θ ) are related through

as(2θ ) = b(D)
s (θ ) + b(N )

s (θ ) , (22)

where N (D) stands for Neumann(Dirichlet) BCs.
For free Dirac fermions, we consider mixed (M) BCs [37]

which yield a vanishing current through the boundary, and
where a Dirichlet BC is imposed on a half of the spinor
components and a Neumann BC on the other half. With these
BCs, the Dirac fermion presents some similarities with scalars
evenly split between Neumann and Dirichlet BCs: for exam-
ple, same structures of certain two-point functions [38,39],
also the central charges for the Dirac fermion in the 3d
anomaly [see (A1)] match the sum of those for Neumann +
Dirichlet scalars. We then conjecture the following relation
between the bulk corner function a f (θ ) and the boundary
corner function b f (θ ) for free Dirac fermions:

a f (2θ ) = 2b(M )
f (θ ) . (23)

This is a special case of (18) with B = B′ = M, similar
to that for holographic bCFTs, see (19). Observe that (22)
and (23) satisfy the reflection symmetry expected for pure
states for θ → π − θ . Using (12) and (15), in the limit θ 	
π/2, from (22) and (23) we obtain the following relations
between the bulk and boundary corner coefficients σ ’s:

4σs = σ D
s + σ N

s , 2σ f = σ M
f . (24)

We can use the so-called smooth-limit boson-fermion dual-
ity [30,40] σ f = 2σs to get σ M

f = σ D
s + σ N

s . One can view this
last relation as a new boson-fermion duality in the presence of
a boundary, which can be understood heuristically by recalling
that a Dirac fermion with mixed BCs has two components,
one with Dirichlet BCs and the other one with Neumann BCs.
In the opposite regime θ → 0, inserting (12) and (16) in (22)
and (23) yields

κs = 2
(
κD

s + κN
s

)
, κ f = 4κM

f . (25)

Not much is known about b(θ ) for free fields, beyond
θ = π/2. Only recently [18] has it been computed numeri-
cally on the lattice for free scalars with Dirichlet boundary
conditions. Numerical values for the two boundary corner
coefficients σB and κB were found to be σ D

s = 0.023(4) 	
3/128 and κD

s = 0.044(4). Then, combining this numerical
result for σ D

s with (24) and the well-known values of the
bulk corner smooth-limit coefficients [30,41] σs = 1/256 and
σ f = 1/128, one can predict the boundary corner orthogonal
coefficients to be

σ D
s 	 3

128
, σ N

s 	 − 1

128
, σ M

f = 1

64
. (26)

For the cusp corner coefficients, we have [41] κs = 0.0397 and
κ f = 0.0722, which together with κD

s = 0.044(4) and (25)
yield

κD
s = 0.044(4), κN

s = −0.024(5), κM
f = 0.0180. (27)

3Generalized Neumann BC, also called Robin BC, is the gen-
eralization of Neumann BC to the case where the boundary has
nonvanishing extrinsic curvature.
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A

A

∂M
D

N

FIG. 4. (b)CFT3 on the (half-) plane. The region A and its
mirror image A′ through ∂M, shown in light blue, are half-disks
orthogonally anchored to ∂M. Their union forms a complete disk.

Further, combining the lattice results of Ref. [18] for
Dirichlet scalars for b(D)

s and the exact result of Refs. [41,42]
for as, we have plotted in Fig. 6 the boundary corner func-
tion b(N )

s for Neumann scalars. This function is concave and
negative, with a maximum at θ = π/2. In the same figure, the
boundary corner function for fermions b(M )

f appears, inferred
from (23) using the results of Refs. [41,43] for the bulk corner
function a f . Once the functions b(θ ) are properly normal-
ized, as in Fig. 8, the corresponding curves for free scalars
evenly split between Dirichlet and Neumann BCs and for free
fermions with mixed BCs are very close to each other, as their
bulk cousins a(θ ). It will be very interesting to compare these
results with direct analytical or numerical calculations of b(N )

s

and b(M )
f . The numerical lattice calculation of b(N )

s is presented
in Sec. III D 2; we find that the relation (22) is indeed obeyed,
thus also implying the validity of the values for the boundary
coefficients for scalars with Neumann BCs predicted in (26)
and (27).

1. Free scalars in the (half-) disk

The Hamiltonian of a free massless real scalar field ϕ in
2 + 1 dimensions reads

H = 1

2

∫
d2x (π2 + (∇ϕ)2) . (28)

We consider a circular region such that we may impose either
Dirichlet or Neumann BCs on its diameter, see Fig. 4. In polar
coordinates (r, θ ), the boundary conditions are imposed at θ =
0, π . Due to the symmetries, the fields can be conveniently
decomposed in angular modes as

ϕ(r, θ ) = 1√
r

∑
k

fk (θ ) ϕk (r) , (29)

π (r, θ ) = 1√
r

∑
k

fk (θ ) πk (r) , (30)

where fk (θ ) is a set of orthonormal functions which depend
on the BCs such that

f (D)
k (θ ) =

√
2

π
sin(kθ ), k = 1, 2, . . . , (31)

f (N )
k (θ ) =

√
2

π
cos(kθ ), k = 0, 1, . . . , (32)

with D (N ) standing for Dirichlet (Neumann) BCs. The
Hamiltonian can then be written as H = ∑

k Hk , where

Hk = 1

2

∫
dr

(
π2

k + r∂r

(
ϕk√

r

)2

+ k2

r2
ϕ2

k

)
. (33)

The entanglement entropies for the half-disk with Dirichlet
and Neumann BCs are thus given by

S(D)
h−disk (R) =

∞∑
k=1

Sk , S(N )
h−disk (R) =

∞∑
k=0

Sk , (34)

where Sk is the entropy for the kth mode associated to Hk .
Notice that the difference between the entanglement entropy
for Dirichlet and Neumann BCs is the presence of the zero
mode in the latter,

S(N )
h−disk (R) = S0(R) + S(D)

h−disk (R) . (35)

It is worth mentioning that the zero mode in S(N )
h−disk contributes

a factor of 1/6 in the logarithmic part of the entropy, while the
infinite sum over the higher modes, i.e., S(D)

h−disk, contributes
negatively with −1/12.

