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Magnet-superconductor hybrid heterostructures constitute a promising candidate system for the quantum
engineering of chiral topological superconductivity. Here, we investigate the stability of their topological phases
in the presence of various types of potential and magnetic disorder. In particular we consider magnetic disorder
in the coupling strength and spin orientation, as well as percolation-type disorder representing missing magnetic
moments. We show that potential disorder leads to the weakest suppression of topological phases, while
percolation disorder leads to their strongest suppression. In addition, disorder can also lead to the emergence
of topological phases in part of the phase diagram that are topologically trivial in a clean system. Moreover,
we demonstrate that in the case of correlated potential disorder, the spatial structure of the disorder potential is
correlated not only with the particle number density, but also the Chern number density. Finally, we demonstrate
how the disorder-induced destruction of topological superconductivity is reflected in the spatial structure and
distribution of the Chern number density.
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I. INTRODUCTION

Topological superconductors have attracted much attention
in recent years as they represent novel platforms to realize
and control Majorana zero modes whose exotic non-Abelian
braiding statistics can be employed for the creation of fault-
tolerant topological quantum bits [1,2]. Odd-parity spin-triplet
superconductors and, in particular, those that possess a chi-
ral p-wave superconducting symmetry [3] represent poten-
tial realizations of topological superconductors. Candidate
materials which might feature such spin-triplet pairing are
Sr2RuO4 [4,5], UPt3 [6], CuxBi2Se3 [7–9], and superfluid
3He [10]. However, most of these materials have been con-
troversially debated [11–13] and the presence of spin-triplet
pairing remains to be unambiguously proven.

In addition to these intrinsic topological superconductors,
there has been growing interest in artificial or engineered
topological superconductors, allowing for the realization of
the Kitaev chain [14], the prototype of a one-dimensional
(1D) topological superconductor, by proximity-inducing
s-wave superconductivity [15] in Rashba nanowires [16–18].
An alternative approach to the creation of Kitaev chains
has been taken with magnet-superconductor hybrid (MSH)
structures in which (Shiba) chains of magnetic atoms, either
via self-assembly [19–22] or via atomic manipulation tech-
niques [23], were placed on the surface of s-wave supercon-
ductors. These studies were subsequently extended into two
dimensions [24–27] through the creation of magnetic Shiba
islands in Pb/Co/Si(111) [28] and Fe/Re(0001)-O(2×1) [29]
heterostructures.

One of the defining properties of topological states of mat-
ter is their topological protection against small perturbations
and disorder. On the other hand, the experimental growth of

topological materials often leads to significant amounts of
disorder, raising the question of what extent of disorder can
destroy topological phases. Classical work on disorder effects
in intrinsic topological superconductors mainly focused on
their bulk properties using continuum Dirac theories [30–33].
More recent studies investigated the stability of the topolog-
ical surface states in topological superconductors [34,35] or
the emergence of Majorana bound states through random-field
disorder [36]. In engineered one-dimensional superconduc-
tors, impurities and disorder play a particular important role
[37–39] because the experimental evidence often relies on the
observation of a zero-bias peak associated with the presence
of a Majorana bound state [18,20]. Such a zero-bias peak
can also be induced by an impurity [40] emphasizing the
importance of understanding the effects of disorder on these
systems.

MSH heterostructures are particularly suited for the study
of disorder effects as disorder can be visualized through scan-
ning tunneling spectroscopy (STS) techniques, which provide
simultaneous insight into the topography and spectroscopic
(electronic) properties of the constituent magnetic and super-
conducting subsystems. Indeed, STS experiments measuring
the spin-resolved differential conductance have provided evi-
dence for the noncollinear spin structure of Shiba chains [23],
while topography scans have revealed the extent of edge
disorder in Shiba islands [29]. The question thus naturally
arises not only of how disorder affects the topological phase
diagram of two-dimensional MSH structures, but also how
disorder destroys topological superconducting phases on the
microscopic or spatially local level. In this article, we will
study these questions by considering the effects of various
types of potential and magnetic disorder, and by investigating
the spatial correlations between the disorder potential, the
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particle density, and the Chern number density, and their
relation to the macroscopic topologically invariant of the
system, the Chern number.

