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Ensemble Green’s function theory for interacting electrons with degenerate ground states
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An ensemble Green’s function formalism, based on the von Neumann density matrix approach, to calculate
one-electron excitation spectra of a many-electron system with degenerate ground states is proposed. A set of
iterative equations for the ensemble Green’s function and self-energy is derived and a simplest approximation
corresponding to an ensemble GW approximation is naturally obtained. The derivation is based on the Schwinger
functional derivative technique and does not assume any adiabatic connection between a noninteracting and an
interacting ground state.
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I. INTRODUCTION

A wide range of electronic systems found in nature have
degenerate ground states. Prominent examples are open-
shell atoms and molecules, vacancy defects in solids, two-
dimensional electronic systems, quantum dots under magnetic
field, and frustrated magnets. The degeneracy often gives rise
to many fascinating phenomena not observed in systems with
well-defined nondegenerate ground state. For example, the
Landau degeneracy in a two-dimensional electronic system
leads to fractional quantum Hall effect [1] and the high de-
generacy in frustrated magnets causes the system to fluctuate
among the degenerate ground states even at temperature close
to absolute zero, leading to emergent phenomena of fractional
spin excitations and magnetic monopoles in spin ice [2,3].
Apart from the fundamental interest, systems with degenerate
ground states may find useful applications in, for example,
quantum computing.

For systems with nondegenerate ground state, there are
already well-established methods developed over many years.
Density functional theory (DFT) is a widely used method to
calculate ground-state properties [4,5] and Green’s function
method within many-body perturbation theory (MBPT), such
as the GW approximation (GWA), is routinely applied to study
excited-state properties [6–9]. The situation is completely
different in the case of systems with degenerate ground states.
Although DFT has been extended to the degenerate case, it
has not been applied extensively [10]. There is even less work
in developing methods for computing excited-state properties
of systems with degenerate ground states.

An early attempt to extend the Green’s function method
to the degenerate case, without any concrete computational
procedure provided, is by Layzer in 1962 [11]. Later attempts
of extending the method is the work of Cederbaum et al.
in 1970’s, in which they considered open-shell atoms and
molecules [12,13]. Several works applying the GWA to sys-
tems with degenerate ground states have appeared recently
in the literature. Attaccalite et al. [14] and Ma et al. [15]
applied the GWA to defects in crystals but the problem with
degeneracy associated with the open shell was not explicitly
considered. Lischner and co-workers assumed a certain form
for the self-energy and a careful choice of the starting mean

field [16]. An earlier work by Shirley and Martin avoided
the degeneracy problem by special selection of the reference
state [17]. So far there is no general formulation based on
the Green’s function to treat systems with degenerate ground
states. One of the main problems stems from MBPT that
usually assumes an adiabatic connection between the true in-
teracting ground state and a noninteracting ground state. This
connection is no longer obvious for degenerate ground states.
An alternative Green’s function method for the degenerate
case built upon the nonperturbative adiabatic approximation
is by Brouder et al. [18].

II. THEORY

In this paper, a Green’s function theory based on the
ensemble density matrix formalism in quantum mechanics
pioneered by von Neumann in 1927 is proposed. An ensemble
is characterized by the density matrix

D̂ =
M∑

i=1

wi|�i〉〈�i|,
M∑

i=1

wi = 1, 0 � wi � 1, (1)

containing the information needed to calculate physical prop-
erties of the ensemble [19]. M is arbitrary and each weight wi

determines the fraction of the ensemble in state |�i〉, with the
states {|�i〉} not necessarily being orthogonal. The ensemble
average of any operator Ô is given by Tr(D̂Ô). For example,
for the density operator we find

ρ(r) = Tr[D̂ρ̂(r)] =
M∑

i=1

wi〈�i|ρ̂(r)|�i〉 =
M∑

i=1

wiρi(r),

(2)

with r = (r, σ ). This density is referred to as ensemble den-
sity.