Now, we want to compute the entanglement entropy of a
complete disk of radius R (no boundary here). Just as before,
we can take advantage of the rotational symmetry and decom-
pose the fields on angular modes, with eigenfunctions fk (θ ) =

1√
2π

eikθ , where k ∈ Z. One then finds that the entanglement
entropy of a disk is given by

Sdisk (R) =
∞∑

k=−∞
Sk = S0 + 2

∞∑
k=1

Sk . (36)

Comparing (36) to (35), one obtains

Sdisk (R) = S(D)
h−disk (R) + S(N )

h−disk (R) , (37)

which is exactly our conjectured relation (4), applied to the
(half-) circle for the scalar field with Dirichlet/Neumann BCs.
Let us emphasize that (37) is valid for the full entropies,
including the finite terms. These finite contributions, let us
denote them −FD/N , are unphysical by themselves as they
may be spoiled by the logarithmic term upon rescaling the
UV regulator. Their sum, however, is a physical quantity
FD + FN = F , that is the free energy on S3, see (6).

One can also check that (37) yields a consistent relation for
the corner functions:

as(π ) = b(D)
s (π/2) + b(N )

s (π/2) ⇔ 0 = 1

24
+ −1

24
= 0 .

(38)

Similar calculations can be done for a scalar field in a cylinder
in 4d (see Appendix B) or in the (d − 2)-sphere, see, e.g.,
Refs. [44,45].

2. Lattice calculations for the free scalar

We consider the discretized Hamiltonian of a (2 + 1)-
dimensional free massless scalar field on a square lattice
given by

H = 1

2

∑
x,y

[
π2

x,y + (φx+1,y − φx,y)2 + (φx,y+1 − φx,y)2
]
,

(39)
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Ly

Neumann

Dirichlet

tan θ=2

FIG. 5. Two-dimensional square lattice with Dirichlet-Neumann
BCs imposed in the (vertical) y direction and PBCs in the (horizontal)
x direction. The region A is shown in blue and has LA

x = 5. The entan-
gling surface intersects the boundaries with angles θ = arctan(±2).

where x = (x, y) represents the spatial lattice coordinates
with xi = 1, . . . , Li, and Li is the lattice length along the
ith direction. The total number of sites is N = LxLy. The
Hamiltonian (39) corresponds to a lattice of coupled quantum
harmonic oscillators, and its linearly dispersing acoustic mode
is described by the free scalar CFT. H may also be written
more compactly as

H = 1

2

∑
x

π2
x + 1

2

∑
x,x′

φxKxx′φx′ , (40)

where K is an N × N matrix encoding the nearest-neighbor
interactions between lattice sites as well as the boundary
conditions. The vacuum two-point correlation functions
Xxx′ ≡ 〈φxφx′ 〉 and Pxx′ ≡ 〈πxπx′ 〉 are given in terms of the
matrix K by

X = 1

2
K−1/2 , and P = 1

2
K1/2 . (41)

The entanglement entropy can then be calculated [41] from
the eigenvalues ν� of the matrix CA = √

XAPA, where XA and
PA are the correlation matrices restricted to the region A:

S(A) =
∑

�

[(
ν� + 1

2

)
ln

(
ν� + 1

2

)

−
(

ν� − 1

2

)
ln

(
ν� − 1

2

)]
. (42)

We choose to impose periodic BC in the x direction and
Dirichlet-Neumann BCs in the y direction, i.e., φLx+1,y = φ1,y,
and φx,0 = 0 and φx,Ly+1 − φx,Ly = 0. Note that the Dirichlet-
Neumann BCs do not have the zero mode that would have
been present for Neumann-Neumann. We compute the entan-
glement entropy for regions A of width LA

x with fixed ratio
LA

x /Ly = 4, as depicted in Fig. 5, and extract the logarithmic
contribution by performing least-squares fits of our numerical
data to the scaling ansatz [41,42,46,47]

S(Ly) = s1Ly− 2slog ln Ly+ s0+ s−1L−1
y + · · ·+ s−pmax L−pmax

y .

(43)

For the Dirichlet-Neumann BCs that we have chosen, the
region A displays four boundary corners; two Dirichlet and
two Neumann (the factor two is due to the symmetry b(θ ) =

b(π − θ )). The logarithmic contribution 2slog in the entropy is
thus the sum of the Dirichlet and Neumann boundary corners
functions, such that once extracted, we may directly check our
conjectured relation (22) as

slog = b(D)(θ ) + b(N )(θ )
?= a(2θ ) . (44)

We present in Appendix C the implementations of different
boundary conditions on a one-dimensional lattice, and in
particular Neumann BC. The extension to higher dimensional
lattices is straightforward. The two-dimensional vacuum two-
point functions in the thermodynamic limit Lx → ∞ are the
following:

〈φi, jφr,s〉 =
(i−r−1/2

i−r

)
Ly + 1/2

∑
ky

sin(ky j) sin(kys)

×
√

z2(i−r)+1

1 − z2 2F1

(
1

2
,

1

2
; i − r + 1;

z2

z2 − 1

)
,

(45)

〈πi, jπr,s〉 =
(i−r−3/2

i−r

)
Ly + 1/2

∑
ky

sin(ky j) sin(kys)

×
√

1 − z2

z2(i−r)+1 2F1

(
−1

2
,

3

2
; i − r + 1;

z2

z2 − 1

)
,

(46)

where we defined z = (| sin(ky/2)| −
√

sin2(ky/2) + 1)
2

with
ky = π (2ny − 1)/(2Ly + 1) and ny = 1, . . . , Ly. Expres-
sions (45) and (46) are the matrix elements of the correla-
tion matrices XA and PA, respectively [where (i, j) and (r, s)
are the raw and column indices, respectively]. On square
lattices, angles which obey tan θ = r ∈ Q are accessible by
“pixelation” of the region A (see, e.g., Refs. [18,46]). This is
shown in Fig. 5 for tan θ = ±2. Our lattice results for the free
scalar with Dirichlet-Neumann BCs are given in Table II in
which we have reported the digits that we found to be robust.
We also include in this table the values of a(2θ ) from the
“high-precision ansatz” of Ref. [46] (see Appendix D), the
numerical results of Ref. [18] for b(D)(θ ), as well as the values
of b(N )(θ ) deduced from the previous results. Plots of all this
are shown in Fig. 6.

As can be seen in Table II, we find a difference of less
than 0.5% between our numerical results for b(D)(θ ) + b(N )(θ )
and the field theoretic ones [46] for a(2θ ), thus implying the
validity of (22). The high-precision lattice results [46] for
the bulk corner function a(2θ ) are also in close agreement
with our numerical results; we do not show their values here
since they agree with the field theoretic ones within error
bars. Further, we have computed the n = 2 Rényi entropy
and find that (22) also holds in that case within less than 1%
discrepancy between the numerics and the theory. Table II
shows the comparison with the high-precision field theory
results for a2(2θ ) [46].

