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We study a generalized clock model on the simple cubic lattice. The parameter of the model can be tuned such
that the amplitude of the leading correction to scaling vanishes. In the main part of the study, we simulate the
model with Z8 symmetry. At the transition, with increasing length scale, O(2) symmetry emerges. We perform
Monte Carlo simulations using a hybrid of local Metropolis and cluster algorithms of lattices with a linear
size up to L = 512. The field variable requires less memory and the updates are faster than for a model with
O(2) symmetry at the microscopic level. Our finite-size scaling analysis yields accurate estimates for the critical
exponents of the three-dimensional XY -universality class. In particular, we get η = 0.03810(8), ν = 0.67169(7),
and ω = 0.789(4). Furthermore, we obtain estimates for fixed point values of phenomenological couplings and
critical temperatures.
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I. INTRODUCTION

In the neighborhood of a second-order phase transition,
thermodynamic quantities diverge, following power laws. For
example, the correlation length ξ behaves as

ξ = a±|t |−ν (1 + b±|t |θ + ct + · · · ), (1)

where t = (T − Tc)/Tc is the reduced temperature. The sub-
script ± of the amplitudes a± and b± indicates the high-
temperature (+) and the low-temperature (−) phase, respec-
tively. Second-order phase transitions are grouped into uni-
versality classes. For all transitions within such a class, critical
exponents like ν assume the identical value. These power laws
are affected by corrections. There are nonanalytic or confluent
and analytic ones. The leading corrections are explicitly given
in Eq. (1). Also, correction exponents such as θ = ων are
universal. For the system discussed here, θ ≈ 0.5. Amplitudes
such as a± and b± depend on the microscopic details of
the system. However, certain combinations, called amplitude
ratios, assume universal values. Universality classes are char-
acterized by the symmetry properties of the order parameter
at criticality, the range of the interaction, and the spacial
dimension of the system. For reviews on critical phenomena,
see, for example, [1–4].

Note that in general the symmetry properties of the order
parameter cannot be naively inferred from the microscopic
properties of the system. In particular, a symmetry might
emerge that is not present in the classical Hamiltonian. For
example, in the model studied here, the symmetry is enhanced
from ZN to O(2) at the critical point. At the O(2)-invariant
Wilson-Fisher fixed point in three dimensions, a perturbation
that breaks the O(2) invariance down to ZN invariance is
irrelevant in the sense of the renormalization group (RG)
for N � 4. See Ref. [5] and references therein. Monte Carlo
studies have shown that the transition of N-state clock models
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on the simple cubic lattice are in the domain of attraction of
the O(2)-invariant fixed point for N � 5. See, for example,
Ref. [6]. The major part of our simulations are performed
for N = 8. The related RG exponent takes the value yN=8 =
−5.278(9); see Table II of Ref. [5]. Therefore, the deviations
from O(2) invariance rapidly vanish with increasing lattice
size and can be safely ignored in the finite-size scaling
analysis at the critical point. The ZN -invariant perturbation is
dangerously irrelevant. In the low-temperature phase, in the
thermodynamic limit, the spontaneous magnetization might
only assume one of the N directions that are preferred by
the Hamiltonian. See, for example, Ref. [7] and references
therein. In the present work, we focus on the critical point
and consider a model with ZN symmetry, mainly for technical
reasons. Less memory is needed to store the configurations
and the updates require less computer processing time than
for a model with O(2) symmetry.

The three-dimensional XY -universality class has attracted
much attention, since the λ transition of 4He, which is well
studied experimentally, is supposed to share this universality
class. The most accurate result for the exponent α of the spe-
cific heat is obtained from an experiment under the condition
of microgravity [8–10]:

α = −0.0127(3), (2)

which corresponds to ν = (2 − α)/d = 0.6709(1).
The three-dimensional XY -universality class has been

studied by using various theoretical approaches. For example,
field theoretic methods, high- and low-temperature series
expansions, and Monte Carlo simulations of lattice models.
A few representative results for critical exponents are given
in Table I. Note that other critical exponents can be obtained
from ν and η by using scaling relations. For more compre-
hensive collections, see Table I of Ref. [15], Table 19 of
Ref. [4], or Table I of Ref. [13]. Recently, great progress
has been achieved by using the so-called conformal bootstrap
method. In particular, in the case of the three-dimensional
Ising universality class, the accuracy that has been reached for
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TABLE I. A few representative results for the critical exponents ν, η, and ω for the universality class of the three-dimensional XY model
obtained by various theoretical methods. MC+HT means that Monte Carlo simulations and the analysis of high-temperature expansions have
been combined to analyze the lattice models under consideration.

Ref. Method Year ν η ω

[11] ε expansion 1998 0.6680(35) 0.0380(50) 0.802(18)
[11] 3D expansion 1998 0.6703(15) 0.0354(25) 0.789(11)
[12] MC+HT 2006 0.6717(1) 0.0381(2) 0.785(20)
[13] MC 2019 0.67183(18) 0.03853(48) 0.77(13)
[14] Conformal bootstrap 2016 0.6719(11) 0.03852(64)
Present work MC 2019 0.67169(7) 0.03810(8) 0.789(4)

critical exponents clearly surpasses that of other theoretical
methods. See Ref. [16] and references therein. For the XY and
the O(3) universality classes in three dimensions, the results
obtained so far are less precise. The estimates given in Table I
are derived from the numbers for the scaling dimensions 
φ

and 
s given in Ref. [14]. In the last row of Table I, we
report as preview the results of the present work. We fully
confirm Ref. [12], the discrepancy with the experiment [8–10]
remains.

An important feature of Refs. [12,15] is that improved
models are studied. One considers models that have one
parameter in addition to the inverse temperature and the
external field. On the critical line, the amplitude b± of leading
corrections to scaling, Eq. (1), depends on this parameter.
If there exists a value of the parameter with b± = 0, RG
theory predicts that the same holds for all quantities that are
singular at the transition. In the following, we shall call a
model with b± = 0 an improved model. The idea had been
exploited first by using high-temperature series expansions of
such models [17,18]. For early Monte Carlo simulations of
improved models sharing the universality class of the three-
dimensional Ising model, see, for example, Refs. [19–21].

In the present work, we study a generalization of the N-
state clock model, which is closely related with the ddXY
model that has been studied in Refs. [12,15]. In addition to
the N values on the unit circle, the field variable might take the
value (0,0) in the center of the circle. We refer to this model as
the (N + 1)-state clock model. Its precise definition is given
in Sec. II below.

We study the model by using finite-size scaling (FSS) [22].
The outline of the study builds upon our previous work on
critical phenomena; see, for example, Refs. [12,15,21,23–26],
to give only a few. An important feature of these studies is that
in addition to the Binder cumulant [27], other dimensionless
ratios like the second-moment correlation length over the
linear lattice size ξ2nd/L or the ratio of the partition functions
for periodic and antiperiodic boundary conditions Za/Zp are
exploited. The comparison of results obtained from these
different quantities allows us to estimate systematic errors that
are caused by subleading corrections that are not explicitly
taken into account in the fits.

The purpose of the present work is twofold. First, we
improve the accuracy of the critical exponents of the three-
dimensional XY universality class. These results provide a
benchmark for future theoretical progress achieved by the
conformal bootstrap or other methods. Second, we pro-
vide nonuniversal results, like, for example, inverse critical

temperatures, which are important groundwork for future
studies. In particular, we intend to compute the structure
constants using an approach similar to that in Ref. [28] for the
Ising universality class. Furthermore, the improved (N + 1)-
state clock model should be a good starting point to study
the symmetry properties of the order parameter in the low-
temperature phase.

The outline of the paper is the following: In Sec. II,
we define the model and the observables that we measured.
We summarize the theoretical basis of our finite-size scaling
analysis in Sec. III. In Sec. IV, we discuss the Monte Carlo
algorithm used in the simulations. In Sec. V, we analyze
the data and present the results for the fixed point values
of the dimensionless ratios, inverse critical temperatures, the
correction exponent ω, and the critical exponents ν and η.
Finally, we conclude and give an outlook. In the Appendix,
we discuss the dependence of the critical temperature and
other nonuniversal quantities on N and determine the RG
exponent yN=6 related to a Z6-invariant perturbation of the
O(2) invariant fixed point.