Similarly, we define an ensemble Green’s function as fol-
lows:

G(1, 2) =
M∑

n=1

wnGn(1, 2), (3)

where a short-hand notation 1 = (r1, t1) etc. is used and
auxiliary Green’s functions Gn are defined in the interaction
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picture according to

iGn(1, 2) = 〈�n|T [Ŝψ̂D(1)ψ̂†
D(2)]|�n〉

〈�n|Ŝ|�n〉
, (4)

where T is the time-ordering operator and

Ŝ = T exp

[
−i

∫ ∞

−∞
dτ

∫
drρ̂(r, τ )ϕ(r, τ )

]
. (5)

{|�n〉, n = 1, ...M} are arbitrary many-electron states, chosen
later as the set of degenerate ground states, with correspond-
ing fractions wn in which the system is prepared at some initial
time point. The perturbing field ϕ(r, t ) is a virtual field that
is used as a tool to derive the self-energy and it will be set
to zero after taking functional derivatives of Gn. The choice
of denominator in Eq. (4) is motivated later. The ensemble
expectation value of any one-particle operator can be obtained
from the ensemble Green’s function as follows:

〈Ô〉 =
M∑

n=1

wn〈�n|Ô|�n〉

= −i
∫

dr lim
r′→r

O(r)G(rt, r′t+). (6)

Each Gn is of the same form as the nondegenerate Green’s
function, and thus the set of Gn fulfills the set of equations of
motion:(

i
∂

∂t1
− h0(1)

)
Gn(1, 2) + i

∫
d3v(1 − 3)G(2)

n (1, 2, 3, 3+)

= δ(1 − 2), (7)

where the auxiliary two-particle Green’s functions G(2)
n are

defined in the interaction picture as:

G(2)
n (1, 2, 3, 4) ≡ −〈�n|T [Ŝψ̂D(1)ψ̂†

D(2)ψ̂D(3)ψ̂†
D(4)]|�n〉

〈�n|Ŝ|�n〉
.

(8)

Now utilizing the Schwinger functional derivative technique,
the auxiliary two-particle Green’s functions G(2)

n is related to
the functional derivative of Gn:

δGn(1, 2)

δϕ(3)
= iGn(1, 2)ρn(3) − G(2)

n (1, 2, 3, 3+). (9)

A set of mass operators Mn, defined by

i
∫

d3v(1 − 3)G(2)
n (1, 2, 3, 3+) ≡ −

∫
d3Mn(1, 3)Gn(3, 2),

(10)

are introduced, and will now be employed to rewrite Eq. (7).
By a further introduction of the ensemble Hartree potential
V H and self-energies �n:

V H (1) ≡
M∑

n=1

wnV
H

n (1) ≡
M∑

n=1

wn

∫
d3v(1 − 3)ρn(3), (11)

�n(1, 2) ≡ −i
∫

d3d4v(1 − 3)Gn(1, 4)
δG−1

n (4, 2)

δϕ(3)

+ δ(1 − 2)
(
V H

n (1) − V H (1)
)
, (12)

the mass operator can be written in the form:

Mn(1, 2) = V H (1)δ(1 − 2) + �n(1, 2). (13)

By employing Eqs. (7) and (13), the equation of motion can
be reformulated as(

i
∂

∂t1
− h(1)

)
Gn(1, 2) −

∫
d3�n(1, 3)Gn(3, 2) = δ(1 − 2),

(14)

with h(1) = h0(1) + V H (1) + ϕ(1). From Eq. (14), we obtain
the functional derivative of the inverse Green’s functions G−1

n ,

δG−1
n (4, 2)

δϕ(3)
= −

(
δ(4 − 3) + δV H (4)

δϕ(3)

)
δ(4 − 2) − δ�n(4, 2)

δϕ(3)
.

