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Wölfle and Balatsky [Phys. Rev. B 98, 104505 (2018)] have proposed a microscopic pairing mechanism for
doped SrTiO3 (STO) based on the gradient coupling of electronic density to the soft transverse optical (TO)
phonon mode. Since this coupling to TO phonons is usually weak, this conclusion is surprising, especially for
a low-density superconductor such as STO, where the density of states is small. A crucial step in the argument
made by Wölfle and Balatsky is that the displacement vector of the TO mode is not strictly perpendicular
to the momentum vector, making a deformation coupling possible. We show that they have made a mistake
in computing the eigenvector and have grossly overestimated this lack of orthogonality. When corrected, the
coupling is negligible. We also use transport data to put upper bounds on the coupling constant which are much
smaller than the estimate by Wölfle and Balatsky. Finally, we also object to their use of the Eliashberg equation
when the phonon frequency is larger than the Fermi energy.

DOI: 10.1103/PhysRevB.100.226501

The microscopic mechanism for superconductivity in
doped SrTiO3 (STO) has been recently discussed in Ref. [1]
(see Ref. [2]). Central to their discussion is the claim that
exchanging the soft transverse optical (TO) mode, which is
related to the proximity to the ferroelectric transition, gives
a sufficiently large coupling to explain the experimentally
observed Tc, even at very low densities. This is contrary to
the statement we made in an earlier publication [3] that due to
the low density of states, the dimensionless electron-phonon
coupling λ via the exchange of TO phonons is too weak to
give any reasonable Tc. In addition, we also stated that while
the mechanism of exchanging polar phonons proposed by
Gurevich et al. [4] may work at intermediate doping densities,
even that fails for very low densities when the requirement for
adiabaticity of the phonons is respected. The work of Ref. [1]
motivated us to study in detail the coupling of TO phonons
to electrons near the zone center. We clarified the roles of
Coulomb interaction with the ions versus that of a short-range
pseudopotential. In the process we found an error made in
Ref. [1], which led them to overestimate the coupling strength,
and we reaffirm our previous conclusion.

In the case of a ferroelectric transition, the order parameter
is a lattice distortion, i.e., an optical phonon mode. There are
three relevant phonon polarizations, which are traditionally
labeled as one longitudinal optical (LO) and two TO modes.
The long-ranged dipolar interactions in the LO mode, how-
ever, make it stiff and prevent it from becoming soft at the
transition [5–8]. Thus, the two TO modes are the dynamical
soft boson modes associated with this transition.

To get pairing directly from these soft modes, the authors
of Ref. [1] used a phenomenological model involving a dis-
placement vector uq and invoked a gradient coupling of the
form

He-ph = iV0

∑
q

q · uqρ−q, (1)

where u is the soft phonon displacement and ρ is the elec-
tronic density. Clearly, if the polarizations of the TO modes
are truly transverse, this coupling vanishes. They argued that
cubic crystal anisotropy tilts the polarization of the soft modes
such that they are never really transverse to q̂ except for
high-symmetry lines. The square of the overlap between the
mode polarization êT (q) and the momentum direction

s ≡ 〈[êT (q) · q̂]2〉 (2)

was estimated and found to be of order 0.1. This parameter
multiplies the effective BCS coupling in the s-wave channel,
which arises from Eq. (1). Thus, their theory depends crucially
on the fact that s is order 0.1 and not negligibly small.

It is important to note that for STO the carrier density
and therefore the Fermi momentum is very small and the
small q limit of Eq. (1) is relevant. Physically, we expect
the crystalline symmetry to become irrelevant in the q → 0
limit, and the polarization should be strictly perpendicular
and parallel to q for the TO and LO mode, respectively. As
a result, s should approach zero. This is because any deviation
from strictly transverse displacement will mix in long-range
polarization and raise the energy of the TO mode. In the
following, we prove this analytically and obtain an expression
showing that s is proportional to q4 [see Eq. (14) below].
Setting q to be the kF for a given density, we find that for
a density n = 1020 cm−3, s is smaller than 10−5 and drops
drastically with density. Thus, the authors of Ref. [1] have
miscalculated s by orders of magnitude. Their estimate of λ

is off by the same amount, and their conclusion that Tc in STO
can be explained by coupling to the soft TO phonon should be
reevaluated.

