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Switchable Josephson current in junctions with spin-orbit coupling
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We study the Josephson current in two types of lateral junctions with spin-orbit coupling and an exchange
field. The first system (type 1 junction) consists of superconductors with heavy metal interlayers linked by
a ferromagnetic bridge, such that the spin-orbit coupling is finite only at the superconductor/heavy metal
interface. In the second type (type 2) of system we assume that the spin-orbit coupling is finite in the bridge
region. The length of both junctions is larger than the magnetic decay length such that the Josephson current is
carried uniquely by the long-range triplet component of the condensate. The latter is generated by the spin-orbit
coupling via two mechanisms, spin precession and inhomogeneous spin relaxation. We show that the current can
be controlled by rotating the magnetization of the bridge or by tuning the strength of the spin-orbit coupling
in type 2 junctions and also discuss how the ground state of the junction can be tuned from a 0 to a π

phase difference between the superconducting electrodes. In leading order in the spin-orbit coupling, the spin
precession dominates the behavior of the triplet component and both junctions behave similarly. However, when
spin relaxation effects are included the type 2 junction offers a wider parameter range in which 0-π transitions
take place.
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I. INTRODUCTION

The interplay between superconductivity and ferromag-
netism leads to triplet superconducting correlations [1–4]. The
simplest setup for the generation of a triplet component is
a superconductor (S)-ferromagnet (F) heterostructure with a
homogeneous exchange field. The superconducting singlet
Cooper pairs can penetrate the ferromagnet, and due to the
local exchange field are partially converted into triplet pairs
with the total spin projection zero with respect to the lo-
cal exchange field. Oscillations of the triplet correlations in
the F region lead to the well understood effect of the sign
reversal of the critical current, the so-called 0-π transition
[5–9]. In a diffusive monodomain F, both singlet and triplet
correlations decay on the magnetic length scale ξh = √

D/h,
where h is the magnitude of the exchange field and D is the
diffusion constant. For conventional Ss and typical exchange
field strengths, ξh is much shorter than the thermal length
scale of decay ξω ≈ √

D/T in a nonmagnetic system. On the
other hand, triplet components with nonzero spin projection
are not affected by its pair breaking effect and would de-
cay over a length scale comparable to ξω. Such long-range
triplet components (LRTC) can be generated due to inhomo-
geneities of the exchange field [1,2,4] or due to the presence
of spin-orbit coupling (SOC) and a homogeneous exchange
field [10,11].
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The prediction of LRTC in S/F hybrid structures has stim-
ulated multiple experimental works [12–22]. More recently,
transverse vertical heterostructures with in-plane magnetic
fields and SOC materials have been experimentally explored
but the long-range correlations due to SOC have not been ob-
served [23–25]. In accordance with previous theoretical works
[10,11] in vertical multilayered SFS junctions the condition
for the generation of a LRTC is quite restrictive. More suitable
for the observation of LRTC induced by the SOC are lateral
structures where currents have also a component flowing in
the direction parallel to the hybrid interface [26–28].

In this work we present a study of the Josephson current
in lateral geometries with SOC of Rashba and Dresselhaus
type and how to control it via external fields in the diffusive
regime. We focus on two types of junctions: One consists
of two superconducting electrodes on top of a ferromagnetic
film, see Fig. 1(a). Between the two materials we assume there
is an interlayer with a finite SOC. Hereafter we refer to this
junction as a type 1 junction. The junction of type 2, Fig. 1(b),
consists of a similar lateral geometry, but the SOC is finite in
the bridge region. Whereas type 1 junctions may correspond
to junctions with a heavy metal interlayer, type 2 junctions
describe, for example, a lateral Josephson junction made of a
2D electron gas in the presence of a Zeeman field. We assume
that in both junctions the distance between the superconductor
electrodes is larger than the magnetic decay length, such that
the Josephson current is only carried by LRTC. The latter is
generated by the SOC via two mechanisms: spin precession
and inhomogeneous spin-relaxation, and the current strongly
depends on the direction of the exchange or Zeeman field. In
addition, in type 2 junctions the Josephson current can also be
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FIG. 1. Schematic view of the two junction types considered in
the text. (a) The junction of type 1 consists of two superconductors
contacted to a ferromagnet (F) via a material with strong SOC. The
magnetization of F, and hence the exchange field h, lies in the x-y
plane. (b) For the junction of type 2 the bridge region connecting the
two superconductors has a sizable SOC.

tuned by a voltage gate that controls the strength of the Rashba
SOC.