(15)

An important point is the choice of the ensemble Hartree
potential V H instead of the individual V H

n , thus modifying the
structure of the self-energies. The motivation is that in the self-
consistent mean-field Hamiltonian approach computations are
in general only well defined for an ensemble mean-field
Hamiltonian. The concept of degeneracy becomes ill defined
when using separate V H

n , as the label n is arbitrary within a
given set of degenerate states. Thus in the first iteration, we set
δ�n/δϕ = 0 in Eq. (15) and δG−1

n /δϕ is then determined only
by the well-defined response of the ensemble Hartree potential
δV H/δϕ, and is independent of the ill-defined δV H

n /δϕ. We
then obtain the self-energy

�n(1, 2) = iGn(1, 2)v(1 − 2)

+ i
∫

d3v(1 − 3)Gn(1, 2)
δV H (2)

δϕ(3)

+ δ(1 − 2)
(
V H

n (1) − V H (1)
)
. (16)

After having obtained �n in the first iteration, we form
the ensemble self-energy � = ∑

n wn�n, which we use in the
equation of motion of the Green’s function as follows:(

i
∂

∂t1
− h(1)

)
Gn(1, 2) −

∫
d3�(1, 3)Gn(3, 2)

−
∫

d3��n(1, 3)Gn(3, 2) = δ(1 − 2), (17)

with ��n = �n − �. From the above equation we find

δG−1
n (4, 2)

δϕ(3)
= −

(
δ(4 − 3) + δV H (4)

δϕ(3)

)
δ(4 − 2)

− δ�(4, 2)

δϕ(3)
− δ��n(4, 2)

δϕ(3)
. (18)

We then use the above δG−1
n /δϕ in Eq. (12), with δ��n/δϕ

set to zero since this quantity is not known at this iteration
and consistent with the fact that it depends on δV H

n /δϕ, which
in contrast to δV H/δϕ is ill defined. The procedure can be
continued to obtain higher order vertex corrections. Unlike the
original Hedin’s equations which form a self-consistent loop,
the corresponding equations in the degenerate case should be
regarded at each iteration as a new perturbation expansion
based on the previous degenerate Green’s functions. The
degeneracy may indeed be lifted in general yielding a new set
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of degenerate Green’s functions. It is noteworthy that ��n is
zero in the nondegenerate case.

We now apply the above formalism to a system with
degenerate ground states. The states {|�n〉, n = 1, ...M} are
chosen to be degenerate ground states with energy E0. The
corresponding weights {wn} are set equal and given by 1/M.
For this choice, the ensemble Green’s function contains the
information for the ensemble average ground state energy, by
the Galitskii-Migdal formula, and the one-particle excitation
spectra. It is noteworthy that since the denominator in Eq. (4)
is equal to unity, the definition of the ensemble Green’s
function for degenerate ground states is invariant under a
unitary rotation within the degenerate subspace.

A key quantity in calculating the self-energy is the density
response function, which in turns determines the screened
interaction. Thus, within the ensemble analog of the well-
established GWA, which corresponds to setting δ�n/δϕ = 0,
leading to Eq. (16), the linear density response function is
required in order to compute δV H/δϕ:

δV H (1)

δϕ(2)
=

∫
d3v(1 − 3)R(3, 2) (19)

with the linear density response function

R(1, 2) ≡ 1

M

M∑
n=1

Rn(1, 2) ≡ 1

M

M∑
n=1

δρn(1)

δϕ(2)
. (20)

Introducing the basis bα (r) = φ∗
i (r)φ j (r), where φi is the

orbital associated with ci, the spectral representation of R
reads

R(r, r′; ω) =
∑
αβ

bα (r)Rαβ (ω)bβ (r′), (21)

Rαβ (ω) = 1

M

M∑
n=1

∑
m 	=n

[
ρα

nmρβ
mn

ω − Em + E0 + iδ

− ρβ
nmρα

mn

ω + Em − E0 − iδ

]
, (22)

where |�m〉 is an eigenstate of the Hamiltonian with eigen-
value Em, where ρα

nm = 〈�n|ĉ†
i ĉ j |�m〉, and where α, β are the

collective indices of (i, j). In the above expression, the density
operator does not couple a degenerate ground state labeled
by n to itself, due to the choice in (4): When calculating the
response function as a functional derivative of the Green’s
function or the density, the presence of the denominator
cancels the term corresponding to the coupling of the density
operator to the same state.