In what follows, we also pinpoint the error made in
Ref. [1]. In evaluating the TO mode eigenvectors, they did
not take into account the long-ranged Coulomb forces, which
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are dominant in the limit q → 0. Consequently, they find s to
be independent of q and substantial, as in nonpolar materials.

We then go beyond the phenomenological model and con-
sider the full problem of a crystal structure with multiple
ions, as is appropriate for STO. We find that the results of
the phenomenological model apply to the Coulomb potential
considered by Wölfle and Balatsky, which gives a negligible
contribution to the coupling. There exists a second kind of
contribution from the short-ranged pseudopotential, which is
not generally forced to vanish in the same way. However, for
cubic and tetragonal crystals it takes the form Eq. (1) and is
also negligible due to the same factor.

Another issue in Ref. [1] regards the other pairing mecha-
nism they have considered: the high-frequency LO mode. The
authors continued to use the Eliashberg equations even when
the phonon frequency exceeds the Fermi energy by one and
two orders of magnitude. We argue at the end of this Comment
that in the absence of proof to the contrary, conventional
wisdom should apply and the Eliashberg equation should be
restricted to the adiabatic limit.

I. OPTICAL-PHONON DISPERSION CLOSE TO THE
ZONE CENTER IN A POLAR CUBIC CRYSTAL

In this section, we present the action for optical phonons
in SrTiO3 from which the dispersion and polarization vectors
near the zone center can be derived. Because the error in
Ref. [1] arises from ambiguity in the inclusion of long-ranged
forces in the action formalism, we first include dispersion
terms based on short-ranged forces, which are identical to the
ones in Ref. [1]. Then, in the next step we show how to include
the long-ranged forces.

We start from the action

Su = 1

2

∑
ω,q

u j
−q[ω2δ jl − Ajl (q)]ul

q. (3)

Here u is the optical displacement, which is proportional to
the dipolar polarization, and Ai j (q) is the dispersion matrix
given by

Ai j (q) = ω2
T δi j + c2

T (q2δi j − qiq j ) + c2
Lqiq j + αq2

i δi j, (4)

where cL and cT are the longitudinal and transverse phonon
velocities, respectively, ωT is the optical gap at the zone
center, and α arises from the cubic crystal fields, which breaks
rotational symmetry. The model above is identical to the
one used by Wölfle and Balatsky [1] [see Eq. (A15)]. The
two are related using the identities P = ωDu, ωD = 33 meV,

λ1 = (c2
L + α)/ω2

D = 8 Å
2
, λ2 = (c2

L − c2
T )/ω2

D = 1 Å
2
, λ3 =

c2
T /ω2

D2 Å
2
, and τ = ω2

T /ω2
D. In the first identity, P is es-

sentially the dipolar polarization associated with the optical
distortion field u. Note that the numbers quoted here are
copied from Ref. [1], and we have not independently verified
their accuracy.

We also note that we insist on modifying the notations of
Ref. [1] to the ones in Eq. (3) because in this representation
the role of the crystal anisotropy α becomes clear. This also
allows us to separate the terms that are fully rotationally
symmetric from this term, which will become useful in the
next section.

To add the effects of the long-ranged dipolar forces associ-
ated with the optical distortion, we write their coupling to the
electric field,

SE−u = −
∑
q,ω

Pq · E−q = −ωD

∑
q,ω

uq · E−q (5)

It is crucial to note that we assume that E is static (we neglect
the dynamics of the electromagnetic fields). Thus, E stems
from a potential ϕ, such that Eq = iq · ϕq. Consequently, Eq

is strictly a longitudinal vector. When taking the dot-product
with uq in the coupling term (5), it nullifies the components
perpendicular to q and we can equivalently write the coupling
term as

SE−u = −ωD

∑
q,ω

q̂ · uqE−q. (6)

To obtain the effective dispersion, we would like to integrate
out the electric field. To this end, we recall the action of the
electric field, which is the energy density (again, neglecting
dynamics)