The paper is organized as follows. In Sec. II we intro-
duce the theoretical model to describe two-dimensional MSH
structures, define various types of potential and magnetic
disorder, and discuss how the topological phase diagram in the
presence of disorder can be computed by using the real space
Chern number. In Sec. III we discuss the topological phase
diagrams in the presence of random potential and magnetic
disorder. In Sec. IV we consider correlated potential disorder,
and discuss the spatial correlations between disorder potential,
particle density, and Chern number density, and their relation
to the macroscopic Chern number. In Sec. V, we present our
conclusions.

II. THEORETICAL MODEL

We study the effects of disorder on the topological phase
diagram of a two-dimensional MSH structure, also referred to
as a Shiba lattice. It is created by placing magnetic adatoms on
the surface of a conventional s-wave superconductor possess-
ing a Rashba spin-orbit interaction. The Hamiltonian describ-
ing a clean (i.e., nondisordered) Shiba lattice is then given by
[25]

H = −t
∑
r,δ

ψ†
r τz ⊗ σ0ψr+δ − μ

∑
r

ψ†
r τz ⊗ σ0ψr

+ iα
∑
r,δ

ψ†
r τz ⊗ [(σ × δ) · ẑ]ψr+δ + �0

∑
r

ψ†
r τx ⊗ σ0ψr

+ J
∑

r

ψ†
r τ0 ⊗ (S · σ )ψr, (1)

where −t is the hopping parameter between nearest neighbor
sites on a square lattice, δ is the vector connecting nearest
neighbor sites, μ is the chemical potential, α is the Rashba
spin-orbit coupling, �0 is the superconducting order parame-
ter, and σ and τ are vectors of Pauli matrices corresponding to
spin and Nambu space, respectively. We use the Nambu spinor
ψr = (ψr↑, ψr↓, ψ

†
r↓,−ψ

†
r↑)T where ψ†

rσ (ψrσ ) creates (anni-
hilates) an electron at site r and spin σ . The presence of a hard
superconducting s-wave gap suppresses the Kondo screening
of the magnetic adatoms which allows us to treat the spins
classically. For the clean system, we assume a ferromagnetic
alignment of all spins along the ẑ direction, and therefore set
S = S(0, 0, 1) with S being the spin’s magnitude. Moreover,
due to the particle-hole symmetry of the superconducting
state, and the broken time-reversal symmetry arising from the
presence of magnetic moments, the topological superconduc-
tor belongs to class D [41].

To characterize the topological state of the system in the
presence of disorder, which breaks the translational invariance
of the system, we compute the topological invariant – the
Chern number [42] – in real space using [43–45]

C = 1

2π i
Tr[P[δ1P, δ2P]], (2)

with

δiP =
Q∑

m=−Q

cme−2π imx̂i/N Pe2π imx̂i/N , (3)

where P is the projector onto the occupied spectrum in real
space, N2 are the number of sites in the system, and cm

are central finite difference coefficients for approximating
the partial derivatives. The wave functions and eigenenergies
of the system are obtained from a diagonalization of the
Hamiltonian, Eq. (1), in real space. Moreover, the coefficients
for positive m can be calculated by solving the following
linear set of equations for c = (c1, . . . , cQ):

Âc = b, Ai j = 2 j2i−1, bi = δi,1, i, j ∈ {1, . . . , Q}, (4)

while for negative m, we have c−m = −cm. To achieve a small
error in the calculation of the Chern number, we take the
largest possible value of Q given by Q = N/2. As we show
below, important insight into the effects of disorder on the
stability of a topological superconductor can be gained by
considering the scaled Chern number density, defined as the
partial trace over spin and Nambu space, and given by

C(r) = N2

2π i
Trτ,σ [P[δ1P, δ2P]]r,r, (5)

such that C = ∑
r[C(r)]/N2.

To investigate the effects of disorder on the stability of the
topological phases, we consider several types of random po-
tential and magnetic disorder. The random potential disorder
is described by the Hamiltonian,

HU =
∑

r

Ur ψ†
r τz ⊗ σ0ψr, (6)

with Ur ∈ [−wU ,wU ] being random variables from a uniform
probability distribution in the range from −wU to wU . Thus,
wU is a measure for the strength of the disorder.