II. THE (N + 1)-STATE CLOCK MODEL

The model can be viewed as a generalization of the N-state
clock model. The field �sx at the site x = (x0, x1, x2), where
xi ∈ 0, 1, 2, ..., Li − 1, might assume one of the following
values:

�sx ∈ {(0, 0), [cos(2πm/N ), sin(2πm/N )]}, (3)

where m ∈ {1, . . . , N}. Compared with the N-state clock
model, (0,0) is added as possible value of the field variable.
In our program, we store the field variables by using labels
m = 0, 1, 2, . . . , N . We assign

�s(0) = (0, 0) (4)

and for m > 0

�s(m) = [cos(2πm/N ), sin(2πm/N )]. (5)

The reduced Hamiltonian is given by

H = −β
∑
〈xy〉

�sx · �sy − D
∑

x

�s 2
x − �H

∑
x

�sx, (6)

where 〈xy〉 denotes a pair of nearest neighbor sites on the
simple cubic lattice. We introduce the weight factor

w(�sx ) = δ0,�s 2
x
+ 1

N
δ1,�s 2

x
= δ0,mx + 1

N

N∑
n=1

δn,mx (7)
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that gives equal weight to (0,0) and the collection of all values
|�sx| = 1. Now the partition function can be written as

Z =
∑
{�s}

∏
x

w(�sx ) exp(−H), (8)

where {�s} denotes a configuration of the field. Note that in
the limit N → ∞, we recover the dynamically diluted XY
(ddXY ) model studied in Refs. [12,15]. The reduced Hamilto-
nian of the ddXY model has the same form as Eq. (6):

HddXY = −β
∑
〈xy〉

�φx · �φy − D
∑

x

�φ 2
x − �H

∑
x

�φx, (9)

where �φx is a vector with two real components. The partition
function is given by

Z =
∏

x

[∫
dμ(φx )

]
exp(−HddXY ), (10)

with the local measure

dμ(φx ) = dφ(1)
x dφ(2)

x

[
δ
(
φ(1)

x

)
δ
(
φ(2)

x

) + 1

2π
δ(1 − | �φx|)

]
.

(11)

Note that the dynamically diluted XY model is a special
case (K = 0) of the vectorialized Blume, Emery, and Griffiths
(VBEG) model studied in Ref. [29].

A. Phase diagram of the dynamically diluted XY model

We expect that the phase diagram for N � 5 is essentially
the same as that of the ddXY model. Therefore, we briefly
recall the results obtained in Refs. [12,15]. In the limit D →
∞, the XY model is recovered. There is a line of second-order
phase transitions that ends at Dtri in a tricritical point. Fol-
lowing Ref. [15], based on mean-field calculations, Dtri < 0.
Along the line of second-order phase transitions, there is a D∗,
where leading corrections to scaling vanish. We refer to the
ddXY model at D ≈ D∗ = 1.06(2), Ref. [12], as the improved
ddXY model. In Table II, we summarize results obtained for
the inverse critical temperature βc at various values of D. In
Appendix B, we shall study the N dependence of βc in detail.

B. Definitions of the measured quantities

The quantities studied are essentially the same as in
Ref. [12]. For completeness, we list them below: The energy

TABLE II. Results for the inverse of the critical temperature βc

for the dynamically diluted XY model. These results are taken from
Table II of Ref. [12].

D βc

0.9 0.5764582(15)[9]
1.02 0.5637963(2)[2]
1.03 0.5627975(7)[7]
1.2 0.5470376(17)[6]
∞ 0.4541652(5)[6]

density is defined as

E = 1

V

∑
〈xy〉

�sx · �sy. (12)

The magnetic susceptibility χ for a vanishing magnetization
and the second-moment correlation length ξ2nd are defined as

χ = 1

V

〈(∑
x

�sx

)2〉
(13)

and

ξ2nd =
√

χ/F − 1

4 sin2 π/L
, (14)

where

F = 1

V

〈∣∣∣∣∣
∑

x

exp

(
i
2πx1

L

)
�sx

∣∣∣∣∣
2〉

(15)

is the Fourier transform of the correlation function at the low-
est nonzero momentum. We consider several dimensionless
quantities, which are also called phenomenological couplings.
These quantities are, in the critical limit, invariant under RG
transformations. We consider the Binder cumulant U4 and its
sixth-order generalization U6, defined as

U2 j = 〈( �m2) j〉
〈 �m2〉 j

, (16)

where �m = 1
V

∑
x �sx is the magnetization of the system. We

also consider the ratio RZ = Za/Zp of the partition function Za

of a system with antiperiodic boundary conditions in one of
the three directions and the partition function Zp of a system
with periodic boundary conditions in all directions. Antiperi-
odic boundary conditions in the 0 direction are obtained by
changing the sign of the term �sx · �sy of the Hamiltonian for
links 〈xy〉 that connect the boundaries, i.e., for x = (L, x1, x2)
and y = (0, x1, x2). In order to avoid microscopic effects at the
boundary, we require that −�sx is in the same set of values as
�sx. Therefore, in the main part of the study, N is chosen to be
even. In the following, we will refer to dimensionless ratios
by R. Derivatives of dimensionless ratios with respect to the
inverse temperature

SR = ∂R

∂β
(17)

are used to determine the critical exponent ν. In the following,
these quantities are also denoted by slope of R.

For most of our analysis, we need the observables as a
function of β in a certain neighborhood of the critical point.
To this end, we simulate at βs, which is a good approxi-
mation of βc. In order to extrapolate in β, we compute the
coefficients of the Taylor series in β − βs for all quantities
listed above up to the third order. Note that a reweighting
analysis is not possible, since, due to the large statistics,
we performed a binning of the data already during the
simulation.
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III. FINITE-SIZE SCALING:
THEORETICAL BACKGROUND

The account given below is similar to Sec. II B of Ref. [15].
The main purpose is to make the present paper self-contained.
Our assumptions concerning subleading corrections differ
from those of Ref. [15]. See Sec. III A below. Our starting
point is the finite-size scaling behavior of the reduced free
energy density, which is defined by

f (β, h, D, L) = − 1

V
ln Z (β, h, D, L), (18)

where Z is the partition function and V = L3 is the number
of lattice sites. Note that there is also a dependence on
N that we suppress in the following to keep the notation
tractable.

The reduced free energy density can be written in terms of
the analytic functions Fsing and g; see, for example, Eq. (2.14)
of Ref. [4],

f (β, h, D, L) = L−dFsing(Lyt ut , Lyh uh, {uiL
yi}) + g(β, h, D),

(19)

where d is the dimension of the system. Note that Fsing

is a universal function, which, however, depends on the
global geometry of the system, for example, on aspect
ratios Li/Lj , where i 
= j are the directions on the lattice
or on the type of boundary conditions. Here, we consider
periodic and antiperiodic boundary conditions that do not
generate boundary contributions, like Dirichlet boundary
conditions, for example. The analytic background g(β, h, D)
does not depend on these global properties. ut and uh are the
temperature-like and external-field-like scaling fields with
the RG exponents yt and yh, respectively. These are the only
relevant RG-exponents: yt > 0 and yh > 0. In addition, there
are irrelevant RG exponents yi < 0. Below we summarize
results on irrelevant RG exponents given in the literature.
Following, for example, Ref. [4], Sec. 1.5.7, the nonlinear
scaling fields can be written as

ut = g01(D) t + g11(D) t2 + g12(D) h2 + O(t3, th2, h4),

(20)

uh = g02(D) h[1 + g12(D) t + g22(D) h2 + O(t2, th2, h4)],

(21)

where we define the reduced temperature as t = βc(D) − β.
Note that βc(D) and the coefficients gi j (D) depend on
N . In Appendix B, we show, however, that there is a fast
convergence as N → ∞. The external field is written as
�H = h �H0, where �H0 is a two-component unit vector. We have

introduced g01(D) and g02(D) to get the same function Fsing

for all values of D on the critical line. The scaling field of the
leading correction is

u3 = g13(D) + g23(D) t + g33(D) h2 + O(t2, th2, h4). (22)

The improved model is characterized by g13(D∗) = 0. Note
that in general g23(D∗) 
= 0 and g33(D∗) 
= 0. Also note that

D∗ depends on N , since g13(D) depends on N . For numerical
results, see Appendix B 3.

A. Irrelevant RG exponents

Let us briefly summarize results on RG exponents for the
three-dimensional XY -universality class given in the litera-
ture. Various methods give, at least qualitatively, a consistent
picture for the relevant RG eigenvalues yt and yh and the
leading irrelevant RG eigenvalue y3. Using scaling relations
(see, for example, Ref. [4], Secs. 1.3 and 1.5.1), these are
related with the critical exponents given in Table I as

yt = 1/ν, yh = d + 2 − η

2
, y3 = −ω. (23)

Scaling fields can be classified according to the symmetry
properties of the operators associated to them. The sim-
ple cubic lattice breaks the Galilean symmetries of con-
tinuous space. The leading correction associated has the
RG exponent yNR = −2.02(1) [12,15,30]. Note that in the
case of the three-dimensional Ising universality class, yNR =
−2.0208(12) given in Table I of Ref. [31] is in reasonable
agreement with yNR = −2.022665(28) that follows from 
 =
5.022665(28) for angular momentum l = 4 given in Table 2
of Ref. [16].