Using our numerical results, we find that the Rényi index
n and the angle dependences in the entropy do not factorize.
If it were the case, we would have bn(θ )/b(θ ) = const valid
for all angles θ . This ratio for n = 2 shows a deviation of 13%
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TABLE II. Lattice results for the boundary corner entanglement for free scalars. The second column presents our numerical results for
b(D)(θ ) + b(N )(θ ), which we compare to those of Ref. [46] for a(2θ ) in the third column. In the fourth column, the numerical results of b(D)(θ )
are reported [18]. Next, we give values of the Neumann boundary corner function b(N )(θ ) = a(2θ ) − b(D)(θ ). The next two columns compare
our numerical results for the n = 2 Rényi case b(D)

2 (θ ) + b(N )
2 (θ ) with the theoretical one a2(2θ ) of Ref. [46]. We also give b(D)

2 (θ ), which was
computed using a lattice with DD boundary conditions. The last column shows b(N )

2 (θ ) = a2(2θ ) − b(D)
2 (θ ).

n Entanglement entropy n = 1 Rényi entropy n = 2

tan θ b(D)(θ ) + b(N )(θ ) a(2θ ) [46] b(D)(θ ) [18] b(N )(θ ) b(D)
2 (θ ) + b(N )

2 (θ ) a2(2θ ) [46] b(D)
2 (θ ) b(N )

2 (θ )

1/4 0.0730 0.0730(6) 0.182(4) −0.109(4) 0.0412 0.04127 0.1340 −0.0927
1/2 0.0319 0.03195 0.09798 −0.0660 0.0177 0.01779 0.07223 −0.05444
1 0.0118(3) 0.011833 0.06081 −0.04898 0.00648 0.006487 0.04511 −0.03862
2 0.00357 0.003579 0.04717 −0.04359 0.00194 0.001943 0.03522 −0.03327
4 0.00095 0.000953 0.04310 −0.04215 0.00051 0.000516 0.03228 −0.03177
∞ 10−7 0 ∼1/24 ∼− 1/24 10−8 0 ∼1/32 ∼ − 1/32

for Neumann BCs, and only 2% for Dirichlet BCs between
θ = π/2 and θ = arctan(1/4). At orthogonality, our results
for n = 1, 2 are in perfect agreement with the following
relation [8,17]:

bn(π/2) = 1

2

(
1 + 1

n

)
b(π/2) , (47)

where b(θ ) ≡ b1(θ ). This can be understood by using the
replica trick. The Rényi entropies may be computed by in-
troducing in the underlying manifold a conical singularity
located at the entangling surface. In three dimensions, when a
flat entangling curve intersects orthogonally the flat physical

0 1/4 1/2 1 2 4 ∞

−0.1

−1/24

0

1/24

0.1

0.15

0.2

tan θ

lattice: b(D)(θ)

lattice: b(D)(θ) + b(N)(θ)

theory: a(2θ)

b(N)(θ) = a(2θ) − b(D)(θ)

FIG. 6. Corner entanglement for free scalars. The orange trian-
gles are our numerical results for b(D)(θ ) + b(N )(θ ), while the solid
orange line is the “high-precision ansatz” of Ref. [46] for a(2θ ). The
numerical results for b(D)(θ ) found in Ref. [18] are the blue circles.
With green squares are shown the values of the Neumann boundary
corner function as deduced from b(N )(θ ) = a(2θ ) − b(D)(θ ). Finally,
the dashed blue and green lines are interpolations of the numerical
data.

boundary, the singular space-time factorizes as the product
of a two-dimensional cone (the singular part, n-dependent)
with a semi-infinite interval (the entangling line). As a result,
the Rényi entropy is simply proportional to the entanglement
entropy, hence (47). Now if the entangling curve is not or-
thogonal to the boundary, we do not have a product space,
therefore the Rényi index n and the angle dependences in the
entropy do not factorize, as we verified numerically.

E. Relation to central charges

It has been conjectured in Ref. [18] that relation (20)
should hold for free scalars split evenly between Neumann
and Dirichlet BCs, and for free fermions with mixed BCs, due
to properties that these theories share with the holographic
one at α = π/2. For scalars, the value of As

T for both BCs
is known, As,D

T = As,N
T = −1/(128π ), which is actually in-

dependent of the boundary condition. The expression corre-
sponding to (20) for Dirichlet + Neumann scalars reads(

σ D
s + σ N

s

)
/2 = −πAs

T , (48)

and is indeed satisfied with the values of σ D/N
s given in (26).

Note that (20) does not hold for free scalars with Dirichlet
or Neumann BCs alone [18]. The value of AT for fermions
is known through its relation with the boundary central
charge c in the trace anomaly [48] (see Appendix A), A f

T =
−1/(64π ) = 2As

T hence

σ M
f = −πA f

T (49)

holds for fermions as well, using σ M
f = 1/64 predicted

in (26). As we will see shortly, this may be understood as
a consequence of AT being related to CT for free scalars
and fermions. The validity of σB = −πAT for free Dirichlet-
Neumann scalars, mixed fermions and holographic theories
dual to Einstein gravity raises the question whether it also
holds for other 3d theories with appropriate BCs. It would
be interesting to test this hypothesis with different models in
order to see if universality is indeed at play here.

Now, recall that for bulk corners, the smooth-limit coeffi-
cient σ is universal and proportional to CT , see (13). Then,
using (13) and (24) together with (48) and (49) yields the
relation

AT = − π

12
CT . (50)
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One can check that this equality indeed holds for scalars
with As

T = −1/(128π ) and Cs
T = 3/(32π2), and for fermions

using A f
T = −1/(64π ) and C f

T = 3/(16π2). We thus find
through the connection between bulk and boundary corner en-
tanglement that the charge AT appearing in the near-boundary
expansion of the stress tensor is in fact related to CT , and it
appears so in a universal way for free fields. In fact, such a
relation between AT and CT seems to exist in any dimensions
for free fields, and for holographic theories with BC α = π/2
only [49], see Appendix A for further details.

We also notice that with (26), the boundary corner coeffi-
cients for free fields may be expressed in a universal form

σB = π2

12
CT + a

64
= −πAT + a

64
, (51)

where a is the boundary central charge in the conformal
anomaly (see Appendix A): a = ±1 for scalars with Dirichlet
(+) and Neumann (−) BCs, and a = 0 for fermions with
mixed BCs. Note that (51) is not valid for holographic bCFTs
with arbitrary α, but it does hold for α = π/2 (the charge
a ∝ cot α vanishes in that case).