In addition, we consider three different types of magnetic
disorder. In the first type, the strength of the magnetic cou-
pling J is disordered, while the spins are still ferromagneti-
cally aligned along the z axis, as described by the Hamilto-
nian,

H (1)
J =

∑
r

JrS ψ†
r τ0 ⊗ σzψr, (7)

with JrS ∈ [−wJ ,wJ ] being random variables from a uniform
probability distribution. The second type of magnetic disorder
is one in which the magnetic coupling J is spatially constant,
but the direction of the magnetic moments deviates from the z
axis. To describe this type of disorder, we replace the magnetic
term in the Hamiltonian, Eq. (1), by

H (2)
J = J

∑
r

ψ†
r τ0 ⊗ (Sr · σ)ψr, (8)

where Sr are spins with random directions which are
chosen from a uniform distribution over the spherical
cap formed by the polar angle θ . That is, Sr =
S(sin θr cos φr, sin θr sin φr, cos θr ) where φr ∈ [−π, π ],
θr ∈ [0, θ ], and θ thus reflects the extent of the orientational
disorder. Finally, the third type of magnetic disorder is of the
percolation type, in which the moments are aligned along the
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z axis with uniform J , but at each site, there is a probability
p that a magnetic moment is missing. We model such a
percolation disorder by replacing the magnetic term in the
Hamiltonian, Eq. (1), by

H (3)
J = JS

∑
r

�(wr − p)ψ†
r τ0 ⊗ σzψr, (9)

with random variables wr ∈ [0, 1] and p describing the degree
of percolation, i.e., the mean density of missing magnetic
adatoms.

All topological phase diagrams shown below are averaged
over n disorder realizations. For each type of disorder, n is
determined as the smallest number of disorder realizations for
which the following criterion,

σ (w, μ)√
n

< 0.05, (10)

is satisfied for disorder strength w (characterized by
wU ,wJ , θ , and p) and chemical potential μ. Here, σ is the
standard deviation of the Chern number for a specific w and
μ, and for the results shown below, 10 < n < 200.

In general, the feedback effect of disorder on the elec-
tronic structure requires that the local superconducting order
parameter �r be computed self-consistently. In this case, we
replace �0 in Eq. (1) with �r and solve the superconducting
gap equation, �r = −V 〈cr↓cr↑〉, self-consistently in the zero-
temperature limit. The value for the pairing interaction V is
chosen such that �0 is the homogeneous solution to the gap
equation in a clean system. For the topological phase diagrams
shown below, we have averaged over between 10 and 200
disorder realizations for every point in the phase diagram. To
self-consistently calculate �r for every disorder realization
is computationally prohibitive and beyond our computational
resources. We therefore employ a spatially homogeneous su-
perconducting order parameter for most results shown below,
and consider the effects of a spatially varying superconducting
order parameter on the stability of topological phases in the
presence of disorder only in a few select cases. However,
we will show that the self-consistent calculation of �r does
not qualitatively change our conclusions regarding the stabil-
ity of topological phases. Finally, we note that for magnet-
superconductor heterostructures with a bulk superconducting
substrate, we expect that the feedback effect of disorder on
the superconducting order parameter is suppressed by the bulk
superconducting order parameter (if the disorder is confined to
the surface). However, for two-dimensional systems realized,
for instance, in layered superconductors, we expect disorder
effects to be much more significant.

III. TOPOLOGICAL PHASES IN THE PRESENCE OF
RANDOM POTENTIAL AND MAGNETIC DISORDER

In Figs. 1(a)–1(d), we present the topological Chern num-
ber phase diagrams for the four types of disorder introduced
in Sec. II as a function of chemical potential μ and disorder
strength for a (30 × 30) site system. For each disorder realiza-
tion, the Chern number is computed using Eq. (2). We begin
by noting that for a clean system (which corresponds to the
zero disorder line in all four phase diagrams) in which all spins
are ferromagnetically aligned along the z direction, the Shiba

FIG. 1. Topological phase diagram showing the Chern number
as a function of chemical potential μ and disorder strength w (as
characterized by wU , wJ , θ , and p) for (a) and (e) potential disorder,
described by HU , and magnetic disorder described by (b) and (f) H (1)