Results for subleading corrections are provided by differ-
ent incarnations of the renormalization group. Newman and
Riedel [32] studied the fixed point of the O(N ) invariant φ4

theory in three dimensions using the scaling field method.
They predict by using the scaling field method sublead-
ing corrections with y421 = −1.77(7) and y422 = −1.79(7),
which are nearly degenerate. For the meaning of the indices,
see Ref. [32]. In Refs. [12,15] the analysis of the data is
based on this result. Note that Newman and Riedel find
y422 = −1.67(11) in the case of the Ising universality class,
which is not confirmed by the conformal bootstrap method.
Instead, y′′ = −3.8956(43) is found; see the estimate related
to the operator ε′′ given in Table 2 of Ref. [16]. In fact,
the estimates for subleading correction exponents obtained
by the functional renormalization group (FRG) (see, for ex-
ample. Ref. [33]) are in better agreement with those of the
conformal bootstrap method. In Table 3 of Ref. [34], results
for correction exponents for a large range of N , where N
refers to the O(N ) symmetry of the theory, are given. The
qualitative picture is the same for all N and the numerical
values change slowly with varying N . Therefore, we regard
it as plausible that −3.5 � y′′ � −4 for the three-dimensional
XY universality class. Note that skipping corrections ∝ L−1.77

in the analysis of our data virtually does not change the central
values of the final results. Estimates of the error are reduced
by a factor of ≈2/3.

Finally, let us recall the results for the RG exponent
associated with a ZN invariant perturbation. The authors of
Ref. [5] obtain −yN = 0.128(6), 1.265(6), 2.509(7), 3.841(8),
5.278(9), 6.796(9), 8.399(10), 10.077(11), and 11.825(12)
for N = 4, 5, 6, . . . , 12, respectively. In the main part of
our study, we have simulated the (N + 1)-state clock model
for N = 8. For this value of N , we can ignore deviations
from O(2) invariance in the finite-size scaling analysis of our
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data as can be clearly seen from the analysis presented in
Appendix B 4.

B. The magnetic susceptibility and the energy density

The magnetic susceptibility at h = 0 for vanishing magne-
tization is

χ = − 2

V

∂2 f

∂h2

∣∣∣∣
h=0

= 1

V

〈(∑
x

�sx

)2〉
. (24)

Note that we have introduced a factor of 2 here to stay
consistent with the definition (13) above.

Let us define ũt = ut Lyt , ũh = uhLyh , and ũi = uiLyi . Now
let us compute the second partial derivative of f with respect
to h at h = 0:

∂2 f

∂h2

∣∣∣∣
h=0

= L−d ∂2Fsing

∂h2

∣∣∣∣
h=0

+ ∂2g

∂h2

∣∣∣∣
h=0

, (25)

where

L−d ∂2Fsing

∂h2

∣∣∣∣
h=0

= ∂Fsing

∂ ũt

∣∣∣∣
h=0

2 (g12(D) + · · · ) Lyt −d

+ ∂2Fsing

∂ ũ2
h

∣∣∣∣
h=0

(g02(D) [1 + g12(D) t + · · · ])2L2yh−d

+ · · · . (26)

There are also contributions stemming from partial derivatives
with respect to ũi. However, these are related with correction
exponents ε > 4 and therefore play little role in the analysis
of the data.

It remains to Taylor expand ∂2Fsing

∂ ũ2
h

|
h=0

and ∂Fsing

∂ ũt
|
h=0

in ũi.

We arrive at corrections that are proportional to Ly3 , L2y3 ,
L3y3 , . . ., LyNR , LyNR+y3 , . . ., Ly′′

, . . . . Note that for an improved
model, all terms with y3 in the exponent have a vanishing
amplitude, since u3 = 0. For an improved model, at the critical
point we get

χh=0,t=0,D=D∗ = aL2yh−d [1 + cNRLyNR

+ c′′Ly′′ + ct L
yt −2yh + · · · ] + b. (27)

Note that 2yh − d = 2 − η. The analytic background b can be
viewed as a correction with the RG exponent yb = η − 2 ≈
−1.962, which is close to yNR = −2.02(1). Also, the value of
yt − 2yh ≈ −3.473 is close to that of y′′.

The energy density, Eq. (12), is given by the first derivative
of the free energy with respect to t . At the critical point, we
get

∂ f

∂t

∣∣∣∣
t=0,h=0

= ∂Fsing

∂ ũt

∣∣∣∣
t=0,h=0

g01(D)Lyt −d + ∂Fsing

∂ ũ3

∣∣∣∣
t=0,h=0

× g23(D)Lyi−d + ∂g

∂t

∣∣∣∣
t=0,h=0

. (28)

It remains to Taylor expand ∂Fsing

∂ ũt
|
t=0,h=0

in ũi. We arrive at

E = E0 + aLyt −d (1 + cNRLyNR + c3Ly3−yt + c′′Ly′′ + · · · )
(29)

for an improved model at the critical point. Note that y3 −
yt ≈ −2.278 is only slightly smaller than yNR.

C. Phenomenological couplings

Cornerstones of our analysis are dimensionless quantities
which are also called phenomenological couplings. In the
following, we shall denote them by R, since in our case they
are ratios. The first quantity that we consider is the ratio of
partition functions. We get

ln
Za

Zp
= V ( fp − fa) = Fp,sing − Fa,sing, (30)

since the analytic background exactly cancels. Hence,

Za

Zp
= RZ (Lyt ut , Lyh uh, {Lyj u j}). (31)

In addition we study the cumulants

U2 j = 〈m2 j〉
〈m2〉 j

(32)

for j = 2 and 3. Here, we can build on the result obtained
above for the magnetic susceptibility. Also, 〈m2 j〉 can be com-
puted from partial derivatives of the free energy density with
respect to the external field h. The dominant contributions
stem from the derivatives of the singular part of the free energy
with respect to ũh and even derivatives of the singular part of
the free energy with respect to ũt . Hence,

U2 j = RU (Lyt ut , Lyh uh, {Lyi ui}) + aL−2yh+d

+ bL−2yh+yt + · · · . (33)

In the case of the second moment correlation length ξ2nd

divided by the linear lattice size L, we also expect corrections
that go back to the magnetic susceptibility. In addition, there
is a correction ∝ L−2 due to the construction of ξ2nd.

Taking the derivative of a phenomenological coupling with
respect to the reduced temperature t , we get

∂R

∂t

∣∣∣∣
h=0

= ∂R

∂ ũt

∣∣∣∣
h=0

[g01(D) + g11(D)t + · · · ] Lyt + ∂R

∂ ũ3

∣∣∣∣
h=0

× g23(D)Ly3 + · · · . (34)

At the critical point of an improved model,

∂R

∂t

∣∣∣∣
t=0,h=0,D=D∗

= aLyt (1 + cLyNR + · · · + d g23L−yt +y3 + · · · ), (35)

where we performed a Taylor expansion of ∂R
∂ ũt

and ∂R
∂ ũ3

with
respect to {ũi}.

D. Fixing the value of R

In the analysis of our data, we consider certain quantities at
a fixed value R f of a dimensionless quantity. This means that
for each lattice size L, we compute β f (D, L) defined by

R(β f (D, L), D, L) = R f . (36)
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Note that we have skipped the argument h, since h = 0
throughout. Making use of Eq. (31), we get

R(β f , D, L) = R∗ + a(D)(βc(D) − β )Lyt

+ · · · + c(D)Ly3 + · · · (37)

for R f ≈ R∗, where R∗ is the fixed point value of R. Hence,

β f (D, L) = βc(D) − a(D)−1(R∗ − R f )L−yt + · · ·
+ a(D)−1c(D)Ly3−yt + a(D)−1d (D)LyNR−yt + · · · .

(38)

Note that c(D∗) = 0. First, we consider a phenomenological
coupling R2 at a fixed value R1, f of an other phenomenological
coupling R1. One gets

R2(R1, f , D, L) = r2(R1, f , {ũi}) + c(R1, f , D)Ly3−yt

+ · · · + d (D)L2y3−yt + · · · , (39)

where c(R∗
1, D) = 0. Note that the corrections are due to the

fact that the ui depend on t ; see Eq. (22).
We also compute the magnetic susceptibility and the slope

of phenomenological couplings at R f . Plugging Eq. (38) into
Eqs. (26), (34), we see that compared with Eqs. (27) and (35)
additional correction terms proportional to (R f − R∗)L−yt ,
(D − D∗)L−yt +y3 and L−yt +yNR appear. Therefore, it is favor-
able to take R f ≈ R∗. In the numerical analysis, one should
vary R f to check the effect of a possible deviation from R∗.