SE = ε∞
8π

∑
q,ω

|Eq|2. (7)

Completing a square between Eqs. (7) and (6) and integrating
over the electric field, we obtain a shift in the field u,

δSu = −1

2

∑
ωq

4πω2
D

ε∞
q̂ j q̂l u

j
qul

−q. (8)

Thus, the combined effect of long- and short-ranged physics
leads to the action

S̃u = Su + δSu = 1

2

∑
ω,q

u j
−q[ω2δ jl − Ã jl (q)]ul

q, (9)

where the corrected dispersion matrix is given by [5]

Ãi j (q) = ω2
T δi j + c2

T (q2δi j − qiq j )

+ (
ω2

L − ω2
T

)
q̂iq̂ j + c2

Lqiq j + αq2
i δi j . (10)

The LO and TO modes are the eigenstates of this equation.
Note that as expected, the LO frequency has been shifted from
ωT to ωL ≡

√
ω2

T + 4πω2
D/ε∞ .

In SrTiO3 this mass term is quite large. Neglecting com-
plications coming from multiple modes, we can assign ωL ≈
100 meV, while ωT ≈ 2 meV. The quantum critical point is
obtained by taking ωT → 0. The dynamics of the longitudinal
component, however, are described by a finite frequency
mode.

II. ESTIMATION OF THE POLARIZATION
VECTORS AND DISPERSION

The polarization of the optical phonon branches is dic-
tated by the dispersion matrix Ã(q). The main mistake of
the authors of Ref. [1] is that they computed the soft mode
polarization vectors êT using the matrix A(q) in action (3)
and not Ã(q) in the action Eq. (9) [see Eq. (A30) in their
Appendix]. As a result, they obtain that the polarization
vectors are independent of the magnitude of the momentum
q. However, upon inspection of Eq. (9) we find that in the
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limit of q → 0 the mass term Eq. (8) remains finite, unlike
the anisotropy term α. In this limit, the gapped mode is purely
longitudinal and decoupled from the soft transverse modes,
thus nullifying the coupling shown in Eq. (1) to the TO modes.
This conclusion holds for any TO mode that involves a dipolar
excitation, whether it is soft or not.

To see this, let us estimate the polarization vectors close
to q = 0. We first separate the dispersion matrix into a fully
rotational symmetric part and the anisotropy term

Ã(q) = M(q) + δM(q). (11)

Here Mi j (q) = ω2
T δi j + c2

T (q2δi j − qiq j ) + (ω2
L − ω2

T ) qiq j

q2 +
c2

Lqiq j is the isotropic matrix and δMi j (q) = αq2
i δi j is respon-

sible for breaking rotational symmetry and giving a finite
value to Eq. (2). The eigenvalues and eigenvectors of the
matrix M(q) are given by

n̂L = 1

q
(qx, qy, qz ); λL(q) = ω2

L + c2
Lq2,

n̂T 1 = (qy − qz, qz − qx, qx − qy)√
(qy − qz )2 + (qz − qx )2 + (qx − qy)2

;

(12)
λT (q) = ω2

T + c2
T q2,

n̂T 2 = n̂T 1 × n̂L.

This is the exact eigensystem for the case of δM = 0 (or
equivalently, α = 0). To compute the eigenbasis for α 	= 0,
we treat δM as a perturbation,

δn̂T 1 = n̂T
L · δM(q) · n̂T 1

λT (q) − λL(q)
n̂L,

δn̂T 2 = n̂T
L · δM(q) · n̂T 2

λT (q) − λL(q)
n̂L, (13)

such that êT 1,2 = n̂T 1,2 + δn̂T 1,2 + O(δM2). The perturbative
approach can be justified in the limit of q → 0 by noting
that limq→0 δM(q) = 0 in contrast to M(q), which remains
finite, and thus the eigenbasis (12) becomes exact in this
limit. Thus, the perturbation theory is valid in the limit q2 

(λL − λT )/α ≈ ω2

L/α ≈ 0.7(2π/a)2.
A direct computation using Eq. (13) gives

s ≡
∫

d�

4π
(q̂ · êT 1)2 = rα2q4

4π [λL(q) − λT (q)]2
≈ rα2q4

4πω4
L

,

(14)
where r ≈ 0.239 . . . can be expressed as an integral over a
lengthy expression of trigonometric functions. Note that in the
last line we assumed ω2

L � c2
T q2, c2

Lq2, ω2
T .