J ,
(c) and (g) H (2)

J , and (d) and (h) H (3)
J . (e)–(h) Solid lines are line cuts

of C in (a)–(d) as a function of disorder strength for chemical po-
tentials μ/t = 0, −1.4, −2, −2.6, −4, −6. The phase diagrams were
computed for (30 × 30) systems with periodic boundary conditions
and parameters (JS, α, �0) = (2, 0.8, 1.2)t . Dashed line in (e) was
obtained from a (50 × 50) system.

lattice possesses two topological nontrivial phases with Chern
number C = 2,−1 that are separated by a trivial phase with
C = 0 [25]. The transition between these phases occurs when
the bulk-gap closes, which for fixed values of JS and �0 yield
the following critical chemical potentials [25],

μc = ε ±
√

(JS)2 − �2
0, (11)

where ε = 0,±4t . For the parameters used in Fig. 1, one ob-
tains μc/t = ±1.6, ±2.4, and ±5.6. It immediately follows
from Eq. (11) that spatial disorder JS, μ, or �0 can locally
tune the system between topological trivial and nontrivial
phases.

The phase diagrams in Figs. 1(a)–1(d) reveal that the
overall effect of all four types of disorder is similar in that
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the topological phases are suppressed with increasing disorder
strength. However, the critical disorder strength at which
the topological phase collapses depends on the chemical
potential: The further the system is located from the critical
chemical potential μc of the clean system, the larger is the
critical disorder strength required to destroy the topological
phase. The origin of this dependence lies in the fact that the
gap protecting the topological phase increases with increasing
distance from μc, thus necessitating a larger disorder strength
to close it and to drive the system trivial. There are, however,
some noteworthy characteristics regarding the effects of the
various types of disorder. In particular, we find that the topo-
logical phases are more robust against potential disorder than
magnetic disorder in J (the latter being described by H (1)

J ).
Moreover, for the case when the spin orientation deviates
from the z axis, the topological phases are destroyed when the
spin orientation is uniformly distributed over the upper hemi-
sphere (i.e., for θ = π/2). Finally, percolation possesses the
strongest detrimental effect on the stability of the topological
phases. For example, for μ = 1.4t , the topological phase is
destroyed by magnetic disorder for wJ = 2t (corresponding
to half of the electronic bandwidth), while in the case of
percolation, the topological phase is already destroyed for
p ≈ 0.1. Finally, we note that the topological phase diagrams
are particle-hole symmetric, i.e., invariant under μ → −μ

(see Appendix A).
In Figs. 1(e)–1(h), we present line-cuts of the Chern num-

ber with increasing disorder strength for several values of μ

[these lines correspond to vertical cuts in Figs. 1(a)–1(d)].
These line-cuts reveal that due to the finite size of the system,
the disorder-induced transition between topological and non-
topological phases is smooth and continuous, and thus repre-
sents a crossover (exhibiting a nonquantized Chern number),
rather than a phase transition. However, a comparison of the
Chern number line-cuts for different system sizes [see dashed
line in Fig. 1(e), which was computed for a (50 × 50) system]
reveals that the transition becomes increasingly sharper and
evolves toward a steplike function with increasing system
size as expected for a phase transition (the study of larger
system sizes, which presumably would exhibit even sharper
transitions, is currently beyond our computational abilities).
This result suggests that in the thermodynamic limit, a phase
transition will occur at a critical value of the disorder strength
separating a topological phase with a quantized Chern num-
ber, from a nontopological phase with C = 0.

While disorder in general leads to the suppression of the
topological phases, it can also induce topological phases when
the chemical potential is close to the bottom or top of the elec-
tronic bands (a similar disorder effect was recently discussed
in the context of Chern insulators [46]). For example, for
μ = −6t , the clean system is in a gapped, topologically trivial
phase with C = 0, but enters the topological C = −1 phase
with increasing nonmagnetic or magnetic disorder [Figs. 1(a)
and 1(b)]. This transition is reflected in a qualitative change
in the Chern number density C(r) as shown in Figs. 2(a)
and 2(b) [the corresponding distribution of C(r) for these two
cases is presented in Fig. 2(c)]. While for wU = 2t [Fig. 2(a)],
the distribution of C(r) is centered around zero (leading to a
nearly vanishing Chern number), the distribution for wU = 3t
[Fig. 2(b)] is significantly broader and shifted to lower values,