IV. THE ALGORITHM

As in previous studies, for example, Refs. [12,15], we have
implemented a hybrid of local Metropolis updates, the single
cluster update [35], and the wall cluster update [21]. Now let
us discuss in detail these components of the algorithm and
their implementation.

A. Local Metropolis algorithm

As usual, in the elementary step of the local update, the
variable at a single site is changed, while all other variables
are kept fixed. Using these elementary updates, we go through
the lattice in typewriter fashion. Going through the lattice once
is called a sweep. We use two different ways to generate the
proposal for the local Metropolis update. In both cases, the
proposal {�s}′ is accepted with the probability

Pacc = min[1, exp(−
H )], (40)

where


H = H ({�s}′) − H ({�s}). (41)

The weight, Eq. (7), is taken into account by the probabilities
used to generate the proposal. The first choice is given by
the following probabilities: If �sx = (0, 0), we take with equal
probability one of the N values with |�s ′

x| = 1 as proposal.
Else, for |�sx| = 1, we always take �s ′

x = (0, 0) as the proposal.
For an efficient implementation, one should avoid com-

puting exp(.) for each update step. Instead, we should store
possible results in a table before the actual simulation is
started.

The sum of all nearest neighbor spins can take a number
of possible values that is too large to store exp(−
H ) effi-
ciently. Therefore, we tabulate instead the contribution to the
Boltzmann factor by pairs

B(m, n) = exp[β �s(m) · �s(n)] (42)

and its inverse B−1(m, n). Furthermore, exp(−D) and exp(D)
are computed once and are then stored. Then, for mx = 0,
where x is the site to be updated, we get

exp(−
H ) = exp(D)
∏

y.nn.x

B(m′
x, my), (43)

where the product runs over all nearest neighbors (nn) of x.
Note that B(0, n) = 1 for all values of n. For mx > 0, we get

exp(−
H ) = exp(−D)
∏

y.nn.x

B−1(mx, my). (44)

Since we were not able to prove the ergodicity of this algo-
rithm, we used in addition a second choice of the proposal. It
is generated independently of the old value of the variable.
With probability 1/2, we take �s ′

x = (0, 0) and with equal
probabilities 1/(2N ) one of the remaining values is chosen.
Here

exp(−
H ) = exp
(−D

[
�s 2

x − �s ′ 2
x

])
×

∏
y.nn.x

[B−1(mx, my)B(m′
x, my)]. (45)

This update takes more computer processing time than the
first. However, ergodicity is obvious.

B. Cluster algorithms

Cluster algorithms can be applied without major modifi-
cations compared with the ddXY model. We just have to note
that the reflection has to be chosen such that the field variables
remain in the allowed set of values. A reflection is given by

�s ′ = �s − 2(�r · �s )�r, (46)

where

�r = [cos(πm/N ), sin(πm/N )] (47)

with m = 0, 1, 2, . . . , N − 1. The cluster update is character-
ized by the delete probability [15,35]

pd (�sx, �sy) = min[1, exp(−2β[�r · �sx][�r · �sy])]. (48)

The values of pd are tabulated before the actual simulation
is started. For a discussion of the single cluster [35] and the
wall cluster update [21] used for the simulation of the ddXY
model, see Refs. [12,15].

C. The implementation

Our simulations are organized in a similar fashion as in
Refs. [12,15]. Since we could not store the results of all
measurements on hard disk, we performed a binning of the
data during the simulation.

During the study, we varied the precise composition of the
update cycle. In most of the simulations, the following cycle,
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given by a C code, is used:

for(i=0;i<N_bin;i{++})
{
Metropolis_2();
for(k=0;k<6;k{++})

{
Metropolis_1();
for(j=0;j<L;j{++}) single_cluster();
Metropolis_1();
wall_cluster(direction=k%3);
measurements();
}

}
Here Metropolis_1() and Metropolis_2() are sweeps,

using the first and second types of the Metropolis up-
date discussed in Sec. IV A. The single cluster up-
date is given by single_cluster() and wall_cluster
(direction=k%3) is a wall cluster update for one of the
three spacial directions. The plane is perpendicular to the
k axis. The position of the plane is randomly chosen in
{0, 1, 2, . . . , L − 1}. In order to compute Za/Zp, we need two
subsequent wall cluster updates, where the two reflection axes
are perpendicular. The first axis is chosen randomly among
the N possible directions.

We did run our program on standard x86 CPUs. For lack of
human time, we made no attempt to implement our program
on a graphics processing unit (GPU). For cluster algorithms
on GPUs, see, for example, Refs. [36,37].

Let us briefly comment on the CPU time required by the
different components of the update cycle. We performed the
simulations on various PCs and servers at the institute of
theoretical physics. Here, we quote numbers for a single core
of an Intel Xeon CPU E3-1225 v3 running at 3.20 GHz. We
implemented the code in standard C and used the SIMD-
oriented fast Mersenne twister algorithm [38] as random
number generator.

Our Metropolis update type 1 requires 1.2 × 10−8 s per
site. In the case of the single cluster update, about 3.8 × 10−8 s
per site are needed. Note that the random number generator re-
quires for one sequential access about 3 × 10−9 s. Compared
with our program for the ddXY model, these updates are faster
by roughly a factor of 3.

Plots were generated by using the MATPLOTLIB library [39].
The least square fits were performed by using the function
curve_fit() contained in the SCIPY library [40] with the de-
fault Levenberg-Marquardt algorithm [41–43]. The function
curve_fit() acts as a wrapper to functions contained in the
MINPACK library [44].

V. THE SIMULATIONS AND THE ANALYSIS OF THE DATA

We simulated the model for N = 8 at various values of
D, close to the inverse critical temperature βc(D). Most CPU
time is spend on simulations for D = 1.02, 1.05, and 1.07
which are close to D∗. We simulated linear lattice sizes up
to L = 512, where the statistics is decreasing with increasing
L. In Fig. 1, we plot the number of measurements times
the volume L3 as a function of the linear lattice size L for
D = 1.05 and 1.07. In the case of D = 1.02, the statistics

FIG. 1. We plot the number of measurements times the volume
L3 as a function of the linear lattice size L for N = 8 at D = 1.05 and
D = 1.07.

is similar but we have simulated at fewer lattice sizes in
the range L = 20 up to 80. In addition, we simulated at
D = −0.7, −0.5, 0, 0.45, 0.9, 1.24, and ∞. In these cases, we
considered linear lattice sizes up to L = 64, 64, 72, 72, 48, 48,
and 72, respectively. The main purpose of these simulations is
to determine the correction exponent ω. A few simulations
at D = −0.85, −0.86, and −0.87 are performed to obtain a
rough estimate of the tricritical point.

Our simulations were performed on various personal com-
puters and servers. In total, these simulations took the equiv-
alent of about 50 years of CPU time on a single core of an
Intel Xeon CPU E3-1225 v3 running at 3.20 GHz. Note that
the study was not systematically designed at the start but grew
with time, also depending on the availability of CPU time.

Let us briefly comment on the assessment of the error of
the final estimates for critical exponents and other quantities
of interest. In the ansätze, we can take into account only a
small number of correction terms. This inevitably leads to
systematic errors caused by corrections to scaling that are
not explicitly taken into account. A large χ2/d.o.f. indicates
that the ansatz is not adequate to represent the data. However,
when dealing with an ansatz that does not fully represent the
underlying function, a small χ2/d.o.f. and a corresponding
acceptable goodness of the fit say very little on the deviation
of the fit parameters from their true values. In order to get
some handle on systematic errors caused by corrections to
scaling that are not taken into account in the ansatz, we either
consider a number of different quantities or ansätze with a
different number of correction terms. The final estimate and
its error bar are chosen such that these different estimates are
covered. The actual choice, which fits and minimal lattice
sizes are taken into account, is at least partially an ad hoc
decision. To allow the reader an own assessment, the direct
outcome of fits is given in figures. We made no effort to give a
separate estimate of the statistical and systematical error, since
they are interwoven in our assessment.