We focus on the control of possible 0-π transitions. With
the help of an analytical solution for type 1 junction in the case
of small SOC, we first show that in leading order the LRTC
is generated only by the spin-precession term and the junction
remains in the 0 state independently of the direction of the
exchange field. The next leading order contribution to the
current is due to the inhomogeneous spin relaxation with a
negative sign, such that for certain directions of the exchange
field the junction can switch to the π state. In junctions of
type 1 this only occurs if both the Rashba and Dresselhaus
SOC are finite. In a second part we present numeric calcu-
lations of the current for arbitrary SOC strength that confirm
these findings. In addition these calculations reveal that type 2
junctions allow for 0-π transitions in a wider range of SOC
parameters. Specifically the transition can be induced by a
pure Rashba or Dresselhaus SOC by changing their strengths.
This is a new possibility to induce 0-π transition by tuning
the Rashba SOC strength, which is experimentally achievable
by gating the SOC active material. Besides the interesting
applications of such lateral junctions as 0-π switchers, they
can also be used to detect the LRTC by measuring the changes
of the Josephson current as a function of the direction of the
applied field or magnetization in a single junction.

The work is organized as follows: In Sec. II we present
the basic equations describing diffusive Josephson junctions
and we adapt these equations to the lateral junctions type
1 and 2. In Sec. III we derive the analytical expression for
the Josephson current in junction type 1 perturbatively, up to
second order in the SOC parameter for semi-infinite leads. In
Sec. IV we present numerical results for the Josephson current
for both types of junctions and compare them to the analytical
results. Conclusions are given in Sec. V.

II. BASIC EQUATIONS FOR DIFFUSIVE JOSEPHSON
JUNCTIONS WITH SOC

We consider two spatially separated superconducting elec-
trodes on top of a nonsuperconducting material with either
an intrinsic exchange field, as in a ferromagnet, or a Zeeman
field induced by an external magnetic field. We distinguish
two different types of junctions: one with SOC active layers
just below the superconductors, Fig. 1(a), that we refer to as
junction type 1. The other junction with SOC in the bridge
region is referred to as junction type 2 and is shown in
Fig. 1(b).

We assume that the proximity effect, i.e., the induced
superconducting correlations in the bridge, is weak and that
the system is in the diffusive regime. In this case spectral
and transport properties of the junction can be accurately de-
scribed by the linearized Usadel equation [29] generalized to
linear in momentum SOC. This equation provides the spatial
dependence of the induced superconducting correlations in
the nonsuperconducting region which is described in terms of
the anomalous Green’s function f̂ [10,11][30]:

D∇̃2
k f̂ + 2|ωn| f̂ − isign(ωn){ĥ, f̂ } = 0. (1)

Here D is the diffusion constant, ωn is the Matsubara fre-
quency, ∇̃k = ∂k − i[Âk, . . . ] is the covariant derivative with
the SU(2) vector potential, Âk = σ̂ a

2 Aa
k , describing the SOC,

and ĥ = σ̂ aha is the exchange field. Symbols with a ˆ stand
for operators in spin space and σ̂ a are the Pauli matrices. We
use the Einstein summation convention and sum over repeated
indices. The general form of the condensate function in spin
space is

f̂ = fs1̂ + f a
t σ̂ a (2)

where fs is the singlet component and f a
t are the triplet com-

ponents. In our representation the short (long)-range triplet
component corresponds to the component parallel (orthogo-
nal) to the exchange or Zeeman field.

In order to describe hybrid interfaces between the super-
conductor and a substrate one needs boundary conditions for
the Green’s functions. We use here the Kupriyanov-Lukichev
ones [31] generalized for materials with SOC. In its linearized
form at an S/X interface they read [10,11]:

Ni[∇̃i f̂ ]S/X = −γ fBCS 1̂, (3)

where X denotes any nonsuperconductor material. Here Ni

is the ith component of the interface normal, γ is the inter-
face transparency, fBCS = �eiϕi√

�2−ω2
n

is the anomalous Green’s

function in the bulk S region with the amplitude of the
superconducting order parameter � and its phase ϕi in the ith
electrode. At the interface with vacuum (V) no current flows
and the boundary condition reads:

Ni[∇̃i f̂ ]X/V = 0 . (4)