FIG. 2. Spatial plots of the Chern number density C(r) for a
60 × 60 system for the case of potential disorder with μ = −6t
and (a) wU = 2t , and (b) wU = 3t . (c) Distributions of the Chern
number density C(r) for the two cases shown in (a) and (b). The
vertical dashed lines in (c) show the mean values of the distribution,
corresponding to the macroscopic Chern numbers. The histograms
are scaled such that the integral over the histogram is equal to unity.
(d) Spatially averaged charge density Nc(r) and Chern number as a
function of wU . Parameters are (JS, α,�) = (2.0, 0.8, 1.2)t .

resulting in a Chern number of C = −1. It is interesting to
note that despite the significant width of the distribution for
wU = 3t , the Chern number is quantized with high numerical
accuracy within 0.0007%. This disorder-induced topological
phase arises from a disorder-induced increase in the charge
density with increasing disorder strength [see Fig. 2(d)],
which is of particular importance when the chemical potential
is near the bottom or top of the band where the charge density
is low in the clean system. Indeed, this increase in the charge
density moves the effective chemical potential away from the
bottom/top of the bands, into the topological region of the
phase diagram, thus resulting in an emergence of a topological
phase with increasing disorder strength [see Fig. 2(d)].

A similar disorder-induced topological phase also emerges
for magnetic disorder described by H (1)

J in the trivial region of
the phase diagram between the C = 2 and C = −1 phases. For
example, for μ = −1.8t (which corresponds to the topologi-
cal trivial phase in the clean limit) a transition from a trivial
to a topological phase occurs between wJ = t and wJ = 2t .
Starting from the clean limit, we find that with increasing
wJ , the Chern number density becomes disordered [Fig. 3(a)
for wJ = t], but its distribution [Fig. 3(c)], while increasing
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FIG. 3. Spatial plots of C(r) for the case of magnetic disorder
described by H (1)

J with μ = −1.8t and (a) wJ = t and (b) wJ = 2t .
(c) Distributions of the Chern number density C(r) for the two cases
shown in (a) and (b). The vertical dashed lines in (c) show the
mean values of the distribution, corresponding to the macroscopic
Chern numbers. The histograms are scaled such that the integral
over the histogram is equal to unity. Parameters are (JS, α,�) =
(2.0, 0.8, 1.2)t .

in width, remains centered around zero. On the other hand,
for wJ = 2t [Fig. 3(b)], the distribution of C(r) moves to
higher values, resulting in a Chern number of C = 0.8 for a
60 × 60 system. Note that with increasing system size, the
Chern number moves closer to its quantized value of C = 2:
for a 30 × 30 system, we find C = 0.67, while for a 60 × 60
system we have C = 0.8. This disorder-induced topological
phase transition can be understood as follows: According to
Eq. (11), local variations in J will lead to local variations
in μc, which implies that even for μ = −1.8t , the system
can be locally in a topological phase, if JrS is sufficiently
large. Thus, with increasing JrS, larger and larger parts of the
system become locally topological, eventually resulting in the
transition to a topological superconducting phase.

We next consider the feedback effects of disorder on the
local electronic structure by self-consistently computing the
superconducting order parameter, as discussed in Sec. II. To
ascertain the effect on the stability of topological phases,
we compare in Fig. 4 the Chern number as a function of
magnetic and nonmagnetic disorder strength (described by HU

and H (1)
J , respectively) for a constant superconducting order

parameter �0, and for a self-consistently computed order
parameter �r (in the absence of disorder, �0 = �r), for two
values of the chemical potential μ. In both cases, we find
that the topological phase is more quickly suppressed with
increasing disorder strength when the superconducting order
parameter is self-consistently computed, with this effect being
significantly weaker for potential [Fig. 4(a)] than for magnetic
disorder [Fig. 4(b)]. In general, we find that this stronger
suppression is more quantitative than qualitative in nature, and
therefore does not affect the general conclusions of Fig. 1.