The analysis of the data is organized in the following way:
First, we perform joint fits of our data for the dimensionless
quantities R for D = 1.02, 1.05, and 1.07. The results are
the fixed point values R∗ and estimates of the inverse critical
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temperatures. Next, we include values of D with a larger
amplitude of the leading correction to determine the exponent
ω. To this end, we analyze the cumulants U4 and U6 at a
fixed values of either Za/Zp or ξ2nd/L. Then we determine
D∗ focusing again on D = 1.02, 1.05, and 1.07. It follows a
rough localization of the tricritical point D∗. In the final step
of the analysis, we determine the critical exponents ν and η.
To this end, we analyze the finite-size scaling behavior, the
slopes of dimensionless quantities R, the energy density, and
the magnetic susceptibility.

A. The critical coupling βc and the fixed point
values of dimensionless ratios R∗

First, we determined the critical coupling βc(D) and the
fixed point values R∗ of the dimensionless quantities that we
have computed. To this end, we analyzed our data at D =
1.02, 1.05, and 1.07, which are close to D∗.

Motivated by Eqs. (31) and (33), we have fitted our data
with four different ansätze:

R(L, D, βc(D)) = R∗, (49)

R(L, D, βc(D)) = R∗ + b(D)L−ε1 , (50)

R(L, D, βc(D)) = R∗ + b(D)L−ε1 + c(D)L−ε2 , (51)

R(L, D, βc(D)) = R∗ + b(D)L−ε1 + c(D)L−ε2 + d (D)L−ε3 .

(52)

We need the phenomenological couplings R as a function of
the inverse temperature. To this end, we have used the Taylor
series around the value βs of the inverse temperature used in
the simulation. We have checked that βc and βs are sufficiently
close to avoid significant truncation effects. This way, for
example, Eq. (50) becomes

R(L, βs) = R∗ − c1(L, βs)(βc − βs) − c2(L, βs)

2!
(βc − βs)2

− c3(L, βs)

3!
(βc − βs)3, (53)

where R∗ and βc are the two parameters of the fit.
It turned out that fits with the ansatz (50) are not very

useful, since the amplitude of leading corrections is small
for the values of D considered here. Therefore, we shall not
discuss the results of the these fits in the following. Further-
more, we did not consider ansätze with ε2 = 2ω here, since
the amplitude of such corrections should be very small. This
will be verified below in Sec. V B. In the case of Za/Zp, we
have used in Eq. (51) the choices ε1 = 0.79 and ε2 = 2.02. In
Eq. (52), we used in addition either ε3 = 3.5 or ε3 = 4. Note
that below, in Sec. V B, we shall find ω = 0.789(4), Eq. (58).

We performed a preliminary analysis using different
parametrizations and choices of data sets. Based on this anal-
ysis, we decided to extract the final results in the following
way: We performed joint fits for the three values D = 1.02,
1.05, and 1.07, where we parametrize the amplitude of the
leading correction as

b(D) = bs(D − D∗) (54)

FIG. 2. We give the results for (Za/Zp)∗ fitting with the ansätze
(49), (51), and (52) with ε3 = 4, corresponding to fits 1, 3, and 4
in the legend of the figure, as a function of the minimal lattice size
Lmin that is included in the fit. Data for D = 1.02, 1.05, and 1.07 are
jointly fitted. The solid line gives our final estimate and the dashed
ones the corresponding error.

and the amplitudes of higher corrections, c(D) and d (D) are
assumed to be the same for all three values of D.

First, we analyzed the data for the ratio of partition func-
tions Za/Zp. In Fig. 2, we plot results for (Za/Zp)∗ of fits using
the ansätze (49), (51), and (52). We give only data points
with χ2/d.o.f. < 4. In the case of ansatz (49), we see that
χ2/d.o.f. decreases rapidly with increasing Lmin, where Lmin

is the minimal lattice size that is included into the fit. For
Lmin = 33, χ2/d.o.f. = 1.012 is reached. For ansatz (51), we
find χ2/d.o.f. = 0.986 already for Lmin = 9. As amplitude
of the correction ∝ L−2.02, we find c ≈ −0.07. For ansatz
(52) with ε3 = 4, we find χ2/d.o.f. = 0.972 for Lmin = 5. The
amplitude of the correction ∝ L−4 is d ≈ −1.6. Consistently
with ansatz (51), we find c ≈ −0.06. Using ε3 = 3.5 instead,
we get χ2/d.o.f. = 1.135 for Lmin = 5 and χ2/d.o.f. =
0.889 for Lmin = 7. For Lmin = 7, we get d = −0.85(4) and
c = −0.028(5). The fact that the amplitude of the correction
∝ L−ε3 is much larger than that of ∝ L−2.02 is surprising.

Our final estimate

(Za/Zp)∗ = 0.32037(6) (55)

is taken such that it is consistent with the results of the three
different ansätze. Note that we also varied the values of ε1

and ε2 within the range of the expected error bars. The results
of the fits change little. In a similar way, we arrive at the
estimates for D∗ and βc at D = 1.02, 1.05, and 1.07. These
estimates are given in Table III.

Next, we analyzed the data for the ratio ξ2nd/L and the
cumulants U4 and U6 in a similar way, taking into account that
also corrections ∝ Lη−2 might be present. The final results are
summarized in Table III.

The estimates for R∗ can be compared with (Za/Zp)∗ =
0.3203(1) [3], (ξ2nd/L)∗ = 0.5924(1) [3], U ∗

4 = 1.2431(1)
[1], and U ∗

6 = 1.7509(2) [7] given in Table I of Ref. [12].
These results were obtained by analyzing data obtained for
the two-component φ4 and the ddXY model on the simple
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TABLE III. In the first column, the phenomenological coupling is specified. In the second column, we give the corresponding estimates
of the fixed point values R∗. In the third column, we give the estimates of D∗, where leading corrections to scaling vanish. In the following
columns, the estimates of the inverse critical temperature βc for D = 1.02, 1.05, and 1.07 are given. These estimates are based on joint fits of
our data for D = 1.02, 1.05, and 1.07, as discussed in the text. In the last row, we give our final estimates of βc.

R R∗ D∗ βc(1.02) βc(1.05) βc(1.07)

Za/Zp 0.32037(6) 1.065(35) 0.56379620(8) 0.56082390(7) 0.55888342(7)
ξ2nd/L 0.59238(7) 1.075(25) 0.56379622(9) 0.56082391(8) 0.55888342(8)
U4 1.24296(8) 1.054(10) 0.56379626(8) 0.56082386(8) 0.55888335(10)
U6 1.75040(25) 1.054(10) 0.56379626(8) 0.56082386(8) 0.55888335(10)

0.56379622(10) 0.56082390(10) 0.55888340(10)

cubic lattice. In Ref. [12], the authors tried to distinguish
between statistical () and systematical [] error. We find a nice
agreement of the estimates, giving support to the hypothesis
that the improved (8 + 1)-state clock model shares the three-
dimensional XY universality class.

The estimates of D∗ and βc obtained from U4 and U6 are the
same up to the digits given here. In contrast, the differences
with the estimates obtained from Za/Zp and ξ2nd/L are of
similar size as the statistical errors. These differences are
likely due to subleading corrections that are not taken into
account in the ansätze. We find that the error of D∗ obtained
from Za/Zp or ξ2nd/L is larger than that of D∗ obtained from
U4 or U6. Below in Sec. V B 2, we give our final estimate of
D∗. In the last row of Table III, we give our final estimates
of βc, which are mainly based on the analysis of Za/Zp and
ξ2nd/L. The error bars are chosen such that the estimates
obtained from Za/Zp and ξ2nd/L, including their error bars are
covered. For the inverse critical temperature at the remaining
values of D, see Appendix A.

B. Corrections to scaling

In this section, we focus on corrections to scaling. To
this end, it is useful to consider the cumulants U4 and U6

at a fixed value of Za/Zp or ξ2nd/L [21]. In particular, we
take Za/Zp = 0.32037 and ξ2nd/L = 0.59238, which are our
estimates of the fixed point values of these quantities. This
means that U4 and U6 are taken at β f , where β f is chosen
such that either Za/Zp = 0.32037 or ξ2nd/L = 0.59238. In the
following, we denote a cumulant at a fixed value of Za/Zp or
ξ2nd/L by Ū . Taylor expanding Eq. (39), we get

Ū =Ū ∗ + b(D)L−ω + cb2(D)L−2ω + · · · + d (D)L−ω2 + · · ·
+ [ f (R f − R∗) + g(D − D∗)]L−1/ν−ω + · · · , (56)

where R denotes either Za/Zp or ξ2nd/L. Note that here f and
g are coefficients and not functions.