Now let us make some estimates. In SrTiO3, the longitu-
dinal phonon frequency should be ωL = 100 meV. We can

overestimate the parameter α by taking it to be α = c2
T , where

the velocity of the transverse mode is cT ∼ 5 meV nm (this
implies that the dispersion is very anisotropic). Finally, to
get a number we estimate this average at q = 2kF , where
kF = (3π2n)1/3. At a density n = 1020 cm−3 we find that
αq2

ω2
L

∼ 0.01, and therefore the overlap squared averages to 2 ×
10−6. For n = 1017 cm−3, we get αq2

ω2
L

∼ 0.0001 and therefore

the overlap squared is 2 × 10−10. In contrast, Wölfle and
Balatsky estimated s ≈ 0.1. Clearly, if they take into account
this correction, the pairing they found in the s-wave channel
will become negligibly small.

We emphasize that the q4 dependence in Eq. (14) holds
only for modes that create a dipolar excitation within the
unit cell. It is this dipolar coupling that forces the displace-
ment vector to be nearly perpendicular to q. As an example,
consider the 6 meV TO mode that is associated with the
cubic-to-tetragonal transition at 100 K. This mode originates
as a zone corner mode in the cubic phase that is folded to
the zone center and produces a quadrupole moment rather
than a dipole in the unit cell. In this case, the factor s can
be finite in the limit of small q. A reasonably large λ can be
obtained by exchanging this mode at intermediate and high
density [9] and may supplement the polar phonon mechanism
[4] and contribute to Tc, even though λ will still be small at
low density due to the small density of states. Indeed, there is
evidence that this mode contributes to the transport scattering
rate around 50 K [10].

III. A GENERAL FORMULATION OF THE
DEFORMATION POTENTIAL

Next we consider the general problem of the coupling to a
TO mode in a crystal with multiple ions in the unit cell. We
first consider the general potential caused by a deformation.
We make the rigid ionic potential approximation, i.e., we write
the potential induced on the electrons by the deformation of
the set of lattice deformations {U jα} as

Ve-ph(r) =
∑

jα

[Vα (r − R jα − U jα ) − V (r − R jα )]

≈
∑

jα

U jα · ∇Vα (r − R jα ), (15)

where R jα = R j + τα is the position of the α ion at unit cell
j, and Vα (r) is the potential it induces. The precise form of
this potential will be discussed later in more detail. Thus, the
matrix element for transitions between electronic states due to
this potential is thus given by

〈k; n|Ve-ph(r)|k′; n′〉 =
∑

j

∫
d3r ψ∗

kn(r)U jα · ∇Vα (r − R jα )ψk′n′ (r) (16)

= i

�2

∑
q

∫
d3r q ·

⎛
⎝∑

j

U jαeiq·R jα

⎞
⎠V (q)ei(q+k−k′ )·rχkn(r)χ∗

k′n′ (r)
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= i

�3/2

∑
l

ei(q+k−k′ )Rl
∑

q

1

vuc

∫
uc

d3r q · UqαVα (q)ei(q+k−k′ )·rχkn(r)χ∗
k′n′ (r)

= i

�3/2

∑
G

Vα (Q) Q · Uk−k′α

∫
uc

d3r

vuc
eiG·rχkn(r)χ∗

k′n′ (r).

Here � = Na3 is the total volume, a is the lattice constant,
Q = k′ − k + G represents the conservation of crystal mo-
mentum, the ψkn(r) = eik·r√

�
χkn(r) are the Bloch wave functions

of an electron in band n, and the integral is over the unit cell.
Note that Uq,α = Uq+G,α . Thus, we can define the transition
matrix element

MGα
nn′ (k, k′) ≡ iVα (Q)

vuc

∫
uc

d3r eiG·rχkn(r)χ∗
k′n′ (r) (17)

such that the electron-phonon coupling is given by

He-ph = 1

�3/2

∑
Gαkk′

MGα
nn′ (k, k′)(k′ − k + G) · Uk−k′αc†

knck′n′ .