Below we determine the Josephson current density in the
bridge region for the two setups depicted in Fig. 1. It can be
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expressed as [32]:

j = ieπN0DT
∑
ωn

Tr{ f̂ ∇̃ ˆ̄f − ˆ̄f ∇̃ f̂ } (5)

where N0 is the density of states and ˆ̄f = σ̂ y f̂ ∗σ̂ y.
We now rewrite Eqs. (1) and (3) for the specific case of

junction of type 1 and 2. Both junctions are assumed to be
translational invariant in the y direction. The order parameter
is a steplike function along the x direction, with amplitude �

at the S electrodes and zero at the bridge. We denote the phase
difference between the superconductors with ϕ, such that

�(x, z) = 
(z − (W + d ))
(|x| − L/2)�ei ϕ

2 sign(x). (6)

The SOC fields are finite only in the SOC layers thus for the
junction type 1 [Fig. 1(a)]

Aa
k (x, z) = 
(W + d − z)
(z − W )
(|x| − L/2)Aa

k (7)

and for the junction type 2 with the SOC in the bridge region
[Fig. 1(b)]

Aa
k (x, z) = 
(W − z)
(z − W )
(L/2 − |x|)Aa

k (8)

with constant Aa
k . We restrict ourselves to SOC of the

Rashba and Dresselhaus type defined by the following vector
potential: Âx = β/2σ̂ x − α/2σ̂ y and Ây = α/2σ̂ x − β/2σ̂ y.
Rashba SOC corresponds to terms proportional to α, while
Dresselhaus SOC corresponds to terms proportional to β. For
both junctions the exchange field has only finite components
in the x-y plane and is present in the region F,

ĥ(x, z) = h(cos ϑσ̂ x + sin ϑσ̂ y)
(z)
(W − z), (9)

where h = √
haha.

To distinguish components that are parallel and perpen-
dicular to the exchange field, i.e., short- and long-range
components, it is convenient to rotate Eqs. (1) and (3) by
the unitary transformation U = eiσ̂ x ϑ

2 . After the rotation the
exchange field is fixed along the x axis,

U ĥU† = hσ̂ x. (10)

Thus in our notation the LRTC are those polarized in the y
and z direction. Assuming for simplicity that the thickness d
of the SOC interlayers (if present) and the bridge W is smaller
than the typical length on which f̂ changes, i.e., d � ξω and
W � ξh, we can integrate the Usadel equation along the
z direction [11]. This reduces the initial two-dimensional
problem to an effective one-dimensional one. Thicker layers
will require the solution of a 2D problem, but qualitatively our
results should be valid also in that case.

Here we illustrate how the z integration is carried out.
Besides the first term in Eq. (1), all other terms do not
contain a spatial derivative in the z direction and therefore
the integration results simply in the averaged value of f .
Integration of the first term of Eq. (1) leads to∫ W +d

0
∇̃2

k f̂ dz =
∫ W +d

0
dz

((
∂2

x + ∂2
z

)
f̂

− 2i[Âx, ∂x f̂ ] − [Âk, [Âk, f̂ ]]
)

≈ γ fBCS + (W + d )∂2
x f̂ − 2id[Âx, ∂x f̂ ]

− d[Âk, [Âk, f̂ ]]. (11)

In the first step we have used the translational invariance in
the y direction and our choice of the SOC, which is stepwise
constant. In the second step we use the continuity of f̂ in
the z direction and the boundary condition Eq. (3) at the
interface at z = W + d as well as the boundary condition with
the vacuum, Eq. (4). The z integration causes an averaging
of the couplings that differs for the two junction types. We
therefore present the final equations separately.

A. Usadel equations for type 1 lateral junction

After performing the z integration, and the rotation of
Eq. (1), the resulting system of equations for the rotated

anomalous Green’s function ˆ̃f = U f̂U† is

D
[
∂2

x f̃s
] − 2|ωn| f̃s − 2isign(ωn)h̄ f̃ x

t = −Dγ̄ fBCSe−isign(x) ϕ

2 ,

(12)

D
[
∂2

x f̃ a
t + 2C̄ab

x

(
∂x f̃ b

t

)] − 2|ωn| f̃ a
t − D�̄ab f̃ b

t

= δx,a2isign(ωn)h̄ f̃s, (13)

where we introduced the Kronecker-Delta δi, j , the compo-
nents of the averaged spin precession tensor