In Fig. 3, as a first step of the analysis, we plot U4 at
Za/Zp = 0.32037 for D = 0.45, 0.9, 1.05, 1.24, and ∞. We
have omitted D = 1.02 and 1.07 to keep the figure readable.
For D = 1.05, we see very little dependence of Ū4 on L,
which confirms that D = 1.05 is close to D∗. For D = ∞,
we find that Ū4 is increasing with increasing lattice size. It
is approaching the curve for D = 1.05. For D = 0.45, we see
that Ū4 is decreasing and the amplitude of the corrections is
roughly equal to that at D = ∞, but with the opposite sign.
Next, in Fig. 4, we plot U4 at Za/Zp = 0.32037 for D = −0.7,

−0.5, 0, and 0.45. Going to smaller values of D, much larger
amplitudes of the leading correction can be obtained than
for D → ∞. Still for D = −0.7, where the amplitude of the
corrections is the largest, the fixed point value is approached
as the lattice size increases. This indicates that D = −0.7 is
on the line of second-order phase transitions. Below, we shall
study the tricritical point, which is located at a smaller value
of D.

In the following, we determine the exponent of the leading
corrections ω and D∗, the value of D, where the amplitudes of
leading corrections vanish.

1. The correction exponent ω

We performed joints fits of our data for D = −0.7, −0.5,
0.0, 0.45, 0.9, 1.02, 1.05, 1.07, 1.24, and ∞. We used the
ansatz

Ū = Ū ∗ +
imax∑
i=1

ci[b(D)L−ω]i + dL−ε . (57)

In order to avoid ambiguity, we set c1 = 1. In most of our fits,
we used ε = 2. Furthermore, it is assumed that d does not
depend on D. At least for corrections due to the breaking of
the rotational invariance this should be a good approximation.
As a check, we also performed fits without the term dL−ε .
Since our final results are taken from fits with Lmin � 16, the

FIG. 3. We plot U4 at Za/Zp = 0.32037 for N = 8 at D = 0.45,
0.9, 1.05, 1.24, and ∞ as a function of the linear lattice size L.
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FIG. 4. We plot U4 at Za/Zp = 0.32037 for N = 8 at D = 0.45,
0.0, −0.5, and −0.7 as a function of the linear lattice size L.

term dL−ε has only a small effect. The free parameters of our
fits are Ū ∗, b(D), ci, ω, and d .

First, we fitted all data for all values of D listed above
that satisfy L � Lmin. Here, we performed fits with imax =
2, 3, 4, 5, 6. It turns out that the results for Ū ∗

4 , Ū ∗
6 , and ω

depend on imax. Let us focus the discussion on ω, which is
the most important quantity.

In Fig. 5, we plot the results obtained from fits with
imax = 3, 4, 5, and 6 of U4 at Za/Zp = 0.32037. We see that
the estimates of ω are increasing with increasing imax. For
imax = 5 and 6, the values saturate. In the plot, we give only
results that correspond to χ2/d.o.f. < 4. With increasing Lmin

the χ2/d.o.f. rapidly converge to χ2/d.o.f. ≈ 1. As our inter-
mediate result of this set of fits, we take ω = 0.7886(11) from

FIG. 5. We plot the estimates of the correction exponent ω ob-
tained by fitting U4 at Za/Zp = 0.32037 using the ansatz (57), where
all linear lattice sizes with Lmin � L are included. Data for N = 8 at
D = −0.7, −0.5, 0.0, 0.45, 0.9, 1.02, 1.05, 1.07, 1.24, and ∞ are
taken into account. The lines connecting the data points should only
guide the eye. The Lmin are slightly shifted for different fits to make
the figure readable.

imax = 5 and 6 at Lmin = 22. Performing a similar analysis for
U6 at Za/Zp = 0.32037, we arrive at ω = 0.7880(11).

As a check, we have repeated the analysis including fewer
values of D: D = 0.45, 0.9, 1.02, 1.05, 1.07, 1.24, and ∞.
Note that for D = 0.45 the amplitude of leading corrections
to scaling is, up to the sign, roughly the same as for D = ∞.
Since we have skipped the data with a large amplitude of
corrections to scaling, already fits with imax = 2 are consistent
with fits using imax = 3. As intermediate results, we quote
ω = 0.7896(8) for U4 and Lmin = 18 and ω = 0.7886(8) for
U6 and Lmin = 18.

Next, we analyzed U4 and U6 at ξ2nd/L = 0.59238. Our
intermediate results for ω are slightly smaller than those
obtained above. Furthermore, we see a stronger dependence
of the results on Lmin.

Taking all 10 values of D and Lmin = 26, we get ω =
0.7870(14) for U4 and 0.7862(14) for U6 as intermediate
result. Using only D � 0.45, we get ω = 0.7883(21) for
Lmin = 30 from U4 and imax = 2. Based on U6, we arrive at
ω = 0.7875(20).

As our final value, we quote

ω = 0.789(4). (58)

The central value is mainly given by the results obtain from U4

and U6 at Za/Zp = 0.32037, since here the estimates depend
less on Lmin than it is the case for fixing ξ2nd/L = 0.59238.
The error bar is chosen such that also the intermediate results
obtain for fixing ξ2nd/L = 0.59238 are covered.

2. Locating D∗

Next, we estimate the value D∗ of D, where leading cor-
rections to scaling vanish. To this end, we focus again on the
neighborhood of D∗ and include only data for D = 1.02, 1.05,
and 1.07 into the analysis. Since the values of b(D) are small,
we have omitted terms with L−nω and n � 2. We made no
attempt to discriminate the terms L2−η and L−ωNR in our fits.
Hence, we used a single term with an exponent ε2 ≈ 2. We
used the ansätze

Ū (L, D) = Ū ∗ + b(D)L−ε1 , (59)

Ū (L, D) = Ū ∗ + b(D)L−ε1 + c(D)L−ε2 , (60)

Ū (L, D) = Ū ∗ + b(D)L−ε1 + c(D)L−ε2 + d (D)L−ε3 . (61)

Since the values of D differ little, we performed fits where c
and d are the same for all values of D. Furthermore, b(D) =
b′(D − D∗), where b′ and D∗ are the free parameters.

First, we analyzed U4 at Za/Zp = 0.32037. We performed
fits without subleading corrections, with one subleading cor-
rection term and with two subleading correction terms. In
the case of one subleading correction term, we used the two
choices ε2 = 1.962 and ε2 = 2.02.

Our estimate of the parameter b′ for U4 at Za/Zp = 0.32037
and ε1 = ω = 0.789 fixed is b′ = −0.121(5). In Fig. 6, we
plot Ū4 + 0.121(D − 1.06)L−0.789. We find that the data for
D = 1.02, 1.05, and 1.07 nicely collapse. This fact shows that
our approximations of b, c, and d are adequate.

In Fig. 7, we plot estimates of D∗ obtained by fitting U4 at
Za/Zp = 0.32037 with the ansätze (59)–(61).
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FIG. 6. We plot U4(Za/Zp = 0.32037) + 0.121(D −
1.06)L−0.789 for N = 8 at D = 1.02, 1.05, and 1.07. Note that
we have shifted the values of L for D = 1.02 and 1.07 to make the
figure readable.

Analyzing U4 at ξ2nd/L = 0.59238, we get a very similar
result. Overall, the estimates of D∗ are shifted by about 0.005
compared with Za/Zp = 0.32037. As our final estimate, we
quote

D∗ = 1.058(13) (62)

that covers both the preliminary estimates obtained from fix-
ing Za/Zp = 0.32037 and ξ2nd/L = 0.59238. For a discussion
of the dependence of D∗ on N , see Appendix B 3.

3. The tricritical point

The model undergoes a first-order phase transition for D <

Dtri. We performed preliminary simulations for a number of
D < D∗ to roughly locate Dtri. In Fig. 8, we plot the Binder
cumulant U4 at Za/Zp = 0.32037 for D = −0.85, −0.86, and

FIG. 7. We plot estimates of D∗ obtained from fits of U4 at
Za/Zp = 0.32037 for N = 8 at D = 1.02, 1.05, and 1.07 as a function
of the minimal lattice size Lmin taken into account. The ansätze (59)–
(61) are used. The corresponding correction exponents are given in
the legend. Our preliminary estimate D∗ = 1.055(10) is indicated by
the straight solid line. The dashed lines give the error bar.

FIG. 8. We plot the Binder cumulant U4 at Za/Zp = 0.32037 for
N = 8 at D = −0.85, −0.86, and −0.87 for linear lattice sizes 8 �
L � 48. The lines connecting the data points should only guide the
eye.

−0.87, which are close to our preliminary estimate of Dtri. For
D = −0.87, the Binder cumulant is increasing with increasing
lattice size for the lattice sizes studied. It seems plausible that
this behavior extends to larger lattice sizes. In contrast, for
D = −0.86, and more clearly for −0.85, the Binder cumulant
increases for small lattice sizes, while it decreases for larger
ones. We conclude that −0.87 < Dtri < −0.86.