FIG. 4. The Chern number as a function of disorder strength w

for (a) potential disorder described by HU , and (b) magnetic disorder
described by H (1)

J for chemical potentials μ = −4t, 0. Solid lines
use the self-consistently solved superconducting order parameter �r

and dashed lines use a homogenous superconducting order parameter
�0. The Chern numbers were computed for a (30 × 30) system
with periodic boundary conditions and parameters (JS, α,�) =
(2.0, 0.8, 1.2)t .

Finally, we note with regards to the set of parameters used
in Fig. 1 and below, that while the emergence of topological
phases requires J > � [see Eq. (11)], they exist for any
α > 0+. However, our numerical studies have shown that a
sizable superconducting gap (which protects the topological
phase) of the order of the input superconducting order parame-
ter �0 emerges only for α � 0.1J . Specifically, the parameters
used in Fig. 1 were chosen to facilitate the calculation of the
Chern number and Chern number density (which is compu-
tationally more demanding for small superconducting gaps),
and to obtain phase diagrams in which the topological phases
are extended over larger ranges of μ for demonstration pur-
poses. However, the qualitative nature of the results shown in
Fig. 1 as well as the conclusions we have drawn remain valid
also for other sets of parameters as shown in Appendix B.

IV. TOPOLOGICAL PHASES IN THE PRESENCE OF
CORRELATED POTENTIAL DISORDER

To understand how disorder leads to the collapse of topo-
logical phases, it is instructive to consider the spatial correla-
tions between the local disorder, the particle number density,
and the Chern number density. To this end, we consider a
spatially correlated potential disorder that allows for the emer-
gence of larger domains of nearly the same disorder potential,
which facilitates the spatial comparison. As before we start
by considering a random potential disorder, as described by
Eq. (6), but then replace Ur by the disorder U r which is
generated from Ur by using a low-pass filter via

U r = F−1
r

[
Fk[Ur]e−k2/K2

c
]
, (12)

where F is the Fourier transform over r and Kc is the
cutoff wave vector. This low-pass filter implies that the short-
wavelength fluctuations in the disorder potential Ur with wave
number k > |Kc| are eliminated, which smoothes the disorder
potential and increases the disorder correlations as described
by

ρδ = 〈U rU r+δ〉 − μ2
U

σ 2
U

, (13)

235102-5



MASCOT, AGRAHAR, RACHEL, AND MORR PHYSICAL REVIEW B 100, 235102 (2019)

FIG. 5. Topological phase diagram for correlated potential disor-
der [see Eq. (12)] with (a) |Kc| = π/2 and (b) |Kc| = π . The phase
diagrams were obtained for the same parameters as those in Fig. 1.

where the mean value μU = 〈U r〉 ≡ 0, and the variance is
σ 2

U = 〈(U r )
2〉. For random disorder (corresponding to |Kc| =

∞), we obtain for nearest neighbor correlations (i.e, δ = x̂, ŷ)
ρx̂ � 10−6 (which vanishes in the thermodynamic limit). In
contrast, for the case |Kc| = π , which we consider below
as an example for correlated disorder, we have ρx̂ ≈ 0.04.
This implies that the disorder potential develops short-range
correlations with decreasing |Kc|, as the systems begins to
exhibit larger domains of the same potential.

In Fig. 5, we present the topological phase diagrams for
correlated potential disorder, as described by Eq. (12) with
|Kc| = π/2 and π . We used the same parameters as in Fig. 1
and can thus directly compare the phase diagrams for random
and correlated disorder. We find that correlated disorder pos-
sesses a weaker effect on the stability of the topological phases
than random potential disorder, requiring thus an increasingly
larger critical disorder strength (with decreasing |Kc|) to
destroy the topological phases.