C̄ab
k = εacbAc

kd/(W + d ) (14)

and averaged Dyakonov-Perell (DP) spin relaxation tensor

�̄ab = (
Ac

kAc
kδa,b − Aa

kAb
k

)
d/(W + d ). (15)

The averaged coupling constants are defined as h̄a =
haW/(W + d ), ᾱ = αd/(W + d ), β̄ = βd/(W + d ), and
γ̄ = γ /(W + d ). The spatial dependence of the SOC fields,
exchange field, and order parameter in the x direction is not
explicitly written and is defined in Eqs. (6), (7), and (9). In
the rotated system the nonvanishing spin precession tensor
elements are

C̄xz
x = −C̄zx

x = −ᾱ cos(ϑ ) − β̄ sin(ϑ ), (16)

C̄yz
x = −C̄zy

x = ᾱ sin(ϑ ) − β̄ cos(ϑ ). (17)

The nonzero elements of the DP spin relaxation tensor are

�̄xx(ϑ ) = �̄yy(−ϑ ) = (ᾱ2 + β̄2 + ᾱβ̄ sin(2ϑ ))
W + d

d
(18)

�̄zz(ϑ ) = �̄xx(ϑ ) + �̄yy(ϑ ), (19)

�̄xy(ϑ ) = �̄yx(ϑ ) = 2ᾱβ̄ cos (2ϑ )
W + d

d
. (20)

The solution of Eqs. (12) and (13) and its covariant deriva-
tive are continuous at the boundaries x = ±L/2 between the
different regions thus:

∂x f̃s|x=± L
2 +0− = ∂x f̃s|x=± L

2 +0+ , (21)

∂x f̃ a
t

∣∣
x=± L

2 +0∓ = [
∂x f̃ a

t + C̄ab
x f̃ b

t

]
x=± L

2 +0± . (22)

The Eqs. (12) and (13) together with the boundary conditions
Eqs. (21) and (22) fully determine the condensate within the
limits of the mentioned approximations. Finally the current in
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the bridge region is given by

j = 4πeN0DT
∑
ωn

Im
[

f̃ ∗
s ∂x f̃s − (

f̃ i
t

)∗(
∂x f̃ i

t

)]
. (23)

B. Usadel equations for type 2 lateral junction

For the junction type 2 the SOC coupling and the exchange
field are finite over the whole bridge. Consequently h̄a = h,
ᾱ = α, β̄ = β, and γ̄ = γ /W . Thus the z-integrated Usadel
equation is like in Eqs. (12) and (13) where now

C̄ab
k = Cab

k = εacbAc
k (24)

and the DP spin relaxation tensor

�̄ab = �ab = Ac
kAc

kδa,b − Aa
kAb

k. (25)

The spatial dependence of the SOC fields is now given by
Eq. (8). The solution of this system of equations is continuous
and fulfills

∂x f̃s|x=± L
2 +0− = ∂x f̃s|x=± L

2 +0+ , (26)

[
∂x f̃ a

t + Cab
x f̃ b

t

]
x=± L

2 +0∓ = ∂x f̃ a
t

∣∣
x=± L

2 +0± . (27)

Thus for type 2 junctions, the condensate function is deter-
mined from Eqs. (12) and (13) and Eqs. (26) and (27). Finally
the current through the junction is given by

j = 4πeN0DT
∑
ωn

Im
[

f̃ ∗
s ∂x f̃s − (

f̃ i
t

)∗(
∂x f̃ i

t

)

+ (
f̃ z
t

)∗(
α f̃ x

t + β f̃ y
t

)]
. (28)

III. THE JOSEPHSON CURRENT IN TYPE 1
JUNCTIONS: ANALYTICAL SOLUTION

Here we focus on type 1 junctions in the case when
the exchange interaction is the dominant energy scale,
Dα2, Dβ2, Dαβ, T � h. The junction is larger than the mag-
netic length, ξh, and hence the current is solely determined by
the LRTC, f̃ y

t and f̃ z
t . The other two components decay over

ξh in the F region.
We solve Eqs. (12) and (13) perturbatively up to second

order in the SOC fields, Aa
k . In zeroth order only the singlet

and triplet component parallel to the field, f̃ x
t,0, are finite. Their

explicit form is given in the Appendix, Eq. (A13). In first order
in the SOC the component f̃ z

t appears as a consequence of the
precession term. Specifically it is determined by