(18)
This expression is quite general. Notice that there are terms
proportional to G, which allow a finite coupling in the limit
q = |k − k′| → 0. When these terms and inversion symmetry
are present, one can show that the two contributions, G and
−G, cancel each other if also n = n′ (i.e., intraband scatter-
ing). That is, MG

nn(k, k) = M−G
nn (k, k). To see this, we note that

with TRS we have χ∗
kn(r) = χ−kn(r) and with inversion we

have χkn(r) = χ−kn(−r). Thus, the product χ∗
kn(r)χkn(r) is an

even function of r, and thus its Fourier series is an even func-
tion of G. Thus, the conclusion is that with these symmetries
present, the electron coupling to transverse optical phonons
at zero momentum transfer must include interband processes.
However, since the authors of Ref. [1] did not consider the
finite G terms, we continue to follow their analysis and con-
sider only normal processes with G = 0. Additionally, they
also only considered a single band approximation, therefore
they arrive at a result of the form

He-ph = i
∑
qα

Vα (q)q · Uqαρ−q. (19)

Let us write Vα (q) = ZαVC (q) + Vps,α (q), where

VC (q) = 4πe2

ε∞q2
(20)

is the Coulomb interaction, Zα is the charge on ion α such that
charge neutrality gives

∑
α Zα = 0, and Vps,α (q) is what is left

over, which we refer to as the pseudopotential of ion α. Then
Eq. (19) becomes

He-ph = i
∑

q

V (q)q · uqρ−q + i
∑
qα

Vps,α (q)q · Uqαρ−q,

(21)
where uq = ∑

α ZαUα (q) is the displacement, which is pro-
portional to the unit-cell dipole and corresponds to the soft
phonon discussed in Sec. II. This discussion there applies:
in particular, the average of (q̂ · ûq)2 is proportional to q4

as given by Eq. (14). As a result, the contribution from
the Coulomb interaction, the only one kept by Wölfle and

Balatsky, is entirely negligible. On the other hand, the sec-
ond term in Eq. (21) is proportional to u′ · q, where u′

q =∑
α Vps,α (q)Uqα and where Vps,α is the short-ranged pseu-

dopotential of ion α. u′ is in general not parallel to u and
does not need to be perpendicular to q even in the q → 0
limit. However, for cubic and tetragonal crystal structure, as in
SrTiO3, symmetry constrains all the individual displacements
Uqα to be collinear near the zone center. This is clearly the
case for q along a symmetry direction such as the x axis, and it
is easy to see that it continues to hold for an arbitrary direction
because the force matrix is nonsingular in the q-goes-to-zero
limit. Thus, u is parallel to all Uqα and we may conclude that
also this term is suppressed by the same factor of s ∝ q4 and
is therefore negligible.

To conclude, we have shown that the gradient coupling
of the soft TO mode to electronic density in SrTiO3 is
dramatically suppressed near the zone center. This is due to
long-ranged Coulomb forces, which bend the polarization to
become truly transverse to q. The result holds both for the
long-ranged Coulomb repulsion and the short-ranged pseu-
dopotential. We find confirmation of our results in a recent
ab initio calculation of the electron-phonon coupling in STO
[11], where the coupling to the TO phonon is found to be weak
and decreases at small q.

Regarding the terms with finite G in Eq. (18) we note
that in the limit of zero momentum transfer k = k′ and when
both time-reversal and inversion symmetry are present, one
can show that the two contributions, G and −G, cancel each
other if n = n′ (i.e., intraband scattering). That is, MG

nn(k, k) =
M−G

nn (k, k). To see this, we note that with time-reversal sym-
metry we have χ∗

kn(r) = χ−kn(r) and with inversion we have
χkn(r) = χ−kn(−r). Thus, the product χ∗

kn(r)χkn(r) is an even
function of r, and thus its Fourier series is an even function
of G. Concerning interband scattering, for states with k near
the zone center, they are either even or odd under inversion.
Interband scattering between even and odd states is allowed
for states near the zone center. However, in STO, the states
of interest near the Fermi level are d wave, which are even.
Therefore, we conclude that the finite G processes are negli-
gible in STO at low density.