To further elucidate the nature of the disorder-driven tran-
sition from a topological to a trivial phase, and the resulting
critical disorder strength, we present in Figs. 6(a) and 6(b)
the evolution of the lowest energy eigenstates and the Chern
number with increasing wU for correlated potential disorder
with |Kc| = π . The critical disorder strength, defined as that
disorder strength where the first eigenstate reaches zero en-
ergy, is given by wc

U ≈ 1.8t . wc
U varies between different

disorder realizations, and possesses a disorder-averaged value
(using n = 50 disorder realizations) of 〈wc

U 〉 ≈ 2.0. While the
Chern number stays approximately quantized for wU < wc

U ,
it is substantially reduced from its value C = −1 in the clean
system for wU > wc

U . To understand how this departure from
C = −1 occurs, we present in Figs. 6(c) and 6(d) a spatial plot
of C(r) for wU = 0.5t and wU = 1.5t , respectively; for both
values wU < wc

U . As expected, we find that disorder results in
an inhomogeneous spatial form of C(r) and that with increas-
ing disorder strength, the spatial variations in C(r) increase
as well. This can be visualized by plotting a histogram of
C(r) [see Fig. 6(e)] which shows that increasing the disor-
der strength leads to a broadening of the C(r) distribution.
However, only for wU > wc

U does the entire distribution shift
to lower values [see wU = 2.0t in Fig. 6(e)], resulting in a
decrease of the Chern number. For wU  wc

U [see wU = 5.0t
in Fig. 6(e)], the distribution becomes centered around zero,
leading to a vanishing Chern number.

FIG. 6. Evolution of (a) the lowest energy eigenstates, and (b) the
Chern number and the upper and lower quartiles (light blue area)
of the Chern number density with increasing disorder strength wU

for |Kc| = π and μ = −4t , corresponding to the C = −1 phase in
the clean limit. The critical disorder value is given by wc

U ≈ 1.8t for
this particular disorder realization. Spatial plot of the Chern number
density C(r) for (c) wU = 0.5t and (d) wU = 1.5t . (e) Distributions
of the Chern number density C(r) for different values of disorder
strength wU . The vertical dashed lines show the mean values of
the distribution, corresponding to the macroscopic Chern numbers.
These results were obtained for a (40 × 40) system with parameters
(JS, α,�) = (0.5, 0.2, 0.3)t .

To investigate the correlations of the spatial structure of
C(r) with other physical observables in the system, we con-
sider the Pearson correlation function between two physical
observables X (r) and Y (r) defined via

ρX,Y =
〈

X (r) − μX

σX

Y (r) − μY

σY

〉
, (14)

where μi, σi (i = X,Y ) are the expectation value and standard
deviation of the observable i. In Fig. 7(a), we present the cor-
relation functions for the disorder potential, U r, the particle
density Nr, and the Chern number density C(r). As expected,
we find that U r and Nr are nearly completely anticorrelated,
with a local increase in U r (i.e., creating a repulsive potential)
leading to a decrease in Nr. Interestingly enough, we find
that there also exists a substantial correlation between C(r)
and U r, and thus also between C(r) and Nr. This is also
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FIG. 7. (a) Pearson correlation ρX,Y for the disorder potential U r

(denoted by U ), the particle density Nr (denoted by N), and the Chern
number density C(r) (denoted by C). Spatial plot of (b) U r, (c) Nr,
and (d) C(r) for wU = 1.5t .

evident from a comparison of the spatial form of U r, Nr,
and C(r), shown in Figs. 7(b)–7(d) for the case of wU =
1.5t . All three properties possess to a large extent the same
spatial structure, in agreement with the substantial correlation
revealed by ρX,Y shown in Fig. 7(a). This result might open a
new approach to investigating the form of the Chern number
density, and hence the Chern number, in real space, through
measurements, for example, of the particle number density.
The latter can in general be obtained from scanning tunneling
microscopy (STM) experiments which measure the local, i.e.,
spatially resolved, differential conductance, dI (r,V )/dV . For
one-band models (such as the one considered here), dI/dV
is proportional to the density of states, such that the particle
number density (at T = 0) can be obtained from

Nr ∼
∫ 0

−∞
dV

I (r,V )

dV
. (15)

For details, and a discussion of the differential conductance
in multiband systems, see Ref. [47]. Finally, we note that
the Pearson correlations between the Chern number density
and the spin density (or the spin-resolved charge density) are
similar to those shown in Fig. 7, as shown in Appendix C.