∂2
x f̃ z

t,1 − 2|ωn|
D

f̃ z
t,1 = −2C̄zx

x

(
∂x f̃ x

t,0

)
. (29)

The component f̃ y
t appears in second order of the SOC and

satisfies:

∂2
x f̃ y

t,2 − 2|ωn|
D

f̃ y
t,2 = −2C̄yz

x

(
∂x f̃ z

t,1

) + �̄yx(ϑ ) f̃ x
t,0. (30)

The explicit expressions for these components are given
in the Appendix, Eqs. (A20), (A24). From these solutions we
obtain the current density in the F region. The current density
Eq. (5) is only due to the contribution of the long-range
components f̃ z

t and f̃ y
t in Eq. (28). The maximum value of

the Josephson current, i.e., the critical current jc, is obtained
at ϕ = π/2:

jc = j
(
ϕ = π

2

)
= πeN0DT

∑
ωn

∣∣ f b
x

∣∣2
e−κωL

×
(

(ᾱ cos ϑ + β̄ sin ϑ )2

2κω

− 8ᾱ2β̄2 cos2 2ϑ

κ3
ω

)
(31)

where we define κω = √
2|ωn|/D and

f b
x ≈ −i

γ sign(ωn)ξ 2
h

2
fBCS (32)

is the value of f̃ x
t for zero SOC, in the F region below

the superconducting electrodes far from the bridge region.
The first term in the second line of Eq. (31) is the lowest
correction in the SOC which stems from the precession term
in Eq. (29) and generates the LRTC f̃ z

t from rotation of the
short-range f̃ x

t,0. It is a positive contribution (0 junction) and as
expected depends on the direction of the field. It vanishes for
an angle ϑ0 ∈ [π/2, π ] that depends on the relative strength of
the considered SOC types and is given by ϑ0 = arctan (− α

β
) +

nπ [cf. with the numerical results shown in Figs. 2(a)–2(c)].
In the next order of the SOC the contribution to the current

is the negative, second term in the second line of Eq. (31), and
it is due to the spin relaxation term �yx in Eq. (30), that leads
to a finite f̃ y

t component. This contribution is only finite if
both Rashba and Dresselhaus type of SOC are present. This
explains why in the case of a pure Rashba or Dresselhaus
SOC the current does not change sign as a function of ϑ [see
numerical results shown in Figs. 2(a), 2(b) 2(d), and 2(e)].

Thus, the sign and magnitude of the critical current is
determined by two competing contributions, namely spin
precession and anisotropic spin relaxation [11], which in turn
depend strongly on the direction of the applied Zeeman field.
For example the contribution due to spin precession is zero
whenever the SU(2) electric field strength in transport direc-
tion Fx,0(ϑ ) = −i[Âx, ĥ(ϑ )] vanishes. This is in accordance
with previous theoretical investigations that identified Fk,0 as
the generator of the LRTC [10,11]. According to Eq. (31),
Fx,0(ϑ0) = 0. For this value of ϑ the second negative term
dominates provided that cos 2ϑ0 	= 0 and leads to a change of
sign of the critical current, a 0-π transition.

For either pure Rashba or pure Dresselhaus SOC the de-
pendence of the critical current on ϑ is simply shifted by
π/2 for the same magnitude of the SOC parameter. This can
be already inferred from Eq. (1), which is symmetric when
interchanging α ↔ β and x ↔ y for the coordinate labels in
spin space.

Equation (31) is valid for a symmetric junction, i.e., a
junction of type 1 with the same SOC at both electrodes. In
the case that the left (L) and right (R) electrodes have different
values for the Rashba and Dresselhaus SOCs αL/R and βL/R

it is possible to obtain a 0-π transition solely due to spin
precession effects. Namely, the critical current up to first order
in the SOC fields reads

jc = πeN0DT
∑
ωn

∣∣ f b
x

∣∣2

κω

e−κωL

× (ᾱL cos ϑ + β̄L sin ϑ )(ᾱR cos ϑ + β̄R sin ϑ ). (33)
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ᾱξ0 =0.04
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FIG. 2. Numerical results for the critical current as a function of the orientation of an in-plane exchange field for the type 1 junction.
Different curves correspond to different values of the SOC parameters. In all plots we set h̄ = 10�, L = 5ξ0, T = 0.01� and the thickness of
the SOC and F layer are chosen such that d/W = 1.