IV. BOUNDING THE COUPLING USING
TRANSPORT DATA

In this section, we roughly estimate the coupling to the
TO mode based on the resistivity measurements in Ref. [12].
If a coupling of the form Eq. (1) exists, we anticipate the
phonon limited transport lifetime at temperatures higher than
the mode frequency,

h̄

τ
≈ 2πkBT λ, (22)
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where λ is the BCS coupling strength. It is important, how-
ever, to note that the formula above applies to a flat phonon
band. For the soft TO mode, this applies only when kF <

ωT /vs ≈ 3 × 106 cm−1, which corresponds to a density of
1018 cm−3. At this density, Ref. [12] measure an inverse life-
time τ−1

tr ≈ 0.5 ps−1 at a temperature of T = 30. Estimating
the coupling, we get that λ � h̄/τ

πkBT ≈ 0.04, which is in strong
disagreement with the results of Ref. [1], which find λ ∼ 0.2.
For higher densities, we can add a factor (ωT /vskF )2 to the
RHS of Eq. (26) to keep scattering by only the modes that
are almost flat. For a density of 5 × 1018cm−3, we still get a
bound of λ ∼ 0.15, giving a Tc of about 10−3ωTO according
to BCS theory.

V. THE INCLUSION OF THE HIGH-FREQUENCY LO
MODE IN THE ELIASHBERG FRAMEWORK

In addition to the soft TO mode, which was discussed
in this Comment in great detail, the authors of Ref. [1]
have also considered the dynamics of the screened Coulomb
potential as a pairing mechanism. In particular, they consid-
ered the dynamics associated with the high-frequency LO
mode. They argue that even when the phonon frequency
is greater than the Fermi energy, the Eliashberg still cap-
tures the essential physics up to the cutoff ωc, which is
determined by the criterion that the quasiparticle scatter-
ing rate is small compared to frequency. We disagree with
this and point out that the Eliashberg equation is based
on the approximation of keeping the ladder diagrams with
the leading logarithmic divergence. For frequencies above
the Fermi energy, the ladder diagrams no longer carry the
logarithm, and many other diagrams contribute equally (for
example, see the diagrams in Fig. 2 of Ref. [13]). Whether
the quasiparticles are well-defined or not is not the only
issue.

Historically, Takada [14] treated the dynamically screened
interaction in the same way and integrated the Eliashberg

equation up to very high frequencies to obtain a relatively
large Tc. However, this procedure has been criticized by
showing that vertex corrections are large [13]. In Ref. [1],
the consequence of taking a large cutoff is that they found
a Tc dome with Tc as large as 0.45 K even for densities as low
as 1017 cm−3, in clear disagreement with experiment (see the
green curve in their Fig. 2).

In Appendix A 3, the authors of Ref. [1] attempted to
justify their procedure by arguing that the vertex correction
is small because the coupling is weak. However, they used a
full screened interaction, taking the static limit of screening
not only for the electrons, but also for the phonons in their Eq.
(A34). We note that according to Ref. [4], the attraction comes
precisely from the frequency dependence of the phonon part
of the dielectric function εph(ω) = ε∞(ω2

LO + ω2
n )/(ω2

TO +
ω2

n ), where ωn is the Matsubara frequency. The attraction
comes from the difference in potential with the dielectric
function evaluated between the frequencies ωLO and ωTO. This
difference is much larger than the static limit used in Ref. [1].
By using the static limit, these authors have underestimated
the coupling by orders of magnitude. The correct estimate
should be taken at a range of frequencies up to the LO mode,
and the vertex correction is non-negligible. Thus, there is no
reason why only the ladder diagrams can be kept, and the
results of using the Eliashberg equation up to high cutoff are
generically inaccurate.
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