C. The critical exponent ν

We compute the exponent ν = 1/yt from the derivative of
a dimensionless quantity Rj with respect to β at a fixed value
of a second quantity Ri, where Rj and Ri might be the same.
Following the discussion of Sec. III, these slopes behave as

S̄R,i, j = ∂Rj

∂β

∣∣∣∣
Ri=Ri, f

= aLyt [1 + bL−ω + · · · + cL−ωNR + · · · ]. (63)

We construct improved slopes by multiplying S̄R,i, j with a
certain power p of the Binder cumulant Ū4:

S̄R,imp = S̄RŪ p
4 , (64)

where both S̄R and Ū4 are taken at Ri, f . The exponent p is cho-
sen such that, at the level of our numerical accuracy, leading
corrections to scaling are eliminated. This idea is discussed
systematically in Ref. [25]. To determine p, we consider the
pairs (D1, D2) = (0.9, 1.24) and (0.45,∞). These pairs are
chosen such that the amplitude of leading corrections has
roughly the same modulus, but opposite sign. We fit ratios of
S̄R,i, j and Ū4 with the ansätze

S̄R,i, j (D1)

S̄R,i, j (D2)
= aS (1 + bSL−ε1 ) (65)

and

Ū4(D1)

Ū4(D2)
= 1 + bU L−ε1 , (66)
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TABLE IV. Numerical result for the exponents p that eliminate
leading corrections to scaling in SR, Eq. (64).

Fixing\Slope of Za/Zp ξ2nd/L U4 U6

Za/Zp = 0.32037 0.95(3) 0.30(4) −2.22(7) −3.74(7)
ξ2nd/L = 0.59398 0.60(4) 0.41(4) −2.36(6) −3.86(6)

where we fixed ε1 = 0.789. The exponent p is given by

p = − bS

bU
. (67)

In Table IV, we give our final results for p. These are
taken from fits for (D1, D2) = (0.9, 1.24) and Lmin = 18.
The statistical error is dominated by Eq. (65). In Table IV,
we give the statistical error only. Our numerical results ob-
tained for (D1, D2) = (0.45,∞) are consistent. In the case of
(D1, D2) = (0.45,∞) we also used fits with one additional
correction term. Note that the results for the exponent p
change very little when we vary ε1 within the error bars of
Eq. (58).

As a check, we have computed the RG exponent yt for D =
∞ using the ansatz S̄R = aLyt (1 + cL−2). Taking the data for
S̄R,imp, we get estimates that are consistent with our final result
obtained below. In contrast, fitting S̄R without improvement,
the results differ clearly and depend on the dimensionless ratio
R that is considered.

1. Statistical errors

In the case of the slopes SR, we find a moderate reduction
of the statistical error when computed at Za/Zp = 0.32037 or
ξ2nd/L = 0.59238 instead of β ≈ βc. It is of the order of a
few percent. In contrast, for the magnetic susceptibility that
we discuss below, we find a significant reduction. The relative
statistical error of the slope of Za/Zp and ξ2nd/L is roughly
the same. For U4 and U6 for L = 32, it is about twice as
large as for Za/Zp and ξ2nd/L. With increasing lattice size,
this ratio is shrinking. For L = 512, roughly a factor of 1.8
remains. In general, there is a degradation with increasing
lattice size. For example, the product of statistics times the
square of the relative statistical error increases for the slope of
ξ2nd/L by a factor of 2.4, going from L = 32 to 512. Since
we performed a binning of the data during the simulation,
we cannot disentangle whether this is due to an increasing
autocorrelation time or an increasing variance.

2. Our final estimate of yt

The idea of using improved derivatives at D ≈ D∗ is that
leading corrections are highly suppressed and they can be
ignored safely. In order to obtain our final estimate of ν,
we perform joint fits of our data obtained for D = 1.05 and
D = 1.07. We use the ansätze

S̄R = a(D)Lyt , (68)

S̄R = a(D)Lyt (1 + cL−ε1 ), (69)

where ε1 ≈ 2. This choice is motivated by the fact that we
expect corrections with the exponents 2 − η, ωR ≈ 2.02, and

FIG. 9. Estimates of the RG exponent yt obtained from fitting
the improved slopes of U4, Za/Zp, and ξ2nd/L at ξ2nd/L = 0.59238 for
N = 8 at D = 1.05 and 1.07 as a function of the mininal linear lattice
size Lmin that is taken into account. The ansatz (69) is used. To make
the figure readable, we shifted the values of Lmin by −0.3 and 0.3, for
two of the fits. The straight solid line gives our preliminary estimate
obtained from the improved slopes at ξ2nd/L = 0.59238. The dashed
lines indicate our preliminary error estimate.

−yt + ω ≈ 2.278 and larger ones. Our final estimates are
based on fits with a single correction exponent.

In Fig. 9, we give the results of such fits for fixing
ξ2nd/L = 0.59238. The results obtained from the slope of U6

are not plotted, since they are similar to those of U4. For
Za/Zp, we get χ2/d.o.f = 0.871 with Lmin = 15. For ξ2nd/L,
we get χ2/d.o.f = 1.000 with Lmin = 20. For U4, we get
χ2/d.o.f = 0.815 already for Lmin = 7. The estimates of yt

obtained from the improved slopes of the three different quan-
tities are consistent starting from Lmin ≈ 18. Furthermore,
the estimates are increasing with increasing Lmin up to about
Lmin = 23. For Lmin = 23, from the slopes of Za/Zp and ξ2nd/L
we read off our preliminary result, yt = 1.48878(12).

In Fig. 10, we give the results of such fits for fixing
Za/Zp = 0.32037. In the case of ξ2nd/L, we get χ2/d.o.f =
1.064 for Lmin = 15. For Za/Zp, we get χ2/d.o.f = 0.963
with Lmin = 10. In the case of U4, we get χ2/d.o.f = 0.899
for Lmin = 8. Despite this fact, fully consistent results for yt

among the three quantities are only reached for Lmin ≈ 23.
Our preliminary result yt = 1.48880(13) is based on the fits
of the slope of Za/Zp and ξ2nd/L for Lmin = 23. In Fig. 10, it is
indicated by a straight line. The dashed lines give our estimate
of the error.

Taking into account both the results from fixing ξ2nd/L =
0.59238 and Za/Zp = 0.32037, we arrive at

yt = 1.48879(14). (70)

The error bar covers both preliminary estimates, including
their respective error bars. For the critical exponent of the
correlation length, we quote ν = 0.67169(7). We repeated
the fits using the ansatz (69) for fixing Za/Zp = 0.32 and
0.321, ξ2nd/L = 0.592, and ξ2nd/L = 0.593. The variation of
the results for yt is well below the error quoted in Eq. (70).
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FIG. 10. Estimates of the RG exponent yt obtained from fitting
the improved slopes of U4, Za/Zp, and ξ2nd/L at Za/Zp = 0.32037
for N = 8 at D = 1.05 and 1.07 as a function of the minimal linear
lattice size Lmin that is taken into account. The ansatz (69) is used.
To make the figure readable, we shifted the values of Lmin by −0.3
and 0.3, for two of the fits. The straight lines indicate our preliminary
result and its error estimate.

Finally, in Fig. 11, we show results obtained from fits with-
out corrections (68). Here, we have fixed ξ2nd/L = 0.59238.
Fixing Za/Zp = 0.32037 gives similar results. We see that
the different estimates of yt become consistent starting from
Lmin � 60. As an estimate, we read off yt = 1.48875(45)
corresponding to ν = 0.6717(2), which is consistent with the
estimate given above, Eq. (70), but less precise.

D. The energy density at the critical point

We analyzed the energy density, Eq. (12), at our estimates
of βc for D = 1.05 and 1.07. Here, we do not consider a

FIG. 11. Estimates of the RG exponent yt obtained from fitting
the improved slopes of U4, Za/Zp, and ξ2nd/L at ξ2nd/L = 0.59238
for N = 8 at D = 1.05 and 1.07 as a function of the minimal linear
lattice size Lmin that is taken into account. The ansatz (68) is used. To
make the figure readable, we shifted the values of Lmin by −0.3 and
0.3, for two of the slopes.