By inspecting Eq. (33) we see that the current reversal appears
every time the SU(2) electric field strength disappears in
the left or right lead FL/R

x,0 = 0, as long as αLβR 	= αRβL.
When all couplings are nonvanishing this takes place at the
angles ϑ

L/R
0 = arctan (−αL/R

βL/R
) + nπ . The interval, where the

current is reversed with respect to the symmetric case, is
maximized when there is only Rashba SOC in one lead and
only Dresselhaus SOC in the other as then jc ∝ αβ sin(2ϑ ).

To summarize this section, for low SOC strength, the
long-range supercurrent is mainly determined by the spin
precession. If the S electrodes are symmetric and only one
type of SOC is active, the current can be switched on and off
by rotating the exchange field in the x-y plane, but no 0-π
transition takes place. A reversal of the current only appears
if both SOC types are finite and originates in a competition
of the spin precession and spin relaxation effects. A current
reversal due to spin precession effects can only be achieved
by choosing leads with different SOC parameters.

IV. NUMERICAL RESULTS

In this section we compute numerically the Josephson
current for both types of junctions with finite S electrodes.
The total length of the system is Ltot = 2LS + L, where LS is
the length of the S electrode, and is set to Ltot = 10L. The
systems of equations (12) and (13) are complemented by the
boundary condition Eq. (4) at the outer interfaces:

∇̃x f̂ |x=±Ltot/2 = 0. (34)

The resulting critical current density for the junction type
1 is shown in Figs. 2(a)–2(f) and for junction type 2 in
Fig. 3(a)–3(f). For low SOC strengths and any of the studied
SOC types and junction types, the current vanishes when

the SU(2) electric field strength vanishes in accordance with
previous theories [10]. Indeed, the critical current for both
setups and small SOC show qualitatively identical behavior
[Figs. 2(a)–2(c) and 3(a)–3(c)], in very good agreement with
the analytical result of Eq. (31). This implies that at the level
of spin-precession effects both junctions behave similarly. As
expected the critical current curves for the case of pure Rashba
or Dresselhaus SOC are shifted by π/2 when comparing
curves of corresponding SOC strengths.

When increasing the SOC strength for junction type 1 we
observe the competition between the two LRTC generating
mechanisms. Comparing the upper and lower panels of Fig. 2
we see that the current changes sign at sufficiently large SOC
strengths, only when both Rashba and Dresselhaus SOC are
finite, as expected. For the special case when α = β and
exchange field orientation ϑ = π/4 there is no 0-π transition
possible as the spin relaxation contribution to the current van-
ishes. At ϑ = 3/4π spin precession and spin relaxation con-
tributions vanish simultaneously, as can be seen in Fig. 2(f).

By further increase of the SOC the numerical results shown
in Fig. 2(f) differ qualitatively from the analytic ones: There
is a strong increase of the critical current in two negative
dips around ϑ = π/4. The two negative dips move closer to
ϑ = π/4 by increasing the SOC strength. Also there is a
flattening of the curve at ϑ = 3/4π .

The 0-π transition due to spin precession effects in junction
type 1 with asymmetric SOC obtained analytically in the
previous section is confirmed by the numerics as shown in
Fig. 4. In particular, the points of current reversal as a function
of ϑ are in agreement with the analytical result, Eq. (33).

The case of large SOC in type 2 junctions is shown
in Figs. 3(d)–3(f). We clearly see that 0-π transitions are
possible for any choice of SOC. The case when α, β 	= 0
is qualitatively similar to junction type 1. In contrast, for
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ᾱξ0 =0.05

0.00 0.25 0.50 0.75 1.00

ϑ/π

−2

−1

0

1

2

j c
/|j

c,
0
|

×104

(d)
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ᾱξ0 =0.4
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FIG. 3. Numerical results for the critical current as a function of the orientation of an in-plane exchange field for a type 2 junction. Different
curves correspond to different values of the SOC parameters. In all plots we set h̄ = 10�, L = 5ξ0, T = 0.01�.

junction 2, 0-π transitions are possible for pure Rashba
or Dresselhaus SOC when increasing the SOC strength, as
shown in Figs. 3(c), 3(d), and 5. Our results, regarding the
current sign reversal, are similar to the results of Ref. [27],
where a one-dimensional junction with a pure Rashba has
been studied. Similarly to the one-dimensional case, our re-
sults for two-dimensional SOC show that the direction of the
current can be inverted by tuning the strength of the Rashba
SOC, which can be done by a voltage gate if the bridge region
is a semiconductor. Such a gate has also been suggested in
Ref. [26] for creation of a long ranged spin-triplet helix in a
ballistic ferromagnetic Josephson junction.
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FIG. 4. Numerical results for the critical current as a function
of the orientation of an in-plane exchange field for an asymmetric
junction of type 1. We set h̄ = 10�, L = 5ξ0, T = 0.01�, and
d/W = 1.