For systems with degenerate ground states, m can specify
other degenerate ground states, and the terms appearing in
the degenerate subspace can thus diverge for ω → 0, which
is reminiscent of the problem with the standard perturbation
theory when applied blindly to a degenerate case. A diago-
nalization procedure is proposed to eliminate this divergence.
Diagonalizing the nonzero matrices ρα , with ρα

nn = 0 for all n
(since the density operator does not couple to the same state),
in the subspace of the degenerate ground states for each α

one obtains a new basis set of degenerate ground states which
diagonalize ρ̂α = ĉ†

i ĉ j . The diverging terms vanish in this new
basis set since ρα

mn = 0 for m 	= n. For the special case of

all {wn} equal to 1/M, the remaining nonvanishing terms are
independent of the choice of the degenerate ground state basis
and the response function can thus be rewritten as

R(r, r′; ω) = 1

M

M∑
n=1

exci∑
m

[ 〈�n|ρ̂(r)|�m〉〈�m|ρ̂(r′)|�n〉
ω − Em + E0 + iδ

− 〈�n|ρ̂(r′)|�m〉〈�m|ρ̂(r)|�n〉
ω + Em − E0 − iδ

]
, (23)

where the sum over m is now strictly over excited states,
such that no divergence occurs when ω = 0. We note that in
practice the diagonalization procedure is actually not required
for uniform weights since the denominators in Eq. (23) do
not depend on n. This shows that for the ensemble response
function with uniform weights, the standard formula can be
used with any chosen set of degenerate ground states except
that transitions among these degenerate ground states are
removed. In the general case the weights corresponding to the
new basis set are modified by the diagonalization procedure.

Contained within the time-ordered response function is the
physical retarded response function. By the Kubo formula
[20], the retarded linear ensemble density response function
can be constructed as:

iRr (1, 2) = 1

M

M∑
n=1

〈�n|[�ρ̂n(1),�ρ̂n(2)]|�n〉θ (t1 − t2),

(24)

where �ρ̂n(1) = ρ̂(1) − ρn(1). An equivalent and standard
form in literature of retarded response is obtained by exchang-
ing �ρ̂n(1) with �ρ̂(1) = ρ̂(1) − ρ(1). In the spectral rep-
resentation, peaks at ω = 0 originating from the degenerate
subspace do not appear in the retarded response function.
A time-ordered response function is defined to satisfy the
relations:

ReR(r, r′; ω) = ReRr (r, r′; ω), (25)

ImR(r, r′; ω)sgn(ω) = ImRr (r, r′; ω). (26)

Only the time-ordered response function defined in Eq. (24)
satisfies relations (25) and (26). The proposed form in Eq. (22)
is based on the form (24), where the diagonalization procedure
can be employed.

A widely used approximation to compute the response
function is the random-phase approximation (RPA), on which
the GWA is based. As input, the noninteracting response func-
tion corresponding to some mean-field Hamiltonian is needed.
If the mean-field ground state is degenerate, the same diago-
nalization procedure as described above can be employed.