IV. EXTENSIVE MUTUAL INFORMATION MODEL

Within the extensive mutual information model
(EMI) [50–52], the entanglement entropy of a region A
in infinite flat space is obtained by the following double
integral over two copies of the boundary ∂A of A:

SEMI(A) = s0

∫
∂A

dr′
∫

∂A
dr

n̂ · n̂′

|r′ − r|2(d−2)
, (52)

where d is the space-time dimension, s0 is a positive con-
stant, and n̂ is an outward pointing vector normal to ∂A.
The EMI model has the interesting property that the mutual
information, I (A, B) = S(A) + S(B) − S(A ∪ B), satisfies the
extensivity property:

I (A, B ∪ C) = I (A, B) + I (A,C) , (53)

hence its name.
The entanglement entropy given by (52) is valid in flat

space without boundaries. We introduce the following gen-
eralization that includes a flat boundary ∂M by the following
simple ansatz, which we dub “bEMI:”

SbEMI(A) = 1

2
SEMI(A ∪ A′) , (54)

where A′ is the mirror image of A with respect to ∂M,
see Fig. 7. By construction, SbEMI satisfies (4) with identical
boundary conditions B = B′, although we are being agnostic
about the physical meaning of the boundary condition since
we do not know what theory has an entanglement entropy
given by the bEMI. Note that we refer to (52) and (54) as
entanglement entropies, but keep in mind that the EMI and
bEMI ansatzes can be extended to general Rényi entropies by
replacing s0 with s0,n.

A. Corner entanglement in 2 + 1 dimensions

For the EMI model, the bulk corner function aEMI(θ )
reads [51]

aEMI(θ ) = 2s0(1 + (π − θ ) cot θ ) . (55)

(b)

A1 A2A1A2

|

(c)

A1 A2A1A2

|

(a)

A3 A4A2A1

FIG. 7. Multi-interval entanglement for the (b)EMI model.
(a) Four intervals on the infinite line without boundary. (b) Two
intervals on the semi-infinite line, with A1 connected to the boundary,
and the mirror image through the boundary on the left. (c) Two
intervals on the semi-infinite line, none connected to the boundary,
and the mirror image through the boundary on the left.

Our bEMI ansatz thus yields the boundary corner function
bEMI(θ ):

bEMI(θ ) = 1

2
aEMI(2θ ) . (56)

We note that this relation is identical to that of the free Dirac
fermion (23) with mixed BCs, scalars with mixed BCs, and to
the holographic one (19) with BCs α = π/2. Using (55), we
find that the boundary corner function vanishes at orthogonal-
ity bEMI(π/2) = 0, which implies the vanishing of the central
charge

abEMI = 0 . (57)

The expansion coefficients for angles near π/2 and 0 read
σ bEMI = s04/3 and κbEMI = s0π/2, respectively. These co-
efficients are listed in Table I. Using the known value [30]
for the bulk theory, CT = s016/π2, we see that the following
relation holds:

σ bEMI = π2

12
CT , (58)

which is also satisfied by a free Dirac fermion with mixed
BCs, free scalars with Dirichlet-Neumann BCs, and holo-
graphic CFTs with α = π/2. Now, assuming the relation
σ (B) = −πA(B)

T holds for the bEMI, we can extract the bound-
ary central charge: AbEMI

T = −s04/(3π ). We note that this
value is the same as the one we would have obtained using
AbEMI

T = −πCT /12. However, since we do not know whether
these relations hold for the bEMI, the value of AT is a
conjecture.

bEMI(θ ) (normalized) is plotted as a function of θ in Fig. 8.
As one may see in this figure, the normalized boundary corner
functions for the bEMI, holography, fermions, and N + D
scalars are hardly discernible. Universality seems to be at play
here. Gaining a better understanding of this is of foremost
importance.

B. (1 + 1)-dimensional systems

In d = 2, the two integrals in (52) should be replaced by
a double sum over the set of endpoints pi of the intervals for
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0 π/8 π/4 3π/8 π/2
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4

5

θ

(b
(θ

)
−

b(
π
/
2
))

/
|σ

B
|

Scalar D

Scalar N

Scalars D+N

Fermion M

Holog. α = π/2

bEMI

z = 2 Scalar D

z = 2 Scalar N

3π/32 π/8 5π/32

2.5

3

FIG. 8. Boundary corner entanglement for various theories. The
boundary corner functions are normalized in such a way that near
θ = π/2 they behave as b(θ 	 π/2) = ±(π/2 − θ )2. The inset
shows a closeup of the positive curves.

which the entropy is computed:

SEMI(A1 ∪ A2 ∪ · · · ) = −s0

∑
i, j

n̂i · n̂ j ln |pi − p j | . (59)

At coincidental points pi = p j , the expression above needs
to be regulated; we thus introduce a short-distance UV cutoff
ε, i.e., |pi − pi| → ε. Let us denote the set of endpoints by
{pi} ≡ {ui, vi}, where ui and vi are the left and right endpoints
of the interval Ai, respectively. In the basis (0, êx ) with the unit
vector êx in the direction of increasing x, the normal vectors
n̂i at pi are simply n̂i = ±êx, depending on the endpoint being
left (−) or right (+). It is then straightforward to show that the
p-intervals entropy for the EMI model in 1 + 1 dimensions
takes the form

SEMI(A1 ∪ A2 ∪ · · · ∪ Ap)

= 2s0 ln

( ∏
i, j |ui − v j |

ε p
∏

i< j |ui − u j ||vi − v j |

)
. (60)

Setting s0 = 1
12 (1 + 1

n ), the entropy (60) is exactly the n-
Rényi entropy of a free massless Dirac fermion [50]!

Our bEMI ansatz (54) for p regions yields

SbEMI(A1 ∪ · · · ∪ Ap)

= 1
2 SEMI(A

′
p ∪ · · · ∪ A′

1 ∪ A1 ∪ · · · ∪ Ap) . (61)

In particular, for one interval of length � connected to the
boundary in 1 + 1 dimensions, Eq. (61) gives

SbEMI(�) = 1

12

(
1 + 1

n

)
ln

2�

ε
, (62)

which is exactly the result (2) for a Dirac fermion (with
Virasoro central charge c = 1) on the semi-infinite line. For
one interval of length � at a distance d from the boundary, we
obtain

SbEMI(�, d ) = 1

12

(
1 + 1

n

)
ln

4�2d (� + d )

ε2(� + 2d )2
, (63)

which again perfectly agrees with the known result [27] for
the free fermion in a semi-infinite system. Note that taking
the limits d → ∞ and d → 0, one recovers (1) and (2),
respectively. We therefore conclude that the EMI and bEMI
models are exact for free fermions in 1 + 1 dimensions.