V. CONCLUSION

We present a study of the effects of Rashba and Dressel-
haus SO interaction in two types of diffusive lateral Josephson
junctions. In the first type the bridge linking the superconduct-
ing electrodes is a ferromagnet and the SOC fields originated
from heavy metal interlayers placed between the S leads and
the F bridge. In the second geometry the exchange fields and
SOC fields are finite over the whole bridge. In a realistic
setup this can be realized by a 2D semiconducting bridge
in an external magnetic field. In both cases we determine
the long-range triplet Josephson current. We show how the
magnitude and sign of the supercurrent can be controlled
by varying the direction of the exchange field as well as
tuning the strengths of the SOC. Besides their relevance for
application as supercurrent valves such lateral junctions can
be used as an unequivocal way of detecting the long-range
triplet component of the condensate in lateral setups.

Note added: Recently, we became aware of the work
Ref. [28] that studies junction type 1 in great detail. Our work
confirms and extends the analytical and numerical results
therein as the authors mainly focus on pure Rashba SOC.
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APPENDIX: BASIC EQUATIONS

After performing the z integration, the resulting system of
differential equations for the transformed anomalous Green’s

function ˆ̃f = U f̂U† for |x| > L/2 is:

D
[
∂2

x f̃s
] − 2|ωn| f̃s − 2isign(ωn)h̄ f̃ x

t

= −Dγ̄ fBCSe−isign(x) ϕ

2 (A1)

D
[
∂2

x f̃ x
t + 2C̄xb

x

(
∂x f̃ b

t

)] − 2|ωn| f̃ x
t − D�̄xb f̃ b

t

= 2isign(ωn) f̃sh̄ (A2)

D
[
∂2

x f̃ y
t + 2C̄yb

x

(
∂x f̃ b

t

)] − 2|ωn| f̃ y
t − D�̄yb f̃ b

t = 0 (A3)

D
[
∂2

x f̃ z
t + 2C̄zb

x

(
∂x f̃ b

t

)] − 2|ωn| f̃ z
t − D�̄zb f̃ b

t = 0. (A4)

In the barrier region |x| < L/2 we get

D∂2
x f̃s − 2|ωn| f̃s − 2isign(ωn)h̄ f̃ x

t = 0 (A5)

D∂2
x f̃ x

t − 2|ωn| f̃ x
t − 2isign(ωn)h̄ f̃s = 0 (A6)

D∂2
x f̃ y

t − 2|ωn| f̃ y
t = 0 (A7)

D∂2
x f̃ z

t − 2|ωn| f̃ z
t = 0. (A8)

The z integration causes an averaging of the couplings as
described in the main text. The solution of this system of
equations is continuous and fulfills

∂x f̃s|x=± L
2 +0− = ∂x f̃s|x=± L

2 +0+ (A9)

∂x f̃ a
t

∣∣
x=± L

2 +0∓ = [
∂x f̃ a

t + C̄ab
x f̃ b

t

]
x=± L

2 +0± , (A10)

at the boundaries between the different regions. The spin
precession tensor components Cab

k and DP tensor components
�ab in the rotated system are determined from the transformed
fields

ˆ̃Ax = σ̂ x

2
ζ (ϑ ) − η(ϑ )

σ̂ y

2
, (A11)

ˆ̃Ay = σ̂ x

2
η(−ϑ ) − ζ (−ϑ )

σ̂ y

2
, (A12)

with η(ϑ ) = ᾱ cos(ϑ ) + β̄ sin(ϑ ) and ζ (ϑ ) = −ᾱ sin(ϑ ) +
β̄ cos(ϑ ). The equations (A1)–(A10) fully determine the junc-
tion system within the limits of the approximations mentioned
in the main text.