V. CONCLUSIONS

We have investigated the effects of various types of poten-
tial and magnetic disorder on the stability of topological su-
perconductivity in two-dimensional magnet-superconductor
hybrid systems. These hybrid structures are of great current
interest as they represent a promising platform for engineering
Majorana fermions. We showed that random potential dis-
order leads to the weakest, while percolation disorder leads
to the strongest suppression of topological superconducting
phases. However, both magnetic and potential disorder can
also lead to the emergence of topological phases in part of
the phase diagram that are topologically trivial in a clean

FIG. 8. Topological phase diagram showing the Chern number
as a function of chemical potential μ, and disorder strength w

(as characterized by wU , wJ , θ , and p) for (a) potential disorder
described by HU , and magnetic disorder described by (b) H (1)

J ,
(c) H (2)

J , and (d) H (3)
J . The phase diagrams were computed for a

(30 × 30) system with periodic boundary conditions and parameters
(JS, α,�0 ) = (2, 0.8, 1.2)t .

system. We also demonstrated that spatially correlated poten-
tial disorder exerts a weaker effect on the topological phase
diagram than random disorder. Moreover, we showed that
disorder leads to a spatially inhomogeneous form of the Chern
number density, the width of whose distribution increases with
increasing disorder. We also demonstrated that the disorder-
induced phase transition from topological to trivial phases
is accompanied by a downward shift of the distribution of
the Chern number density, becoming centered around zero,
and leading to a vanishing mean, i.e., macroscopic Chern
number. However, even in the topological trivial phase, spatial
domains of nonzero Chern number density remain. Finally,
we showed that there exist considerable spatial correlations
between the spatial structure of the Chern number density, the
potential disorder, and the particle number density. This result
might open a new approach to detecting the Chern number
density, and hence the Chern number, in real space through
measurements of the particle density.
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APPENDIX A: PARTICLE-HOLE SYMMETRY OF THE
TOPOLOGICAL DISORDER PHASE DIAGRAM

In Fig. 8 we present the topological phase diagrams for the
four types of disorder discussed above over the entire range
of chemical potential −7t � μ � 7t . As mentioned in the
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FIG. 9. Topological phase diagram showing the Chern number
as a function of chemical potential μ, and disorder strength w

(as characterized by wU , wJ , θ , and p) for (a) potential disorder
described by HU , and magnetic disorder described by (b) H (1)

J ,
(c) H (2)

J , and (d) H (3)
J . The phase diagrams were computed for a

(30 × 30) system with periodic boundary conditions and parameters
(JS, α, �) = (0.5, 0.2, 0.3)t .

discussion of Fig. 1 above, the phase diagram is particle-hole
symmetric, i.e., invariant under the exchange μ → −μ.

APPENDIX B: PHASE DIAGRAM FOR
SMALL PARAMETERS

To demonstrate that the above results for the effects of
disorder on the topological phase diagram are general, and not
specific to a particular set of parameters, we present in Fig. 9
the topological phase diagrams for a set of smaller parameters.
We note that the smaller effective superconducting gap arising
from this set of parameters renders the calculation of the
Chern number much more demanding computationally. We
find that this set of parameters leads to the same conclusion

FIG. 10. Pearson correlation ρNC for the disorder potential U r

(denoted by U ), and Nr (denoted by N) with N = N↑ + N↓ (black
line), N = (N↓ − N↑)/2 = −Sr (red line), N = N↑ (blue line), and
N = N↓ (green line). Here, N↑,↓ describes the spin-resolved particle
density for the spin-↑ and spin-↓ electrons, respectively.

as discussed above. In particular, we find the same disorder-
induced topological phase discussed in the context of Fig. 1.

APPENDIX C: CORRELATION BETWEEN THE CHERN
NUMBER DENSITY AND THE SPIN DENSITY

In Fig. 7 we showed that there exist considerable corre-
lations between the Chern number density and the particle
density in the presence of correlated potential disorder. Due
to the broken SU(2) spin symmetry of the MSH structure,
the question arises whether more insight can be gained by
considering the correlations between the Chern number den-
sity and the spin-resolved particle density, N↑,↓(r), or the
spin density Sr = (N↑(r) − N↓(r))/2. In Fig. 10 we present
the Pearson correlation function between the Chern number
density and the spin-resolved quantities, which shows the
same qualitative, and to a large extent, quantitative behavior,
as that between C(r) and the total particle density N (r) =
N↑(r) + N↓(r) considered in Fig. 7.
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