V. LIFSHITZ FIELD THEORY IN 2 + 1 DIMENSIONS

Lifshitz field theories (LFTs) are nonrelativistic theories
which exhibit anisotropic scaling between space and time,
with characteristic dynamical exponent z �= 1. In 2 + 1 di-
mensions, the free Lifshitz real scalar theory with dynamical
critical exponent z = 2 enjoys many interesting features. The
corresponding Euclidean action for the noncompact scalar ϕ

in d = 3 is

ILFT[ϕ] = 1

2

∫
d3x[(∂τϕ)2 + (∇2ϕ)2]. (64)

We have absorbed an inessential constant that would appear
in front of the term with spatial derivatives by using field and
coordinate rescalings. For this model, the ground-state wave
functional is given in terms of the Euclidean action ICFT[ϕ] of
the two-dimensional CFT [53],

|�〉 = 1√
Z

∫
[dϕ]e− 1

2 ICFT[ϕ]|ϕ〉 , (65)

where Z is the partition function of the CFT,

Z =
∫

[dϕ]e−ICFT[ϕ] , ICFT[ϕ] = 1

2

∫
d2x (∇ϕ)2. (66)

The ground-state wave function (65) of the z = 2 free scalar
is thus conformally invariant in space [53]!

We consider spatial bipartitions such as those shown in
Fig. 2. Then, provided ϕ is noncompact, the Rényi entangle-
ment entropy for the ground state is given by [24]

Sn = − ln
ZAZB

ZA∪B
, (67)

and is independent of the Rényi index n, which we henceforth
drop. ZA and ZB are the free (CFT) scalar partition functions
on regions A and B, respectively, with continuity of the fields
requiring Dirichlet BCs on the entangling curve �. ZA∪B is
the partition function on the entire space M, with specified
boundary conditions, e.g., Dirichlet or Neumann BCs, on the
space boundary ∂M. In Ref. [24], only Dirichlet BCs were
considered. The entanglement entropy can thus be written as
the difference in free energies

S = FA + FB − FA∪B . (68)
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For the free scalar field, the free energy can be expressed in
terms of the heat kernel K (s) ≡ es� of the (2d in our case)
Laplacian operator �,

F = −1

2

∫ ∞

ε2

ds

s
tr K (s) , (69)

where the trace is taken over the region of interest and ε → 0.
Computing the entanglement entropy (68) thus boils down to
computing the trace of the heat kernel on the three domains A,
B, and A ∪ B.

A. Corner entanglement for the z = 2 scalar

Suppose a two-dimensional domain M has a piecewise
smooth boundary ∪i∂Mi consisting of a number of ∂Mi

(with extrinsic curvature ki) which may intersect at some
points, the corners. Either Dirichlet or Neumann BC is im-
posed on each of the pieces ∂MD/N

i , thus yielding three types
of corners (NN, DD, and ND). The heat trace tr K (s) admits
an asymptotic expansion as s → 0 of the form4:

tr K (s) 	
∑
p�0

ap s(p−2)/2 , (70)

where the coefficients ap depend on the geometry of the
domain and on the boundary conditions. Plugging the heat
trace expansion in (69) yields the following leading terms in
the free energy:

F = − a0

2ε2
− a1

ε
− a2 ln

�

ε
+ O(1), (71)

where � is a length scale characteristic of the size of the
domain on which the free energy is computed. The first three
heat coefficients are given by (see Ref. [55] and references
therein)

a0 = 1

4π

∫
M

1 , (72)

a1 = 1

8
√

π

⎛⎝∑
i

∫
∂MN

i

1 −
∑

j

∫
∂MD

j

1

⎞⎠ , (73)

a2 = 1

24π

(∫
M

R +
∑

i

∫
∂Mi

2ki

)

+
∑

j

fH (θ j ) +
∑

k

fM (θk ) , (74)

where we have defined the following heat corner functions:

fH (θ ) = 1

24

(
π

θ
− θ

π

)
, (75)

fM (θ ) = − 1

48

(
π

θ
+ 2θ

π

)
, (76)

4This classical asymptotic expansion of the heat trace may break
down at the p = 3 level when considering the N/D problem (e.g.,
corners with mixed BCs), see Ref. [54]. However, we are only
interested in the heat coefficients up to p = 2.

where H stands for a corner with homogenous BCs (DD or
NN) and M for a mixed corner (ND). Note that the mixed heat
corner coefficient can be obtained by applying relation (18),
that is

fH (2θ ) = fH (θ ) + fM (θ ) . (77)

One can explicitly check (76) by computing the heat trace on
mixed wedges of opening angles, e.g., π/2, π/4, π/6 with
the method of images. This result for the mixed corner was
previously obtained with the same arguments by Dowker in
Ref. [56]. Notice that fM (θ ) is not a monotonic function of θ

over [0, π ] as fH (θ ).
Getting back on track, it is clear that the volume terms,

i.e., the a0’s, do not contribute to the entropy, while the
boundary terms a1 produce the area law (due to the Dirichlet
BC imposed on the entangling surface). The first two (smooth)
terms in a2 do not contribute to the entropy either. However,
the last two terms in a2, originating from the corners, give rise
to a logarithmic scaling in the entropy. The corner functions
corresponding to the geometries in Fig. 2 are easily obtained
by summing the heat coefficients fH/M for the regions A and
B and subtracting those for A ∪ B. The entanglement entropy
for the z = 2 free scalar field thus has the following form:

S = B
�

ε
− slog ln

�

ε
+ O(1) , (78)

where the logarithmic coefficient slog is given by the different
corner functions,

slog =
∑

i

az=2(θi ) +
∑

j

bz=2(θ j ) . (79)

Below we give formulas for these corner functions which will
allow us to explicitly check our conjecture (4) for this theory.