1. Zeroth order correction

As in the main text we consider the junction type 1 assum-
ing semi-infinite leads. Solving the above system of equations
for vanishing SOC gives the following zeroth order solution
for the function f̃ x

t ,

f̃ x
t,0

=

⎧⎪⎪⎨
⎪⎪⎩

AL
1

λ+ eλ+x + AL
2

λ− eλ−x + f b
x e−i ϕ

2 , x < − L
2

B1
λ+ eλ+x − B2

λ+ e−λ+x + B3
λ− eλ−x − B4

λ− e−λ−x

− AR
1

λ+ e−λ+x − AR
2

λ− e−λ−x + f b
x ei ϕ

2 , x > L
2 ,

(A13)

where λ± =
√

2|ωn|
D ± i 2sgn(ωn )h̄

D ,

AL
1/2 = ∓λ± f b

s ± f b
x

2
sinh

(
Lλ± − iϕ

2

)
(A14)

B1/2 = ±λ+

4

(
f b
s + f b

x

)
exp

(−Lλ+ ± iϕ

2

)
(A15)

B3/4 = ∓λ−

4

(
f b
s − f b

x

)
exp

(−Lλ− ± iϕ

2

)
(A16)

AR
1/2 = ±λ± f b

s ± f b
x

2
sinh

(
Lλ± + iϕ

2

)
(A17)

and the bulk solutions for the singlet and triplet x component

f b
s = Dγ

fBCS

2

|ωn|
|ωn|2 + h2

≈ γ |ωn|ξ 2
h̃

2h̄
fBCS (A18)

f b
x = −iDγ

fBCS

2

sign(ωn)h̄

|ωn|2 + h̄2
≈ −i

γ sign(ωn)ξ 2
h̄

2
fBCS (A19)

with ξh̄ =
√

D/h̄.
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2. First order correction

The ansatz for the solution of Eq. (29) reads

f̃ z
t,1(x) =

⎧⎪⎨
⎪⎩

K1eκωx + ZL
1 eλ+x + ZL

2 eλ−x, x < − L
2

K2eκωx + K3e−κωx, |x| < L
2

K4e−κωx + ZR
1 e−λ+x + ZR

2 e−λ−x, x > L
2

(A20)

where

ZL
1 = − η(ϑ )AL

1(
λ+2 − κ2

ω

) , ZL
2 = − η(ϑ )AL

2(
λ−2 − κ2

ω

) , (A21)

ZR
1 = − η(ϑ )AR

1(
λ+2 − κ2

ω

) , ZR
2 = − η(ϑ )AR

2(
λ−2 − κ2

ω

) . (A22)

Keeping only leading order terms when h̄ � T, max{�̄ab} and assuming L � ξh̄ we find

⎛
⎜⎝

K1

K2

K3

K4

⎞
⎟⎠ ≈ f b

x

κω

η(ϑ )

2

⎛
⎜⎜⎜⎜⎝

sinh( Lκω−iϕ
2 )

− 1
2 e− Lκω

2 e
iϕ
2

1
2 e− Lκω

2 e− iϕ
2

− sinh( Lκω+iϕ
2 )

⎞
⎟⎟⎟⎟⎠. (A23)

3. Second order correction

The ansatz for the solution of Eq. (30) reads

f̃ y
t,2(x) =

⎧⎪⎨
⎪⎩

(L1 + xY L
1 )eκωx + Y L

2 eλ+x + Y L
3 eλ−x + Y L

4 , x < − L
2

L2eκωx + L3e−κωx, |x| < L
2

(L4 + xY R
1 )e−κωx + Y R

2 e−λ+x + Y R
3 e−λ−x + Y R

4 , x > L
2

(A24)

with

Y L/R
1 = ζ (ϑ )K1/4, (A25)

Y L/R
2 = ±2λ+2

ζ (ϑ )ZL
1 + �̄yxAL/R

1

λ+(
λ+2 − κ2

ω

) , (A26)

Y L/R
3 = ±2λ−2

ζ (ϑ )ZL
2 + �̄yxAL/R

2

λ−(
λ−2 − κ2

ω

) , (A27)

Y L/R
4 = −�̄yx

f b
x e∓i ϕ

2

κ2
ω

. (A28)

Considering only leading order terms when h̄ � T, max{�̄ab} consistent with the first order correction and assuming that L � ξh̄
gives for the relevant coefficients inside the bridge (

L2

L3

)
= −1

2
e− Lκ

2

(
Y R

4

Y L
4

)
. (A29)
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