III. APPLICATION TO MODEL SYSTEMS
AS PROOF OF CONCEPT

As a proof of concept and an illustration on how the for-
malism works in practice, we consider a hydrogenlike system,
occupied by six electrons, and a two-dimensional harmonic
oscillator, occupied by four electrons. In the H-like system
the 1s, 2s, 2p, 3s orbitals are considered, with the interaction
between the electrons given by v(r − r′) = 1/|r − r′|. The
noninteracting ground state is ninefold degenerate, with the
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1s, 2s orbitals filled and two electrons occupying the 2p or-
bital, while the interacting ground states is nondegenerate. In
the 2D harmonic oscillator, only the six lowest energy orbitals
are considered, with the electron-electron interaction given by
a point interaction v(r − r′) = Uδ(r − r′). The noninteract-
ing ground state is fourfold degenerate, while the interacting
ground state is nondegenerate. For both systems, the noninter-
acting problem is solved with a mean-field ensemble Hartree
potential. A comparison of a one-shot ensemble G0W 0 ap-
proach to the exact solutions as well as a one-shot nonensem-
ble G0W 0 approach is made. In the nonensemble approach the
degeneracy is neglected by computing new sets of energies for
each of the separate Hartree potentials of the noninteracting
ground states, with the noninteracting system chosen to cor-
respond to a nondegenerate noninteracting ground state with
the lowest energy. The ensemble and nonensemble Green’s
function and self-energy are computed within the GWA.

We first compute the noninteracting Green’s functions
G0

n and noninteracting response function or the polarization
P0. Once the polarization P0 is obtained the rest of the
computation follows a routine procedure of first calculating
the screened interaction W = v + vP0W and then the self-
energies given by

�n(r, r′; ω) = i
∫

dω′

2π
Gn(r, r′; ω + ω′)W (r′, r; ω′)

+ δ(r − r′)
(
V H

n (r) − V H (r)
)
, (27)

which can be computed with a similar procedure as in the
nondegenerate case. The ensemble Green’s function G can be
computed from the auxiliary Green’s functions Gn, obtained
from the set of Dyson’s equations:

Gn(1, 2) = G0
n(1, 2) +

∫
d3d4G0

n(1, 3)�n(3, 4)Gn(4, 2).

(28)

In addition, we compute the spectral forms of the ensemble
response function and ensemble Green’s function S and A,
respectively. Special care is required to include the occupied
and unoccupied peaks with the correct sign in the computation
of the ensemble spectral function A.

As an illustration, consider, for example, the 2D harmonic
case with four electrons, two with spin up and two with spin
down. Let φ0 be the lowest orbital with energy ε0 and φ1, φ2,
be the first excited orbitals with degenerate energies ε1 = ε2.
Consider one of the degenerate configurations in which φ0 is
occupied by a spin-up and a spin-down electron and φ1 is
occupied by a spin-up electron whereas φ2 is occupied by a
spin-down electron. The spin-up and -down Green’s functions
corresponding to this configuration are then, respectively,

G↑(r1, r2; ω) = φ0(r1)φ∗
0 (r2)

ω − ε0 − iδ
+ φ1(r1)φ∗

1 (r2)

ω − ε1 − iδ

+ φ2(r1)φ∗
2 (r2)

ω − ε2 + iδ
+ · · · (29)

G↓(r1, r2; ω) = φ0(r1)φ∗
0 (r2)

ω − ε0 − iδ
+ φ2(r1)φ∗

2 (r2)

ω − ε2 − iδ

+ φ1(r1)φ∗
1 (r2)

ω − ε1 + iδ
+ · · · (30)
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FIG. 1. The trace of the spectral response function S (left figure)
and spectral function A (right figure) plotted against energy ω in
the exact and ensemble and nonensemble G0W 0 cases for the H-like
system. Breaks in the x axes are employed.

It is important that the spectral function, which is proportional
to the imaginary part of the Green’s function, is computed
separately for each spin channel. If we instead sum over the up
and down Green’s functions and compute the imaginary part
of this sum, terms such as

φ1(r1)φ∗
1 (r2)

ω − ε1 − iδ
+ φ1(r1)φ∗

1 (r2)

ω − ε1 + iδ
(31)

will remove the peaks corresponding to the occupied and
unoccupied spectra of the up and down Green’s function.
Therefore, we propose to compute the separate spectral func-
tions An for the corresponding spin-polarized Gn, with the
poles clearly separated, and then computing the ensemble A
as the weighted sum over An.