1. Bulk corner

The well-known [24] bulk corner function az=2(θ ) for the
wedge does not depend on the boundary conditions on ∂M
and reads for the z = 2 free scalar:

az=2(θ ) = (π − θ )2

12θ (2π − θ )
, (80)

which implies that the smooth- and cusp-limit coefficients
respectively read [57]

σ = 1/(12π2) , κ = π/24 . (81)

2. Boundary corner

The boundary corner function bz=2(θ ) depends on the
boundary condition imposed on ∂M (either D or N),

b(D)
z=2(θ ) = 1

24

(
π − θ

θ
+ π

π − θ

)
, (82)

b(N )
z=2(θ ) = − 1

48

(
π + 2θ

θ
+ π

π − θ

)
, (83)

with

b(D)
z=2(π/2) = −b(N )

z=2(π/2) = 1/8 , (84)

σ D = −2σ N = 2/(3π2) , (85)

κD = −2κN = π/24 . (86)
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These coefficients are listed in Table I. The two functions
b(D,N )

z=2 display the same qualitative behaviors as their rela-
tivistic cousins. Indeed, b(D)

z=2 is a positive convex function
of θ as b(D)

s , while b(N )
z=2 is negative and concave as b(N )

s , as
may be seen in Fig. 8. Surprisingly, the normalized functions
b(D)

s and b(D)
z=2 plotted in Fig. 8 coincide almost perfectly.

This is unexpected given how different the two theories are
(relativistic-conformal versus nonrelativistic). However, such
an agreement does not occur for Neumann BC.

Remarkably, the corner functions for the z = 2 free scalar
satisfy the same conjectured equality (22) as for the free
relativistic scalar field,

az=2(2θ ) = b(D)
z=2(θ ) + b(N )

z=2(θ ) . (87)

This exact result gives us further confidence in the validity
of (4) and (18) for certain QFTs.

VI. MASSIVE THEORIES

So far, we have only considered gapless theories. However,
many QFTs are not gapless, and so it is highly desirable
to understand the fate of our bulk-boundary relation in that
case. For one, we expect our relation (4) between bulk and
boundary entropies to hold for certain free massive theories.
As an example, let us take the free massive scalar field. The
arguments presented in Sec. II B should carry through to the
massive case. Indeed, the heat kernel for a massive scalar
field is simply obtained from the massless case as K (m) =
e−m2sK (m=0), such that K (m) = K (m)

N + K (m)
D holds. One could

also repeat the treatment for the (half) disk geometry in
Sec. III D 1 for the massive case. The Hamiltonian (33) with
a mass term is obtained by replacing k2 → k2 + m2, thus
relation (37) also holds for free massive scalars.

In the half-space, for a flat entangling surface that inter-
sect orthogonally the physical boundary, the corresponding
entanglement entropy can be computed explicitly in any di-
mensions [17]. For instance, in 3d one has

S(m)
D/N = B

�

ε
± 1

24
ln(εm) + · · · , (88)

which satisfies the bulk-boundary relation (4): the logarithms
cancel when we add the entropies corresponding to the two
boundary conditions. The ellipsis represents terms subleading
in ε; � is the IR cutoff for the size of the entangling region.

The case of massive Dirac fermions must be treated with
care because gapless edge states can be present on the bound-
ary, which would arise in the description of Chern or Z2

topological insulators, for instance. These gapless edge modes
can affect the entanglement entropy of regions touching the
boundary. We leave the discussion of such effects for future
work.

VII. CONCLUSION

We studied the quantum entanglement properties of sys-
tems in the presence of a physical boundary. We have pro-
posed a bulk-boundary relation (4) relating the Rényi en-
tropies of certain theories with and without a boundary. Our
attention was focused on situations where the entangling
surface intersects the boundary of the space. In particular,

in three dimensions, this leads to a new type of corner,
called a boundary corner, from which originates new kinds
of universal quantities in the entanglement entropy. These
corner-induced logarithmic terms are not to be confused with
those arising in the bulk when the entangling surface presents
a singularity. For a given theory, the corresponding boundary
corner function b(B)(θ ) depends on the opening angle θ of
the corner adjacent to the physical boundary and on the
boundary conditions B. Our bulk-boundary relation connects
the universal bulk and boundary corner terms for a family of
theories (18). The relation applies for boundary theories with
“mixed” BCs, such that for bCFTs the Euler boundary central
charge vanishes a = 0, see (8). This is the case for free scalars
evenly split between Dirichlet and Neumann BCs, as well as
free Dirac fermions with mixed BCs, holographic CFTs with
an α = π/2 BC, and the boundary Extensive Mutual Infor-
mation Model (bEMI). The latter allows a simple geometric
calculation of the entanglement entropy in the presence of a
flat boundary, and thus constitutes a very useful tool.

We also studied the Lifshitz free scalar with dynamical ex-
ponent z = 2. The bulk and boundary corner functions can be
computed explicitly, producing remarkably simple functions
of the opening angle θ for both Dirichlet and Neumann BCs.
These functions satisfy the bulk-boundary relation (18), and
behave very similarly to the case of the relativistic scalar. In
particular, the Neumann corner function (83) is negative for
all angles, just as in the relativistic case.

An interesting direction would be to study the relation
between the bulk and boundary entanglement entropies of
other Lifshitz theories and CFTs, such as the Ising CFT or
its N > 1 cousins [generally known as O(N ) Wilson-Fisher
fixed points]. In tour-de-force numerical calculations, the bulk
corner function a(θ ) for angles of π/2 was studied on the
lattice [28,58–60], and analytically in the large-N limit [61].
It would be worthwhile to apply these methods to corners
adjacent to the boundary, for different boundary conditions.

Our results also generalize to higher dimensions. For in-
stance, we discuss the case of cylindrical entangling regions
in 3 + 1 dimensions in Appendix B. More interestingly, one
could study the case of trihedral vertices, where three planes
meet at a point. These vertices lead to a logarithmic contri-
bution to the entanglement entropy for gapless theories, and
were studied recently in the bulk for critical states [33,62–
65], but much remains unknown about their properties. One
could examine how the bulk trihedral entropy relates to that
of boundary trihedral corners, where the two planes forming
the entangling surface intersect the flat physical boundary to
form a trihedral vertex.
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APPENDIX A: COMMENTS ON BULK AND
BOUNDARY CHARGES

Boundary conformal field theories offer a wider bestiary
of central charges than conformal field theories. This has of
course to be imputed to the presence of the “b” in bCFT. In
three dimensional space-times with boundaries, the conformal
anomaly no longer vanishes and there are two boundary
charges, a and c [68,69]. The vacuum expectation value of the
trace of the stress tensor integrated over the space-time reads∫