In the H-like model the nuclear charge Z = 6 and Z = 3
is used for the initial one-electron energies and orbitals, re-
spectively, as convergence issues appear in the noninteracting
mean-field solution when the orbitals of the Z = 6 system are
used. The trace of S and A are plotted against ω in the three
cases in Fig. 1. In the ensemble case, the main exact peak
structure of S is well captured, except for an absence of the
low energy peak structure which the nonensemble approach
can partially capture. An excellent agreement of the peak
structure and positions of A between the exact and ensemble
G0W 0 approach A is observed.

The low ω peak structure in S corresponds to transitions
originating from the degenerate noninteracting ground state
subspace, which vanishes in the diagonalization procedure,
and which may appear in the degeneracy breaking going from
the noninteracting to the interacting system. The degeneracy
breaking is first included in the self-energy, and thus the peaks
are absent in the one-shot approach. A self-consistent ap-
proach is expected to be able to capture the absent peaks. After
the first iteration the self-energies �n will likely lower the
starting symmetry, splitting the degenerate 2p states, which in
the next iteration will yield the low-energy peaks. If we restrict
ourselves to the one-shot approach, a mean-field Hamiltonian
capturing the energy structure of the system better than the
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FIG. 2. The trace of the spectral response function S (upper
figure) and spectral function A (lower figure) plotted against energy
ω in the exact and ensemble and nonensemble G0W 0 cases for the
2D harmonic oscillator. Small satellite features are not included in
the plot.

ensemble Hartree approach would be required to capture the
low-energy peaks.

The trace of S and A are plotted against ω for the 2D har-
monic oscillator, with U = 1, in the three cases in Fig. 2. The
ensemble peak structure of S is in reasonable agreement with
the exact one and in better agreement than the nonensemble
approach. The nonensemble approach incorrectly predicts a
peak at low ω, while no low ω peak is present in the ensemble
approach. A good agreement between the exact and ensemble
G0W 0 approach for the main peak structure of A is observed,
however, some detailed peak structure is captured better by
the nonensemble approach, for example in the vicinity of
ω = −1.

IV. SELF-CONSISTENCY AND FINITE-TEMPERATURE
TREATMENT

An iterative self-consistent computational scheme for Gn

can be constructed. The polarization can be computed from
the set of Gn by the following ensemble analog of one of the
Hedin’s equations within GWA:

P(1, 2) = − i

M

M∑
n=1

Gn(1, 2)Gn(2, 1+). (32)

The diagonalization procedure is employed for the compu-
tation of the polarization in each iteration. A conceptual
issue is the degeneracy breaking in an iteration. We pro-
pose employing the Galitskii-Migdal formula on the aux-
iliary Green’s functions to identify degeneracy, choosing
the ones giving the lowest ground state energy for the
following iteration. A slight mixing between the auxiliary
Green’s functions and the ensemble Green’s function can be
employed.

We propose extending the finite-temperature Green’s func-
tion theory to include degenerate states by writing the Mat-
subara Green’s function in the modified interaction picture as
a weighted sum over auxiliary Matsubara Green’s functions,
with the weight given by the Boltzmann distribution. This
choice leads to an ensemble real-time response function which
satisfies the required properties of the time-ordered response
function.

V. CONCLUSION

In summary, we have developed an ensemble Green’s
function formalism for treating many-electron systems with
degenerate ground states in a well-defined way. A set of
iterative equations, analogous to Hedin’s equations for the
nondegenerate case, is derived for the ensemble Green’s
function. An ensemble GWA is naturally obtained from
the iterative equations. The formalism does not rely on
an adiabatic connection between interacting and noninter-
acting ground states as commonly assumed in many-body
perturbation approaches. Further application to realistic sys-
tems with degenerate ground states in the future would
enlighten the strengths and weaknesses of the formalism.
Most considerations were applicable for an arbitrary set of
states |�n〉 and weights wn, and studying other choices of
ensembles capturing nonequilibrium aspects would be of
interest.
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