M3

〈
T μ

μ

〉 = − a

96
χ [∂M3] + c

256π

∫
∂M3

tr k̂2, (A1)

where χ [∂M3] is the Euler characteristic of the boundary
and k̂μν is the traceless part of the extrinsic curvature tensor
of the boundary. The charge c is independent of boundary
conditions for free fields, while a for scalars is not. For a free
scalar field, c = 1 and a = ±1 for Dirichlet (+) and Neumann
(−) boundary conditions, and c = 2, a = 0 for a free Dirac
fermion with mixed boundary conditions. Recently [48,70], c
has been connected to two other boundary charges, namely AT

and cnn, where cnn is the charge in the two-point function of
the displacement operator. Then, with Eq. (50) which relates
AT to CT for free fields, one finds that all the boundary charges
presented above, with the exception of a, are related to the
bulk charge CT ,

AT = − c

128π
= − π

16
cnn = − π

12
CT . (A2)

Therefore only the boundary charge a and the bulk charge
CT are independent for free fields. One may also wonder
if such a relation between AT and CT exists in higher di-
mensions. For scalars, fermions and vectors we find in the
literature [36,48,71,72]

Cs
T = d

d − 1

�2(d/2)

4πd
, As

T = − �(d/2)

2dπd/2(d2 − 1)
, (A3)

C f
T = 2�d/2�d

8πd
�2(d/2) , A f (4d )

T = − 1

40π2
, (A4)

Cv(4d )
T = 4

π4
, Av(4d )

T = − 1

20π2
. (A5)

For scalars, one gets in d dimensions

AT = − 22−dπd/2

d (d + 1)�(d/2)
CT . (A6)

One can check that (A6) is actually satisfied for every
known values of CT and AT for free CFTs. As an in-
teracting example, for holographic bCFTs, we have in d

dimensions [22],

A(α)
T,E = −Ld−1

AdS

8πG

[
1

cos α
2F1(−1/2, (2 − d )/2; 1/2; cos2 α)

− sind−2 α

cos α
+

√
π �(d/2)

�
(

d−1
2

) ]−1

, (A7)

CT,E = Ld−1
AdS

8πG

(d + 1)!

(d − 1)πd/2

1

�(d/2)
, (A8)

and it is easy to show that for α = π/2, we have

A(π/2)
T,E = − 22−dπd/2

d (d + 1)�(d/2)
CT,E , (A9)

which is exactly (A6).
In d = 4 bCFTs, the conformal anomaly reads [7,69]∫
M4

〈T 〉 = − a

180
χ [M4] + c

1920π2

∫
M4

W 2
μναβ

− b1

240π2

∫
∂M4

k̂μνWμnnν + b2

280π2

∫
∂M4

Tr k̂3 .

(A10)

The coefficients b1 and b2 are new boundary central charges
while a and c are the well-known bulk charges. Only b2

depends on boundary conditions as one finds from free fields
b1 = c. The values of these charges for free fields are given by

as = 1 , a f = 11 , av = 62 , (A11)

cs = 1 , c f = 6 , cv = 12 , (A12)

bs,D(N )
2 = 1 (7/9) , bf

2 = 5 , bv
2 = 8 . (A13)

It is known that b1 = c = 3π4CT for free fields. In Ref. [39],
it was proven that b1 is related to the coefficient cnn in
the displacement operator two-point function as b1 = 2π4cnn.
Further, in Ref. [48], b1 has been connected to AT via b1 =
−240π2AT . Thus through this chain of relations for b1, we
have for free fields

AT = − π2

120
cnn = − b1

240π2
= −π2

80
CT . (A14)

The last equality involving AT and CT is exactly relation (A6)
for d = 4. Interestingly, the coefficient cnn in d dimensions
has been related to AT in Ref. [73],

AT = −d π (d−1)/2

d − 1

�
(

d−1
2

)
�(d + 2)

cnn , (A15)

where cs
nn = �2(d/2)

2πd for free scalars [38]. Then one can

use (A6) to predict the value c f
nn = d−1

4πd 2�d/2��2(d/2) for
fermions in any dimensions. This last expression agrees with
the known values for fermions in d = 3, 4 dimensions.

APPENDIX B: CYLINDERS IN d = 4 DIMENSIONS

Let us consider the entanglement entropy of a scalar field
in a cylinder of length L/2 and radius R � L, anchored or-
thogonally on the flat boundary of the space ∂M, as depicted
in Fig. 9. We use cylindrical coordinates (r, θ, z). We may
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Σ

∂M C

FIG. 9. (3 + 1)-dimensional space-time (time slice). The entan-
gling surface � is a two-dimensional cylinder orthogonal to the
boundary ∂M. Their intersection (red) is a circle.

impose either Dirichlet or Neumann BCs on the boundaries at
z = 0, L/2. In a similar manner as for the disk, we can dimen-
sionally reduce our problem from 3 + 1 to 1 + 1 dimensions.
To that end, the fields are decomposed in angular and axial
modes as

ϕ(r, θ, z) = 1√
r

∑
kl

fkl (θ, z) ϕkl (r) , (B1)

π (r, θ, z) = 1√
r

∑
kl

fkl (θ, z) πkl (r) , (B2)

where fkl (θ, z) is a set of orthonormal functions which depend
on the BCs such that

f (D)
kl (θ, z) = 1√

πL
eilθ sin(2πkz/L), k = 1, 2, . . . , (B3)

f (N )
kl (θ, z) = 1√

πL
eilθ cos(2πkz/L), k = 0, 1, . . . , (B4)

and l ∈ Z. The Hamiltonian can then be written as H =∑
kl Hkl , where

Hkl = 1

2

∫
dr

(
π2

kl + r∂r

(
ϕkl√

r

)2

+
(

l2

r2
+ ω2

k

)
ϕ2

kl

)
,

(B5)

and ωk = 2πk/L. The entanglement entropies for Dirichlet
and Neumann BCs are thus given by

S(D)
cyl (R) =

∞∑
l=−∞

∞∑
k=1

Skl , (B6)

S(N )
cyl (R) =

∞∑
l=−∞

∞∑
k=0

Skl , (B7)

where Skl is the entropy associated to Hkl .
Now, we want to compute the entanglement entropy of a

cylinder of length L and radius R � L (no boundary here). It
is convenient to compactify the direction z by imposing peri-
odic BCs z = z + L and decompose the fields on axial and an-
gular modes with eigenfunctions fkl (θ, z) = 1√

2πL
eilθ ei2πkz/L ,

where k, l ∈ Z. The entanglement entropy of a cylinder is thus

given by

Scyl(R) =
∞∑

k,l=−∞
Skl , (B8)

which can be written as

Scyl(R) = S(D)
cyl (R) + S(N )

cyl (R) , (B9)

as for the disk case.
Again, it is interesting that the difference between the

entanglement entropy for Dirichlet and Neumann BCs is the
presence of the k = 0 mode in the latter. One further notices
that the entropy associated to this mode is in fact the entropy
of a scalar field in a disk of radius R in 2 + 1 dimensions (36),
and we have

S(N )
cyl (R) = S(D)

cyl (R) + Sdisk (R) . (B10)

The equality (B10) yields the following relation for the loga-
rithmic contributions scyl:

s(N )
cyl = s(D)

cyl , (B11)

as there is no logarithmic contribution for the disk in 2 + 1
dimensions. Equation (B11) is actually the expected result
for the cylinder. In a flat four-dimensional space-time with a
flat boundary ∂M, the logarithmic term in the entanglement
entropy for an entangling surface � intersecting orthogonally
the boundary is given by [74,75]

slog = a

180
χ [�] + c

240π

∫
�

tr k̂2
i .

The first term is the Euler characteristic of � and (k̂i )μν is the
traceless part of the extrinsic curvature of � as embedded in
the four-dimensional space-time. The central charges a and
c do not depend on the BCs. The Euler characteristic of a
cylinder (with a geodesic boundary or none) is zero and only
the c part in the logarithmic contribution remains.

A similar calculation for an hemisphere would yield the
same relations as (B9) and (B11), only for the (hemi)sphere,
it is the a part that is nonvanishing. Note that χ [sphere] = 2
and χ [hemisphere] = 1.

APPENDIX C: IMPLEMENTATION OF BOUNDARY
CONDITIONS FOR THE DISCRETIZED SCALAR FIELD

The continuum Hamiltonian of a free massless scalar field
in 1 + 1 space-time dimensions is

H = 1

2

∫
dx

(
π2 + φ

( − ∂2
x

)
φ
)
. (C1)

In the discrete case, the fields are evaluated at a lattice site i ∈
[1, N] such that φ(x) → φ(xi ) ≡ φi and π (x) → π (xi ) ≡ πi.
The above Hamiltonian is thus replaced by

H = 1

2
(πT π + φT Kφ) , (C2)

where φT = (φ1, φ2, · · · , φN ), πT = (π1, π2, · · · , πN ), and
the matrix K is the discretized version of the spatial Laplacian
operator −∂2

x . In the static case, the Hamiltonian (C2) yields
the equations of motion

Kφ = 0 , (C3)
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with specified boundary conditions at both ends of the lattice.
Since we are considering a scalar field, its discrete counter-
part is the harmonic chain with nearest neighbors interactions.
The equation of motion for the oscillator φi reads

−φi−1 + 2φi − φi+1 = 0 . (C4)

One should however take the boundary conditions into ac-
count in the equations of motion of φ1 and φN . In order to
implement boundary conditions on a discrete domain, we first
introduce fictitious degrees of freedom, φ0 and φN+1. The
equations of motion for φ1 and φN are

−φ0 + 2φ1 − φ2 = 0 , (C5)

−φN−1 + 2φN − φN+1 = 0 , (C6)

but we can get rid of the extra φ0 and φN+1 by substituting
in (C5) and (C6) boundary conditions such as

Periodic : φ0 = φN , (C7)

Dirichlet : φ0 = 0 , (C8)

Neumann : φ1 − φ0 = 0 , (C9)

at i = 0, and similarly at i = N + 1. Then, the equations of
motion including the boundary conditions are put in the vector
form (C3), from which one can read off the matrix K . For
example, with Dirichlet/Neumann BC on the left/right end,
K is a tridiagonal N × N matrix,

KDN =

⎛⎜⎜⎜⎜⎝
2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1

⎞⎟⎟⎟⎟⎠. (C10)

The matrix K has eigenvectors vi, j (i labels the components of
jth eigenvector) and eigenvalues ω2

j = 4 sin2 (k j/2) where k j

depends on the BCs:

P : k j = 2π j

N
, vi, j = 1√

N
exp(ık ji) , (C11)

DD : k j = iπ

N + 1
, vi, j =

√
2

N + 1
sin(k ji) , (C12)

NN : k j = π ( j − 1)

N
, vi, j =

√
2 − δ j,1

N
cos[k j (i − 1/2)] ,

(C13)

DN : k j = π (2 j − 1)

2N + 1
, vi, j =

√
2

N + 1/2
sin(k ji), (C14)

ND : k j = π (2 j − 1)

2N + 1
, vi, j =

√
2

N + 1/2
cos[k j (i− 1/2)] .

(C15)

TABLE III. Smooth limit coefficients for the scalar bulk corner
function an(θ ) [46].

n 1 2

σn
1

256

1

48π 2

σ (1)
n

20 + 3π 2

18432π 2

5 + π 2

960π 4

σ (2)
n × 105 2.67327749 1.55767377

σ (3)
n × 106 2.70080311 1.56206308

σ (4)
n × 107 2.72879243 1.57369200

σ (5)
n × 108 2.75578382 1.58861117

σ (6)
n × 109 2.78590964 1.60561386

σ (7)
n × 1010 2.81790229 1.62402979

Finally, we obtain the ground-state correlation functions for
the scalar field on the lattice as

〈φiφ j〉 = 1

2
K−1/2

i j = 1

2

∑
n

ω−1
n vi,nv

†
j,n , (C16)

〈πiπ j〉 = 1

2
K1/2

i j = 1

2

∑
n

ωnvi,nv
†
j,n . (C17)

Note that for a massive field we have ω2
n → ω2

n + m2.

APPENDIX D: HIGH-PRECISION ANSATZ FOR THE
SCALAR BULK CORNER FUNCTION

We present in this Appendix the high-precision ansatz of
Ref. [46] for the scalar bulk corner function an(θ ), where n is
the Rényi index. This ansatz takes the form

an(θ ) 	
M∑

p=1

σ (p−1)
n (θ − π )2p + 2κn

π2M+1

(θ − π )2(M+1)

θ (2π − θ )
,

(D1)

where M corresponds to the number of smooth limit co-
efficients σ

(p−1)
n used (σ (0)

n ≡ σn). We refer the reader to
Ref. [41] for the details regarding the expansion of the corner
function in the nearly smooth limit. We give in Table III the
coefficients σ

(p−1)
n up to p = 8 (M = 8) for n = 1, 2 found

in Refs. [41,46]. For the cusp limit coefficients, the value of
κ ≡ κ1 is reported below Eq. (26), while the n = 2 one may
be found in Ref. [40], κ2 = 0.0227998.
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