FIG. 12. Estimates for yt obtained from analyzing the energy
density. We fitted the data by using the ansätze (71)–(73). The
corresponding correction exponents are given in the legend. Lmin is
the minimal linear lattice size that is included in the fits. Data for
N = 8 at D = 1.05 and 1.07 are taken into account. For comparison,
we give the estimate of yt obtained in the previous section by a
straight solid line. The dashed lines give the error bar.

fixed value of Za/Zp or ξ2nd/L since this would generate
contributions ∝ (β f − βc) from the analytic background of
the energy density. Based on Eq. (29), we fitted our data by
using the ansätze

E = E0 + aL−d+yt , (71)

E = E0 + aL−d+yt (1 + cL−ε1 ), (72)

E = E0 + aL−d+yt (1 + cL−ε1 + dL−ε2 ), (73)

where ε1 = 2.02 and ε2 = yt + ω ≈ 2.278. In our joint fits
for D = 1.05 and 1.07, E0(1.05) and E0(1.07) are both free
parameters of the fit. The same holds for a(1.05) and a(1.07).
In contrast, we set c(1.05) = c(1.07) and d (1.05) = d (1.07).
In the case of the ansatz (71), we find χ2/d.o.f. = 0.680 for
Lmin = 15. In the case of the ansatz (72), we get χ2/d.o.f. =
0.798 for Lmin = 8. For the ansatz (73), we get χ2/d.o.f. =
0.931 with Lmin = 5. Our results for the RG exponent yt are
shown in Fig. 12. For comparison, we give the result obtained
in the previous section by the solid horizontal line. The
estimates of yt obtained from the energy density are consistent
with those obtained from the slopes of dimensionless ratios
but a little less precise. Therefore, we abstain from giving a
final estimate of yt based on the analysis of this section.

E. Exponent η from the behavior of the magnetic susceptibility χ

As observed in previous work [21], we find that the statis-
tical error of χ is reduced, when computed at a fixed value
of a phenomenological coupling compared with the error at
a given value of β ≈ βc. Comparing U4, Za/Zp, and ξ2nd/L,
we find that the reduction is clearly the largest for fixing
ξ2nd/L = 0.59238. For example, for D = 1.07 and L = 512
we find a reduction of the statistical error by a factor of about
3.3 compared with χ at β = 0.55888340. This factor is slowly
increasing with increasing lattice size.
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FIG. 13. Estimates of the critical exponent η obtained from
fitting the improved magnetic susceptibility χimp at Za/Zp = 0.32037
for D = 1.05 and 1.07 as a function of the minimal linear lattice size
Lmin that is taken into account. The ansätze (76) and (77) are used.
To make the figure readable, we shifted the values of Lmin by −0.3
and 0.3, for two of the fits.

Also, here we analyzed the improved quantities

χ̄imp = χ̄Ū p
4 , (74)

where both χ and U4 are taken either at Za/Zp = 0.32037
or ξ2nd/L = 0.59238. We computed the exponent p in a way
similar to that in the previous section for SR. Therefore, we
skip a detailed discussion and only report our results: p =
−0.97(2) and −0.45(1) for Za/Zp = 0.32037 and ξ2nd/L =
0.59238, respectively.

We fitted our data with the ansätze

χ̄imp = aL2−η, (75)

χ̄imp = aL2−η + b, (76)

χ̄imp = aL2−η(1 + cL−ε2 ) + b. (77)

In the case of Eq. (77), we fixed either ε2 = 2.02 or ε2 = 4.
Let us first discuss the analysis of the data for Za/Zp =

0.32037 fixed. In Fig. 13, we plot our estimates of η obtained
by using the ansätze (76) and (77). In Fig. 13, the analytic
background is indicated by ε1 = 2 − η. In the case of ansatz
(76), we find χ2/d.o.f. = 0.899 for Lmin = 16. For the ansatz
(77), χ2/d.o.f. is less than one starting from Lmin = 11 and 8
for ε2 = 2.02 and ε2 = 4, respectively. As our preliminary
estimate, we take η = 0.03812(6). Fitting without correction
term, Eq. (75), χ2/d.o.f. = 0.95 is reached for Lmin = 40.
However, the estimates of η are further increasing with in-
creasing Lmin. For Lmin = 96, the estimates seem to level off.
We get η = 0.03813(15) for Lmin = 96.

Next, we turn to ξ2nd/L = 0.59238. In Fig. 14, we plot
our estimates of η obtained by using the ansätze (76) and
(77). In the case of ansatz (76), we find χ2/d.o.f. = 1.053
for Lmin = 18. For the ansatz (77), χ2/d.o.f. is approxi-
mately one starting from Lmin = 18 and 14 for ε2 = 2.02 and
ε2 = 4, respectively. As our preliminary estimate, we take
η = 0.03808(3). Fitting without correction term, Eq. (75),

FIG. 14. Estimates of the critical exponent η obtained from fit-
ting the improved magnetic susceptibility χimp at ξ2nd/L = 0.59238
for D = 1.05 and 1.07 as a function of the minimal linear lattice size
Lmin that is taken into account. The ansätze (76) and (77) are used.
To make the figure readable, we shifted the values of Lmin by −0.3
and 0.3, for two of the fits.

χ2/d.o.f. = 1.336 is reached for Lmin = 64. For Lmin = 96,
we get η = 0.03808(7).

We also analyzed the data for χ without improvement,
Eq. (74). We do not report the results in detail. They are
consistent with those reported above.

As our final result, we quote

η = 0.03810(8), (78)

which is chosen such that the results obtained by using
the ansätze (76) and (77) for fixing Za/Zp = 0.32037 and
ξ2nd/L = 0.59238 are covered. As the last check, we repeated
the fits using the ansatz (76) for fixing Za/Zp = 0.32 and
0.321, ξ2nd/L = 0.592, and ξ2nd/L = 0.593. The variation of
the results for η is well below the error quoted in Eq. (78).

VI. SUMMARY AND CONCLUSIONS

We have studied a generalized clock model on the simple
cubic lattice by using a finite-size scaling analysis. In the
case of the N-state clock model, for N � 5, at the critical
point, with increasing length scale, the ZN symmetry is en-
hanced to O(2); see, for example, Ref. [6]. In the general-
ized model, denoted by (N + 1)-state clock model, (0,0) is
added as allowed value of the spin. The parameter D, which
controls the relative weight of (0,0), can be tuned such that
the amplitude of leading corrections to scaling vanishes. We
were aiming at accurate estimates of critical exponents for
the three-dimensional XY universality class. Our motivation
to study the (N + 1)-state clock model is that the simulation
requires less computer processing time and less memory than
that of a model with O(2) symmetry at the microscopic level.

In the main part of our study, we considered N = 8. The
RG exponent related with a Z8 symmetric perturbation of the
O(2) invariant fixed point takes the value yN=8 = −5.278(9)
[5]. Hence, deviations from O(2) symmetry vanish rapidly
with increasing lattice size and can be ignored in the finite-size
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analysis of the data. For N = 8, we find even for critical
temperatures, which depend on the microscopic details of
the model, only little differences compared with the N → ∞
limit. For a detailed discussion, see Appendix B. In total, we
have spend the equivalent 50 years of computer processing
time on a single core of a Intel Xeon CPU E3-1225 v3 running
at 3.20 GHz.

Simulating the model for a large range of the parameter
D, we determined the exponent of the leading correction
ω = 0.789(4) accurately. We located the tricritical point in
the phase diagram. The corresponding −0.87 < Dtri < −0.86
is clearly smaller than D∗ = 1.058(13), where the amplitude
of the leading correction vanishes. Focusing on the neighbor-
hood of D∗, we obtain η = 0.03810(8) and ν = 0.67169(7),
which are consistent with but more accurate than previous
Monte Carlo results [12,13]. The discrepancy with the exper-
iments on the λ transition of 4He [8–10] is not dissolved.

We determined the inverse of the critical temperature βc for
various values of D accurately. This is important information
for future studies. We plan to compute two- and three-point
functions at criticality on large lattices, similar to what was
done in Ref. [28], in order to get estimates for operator product
expansion coefficients.

One might also study the low-temperature phase of the
improved (N + 1)-state clock model. The consequences of the
fact that a ZN -symmetric perturbation of the O(2) symmetric
fixed point is dangerously irrelevant in the low-temperature
phase are debated in the literature, as can be seen in Ref. [45]
and references therein.
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APPENDIX A: THE INVERSE CRITICAL TEMPERATURE
FOR N = 8

Here, we compute βc for those values of D that are not
considered in Sec. V A. To this end, we analyze the behavior
of Za/Zp and ξ2nd/L. We fit our data with the ansätze

R(βc) = R∗ + bL−ε, (A1)

R(βc) = R∗ + bL−ε + cL−2ε, (A2)

R(βc) = R∗ + bL−ε + cL−2ε + dL−3ε, (A3)

using ε = 0.789. As in Sec. V A, we compute R(β ) by using
its Taylor expansion around βs up to the third order. The
free parameters of the fits are βc, b, c, and d . R∗ is fixed
by the numerical results obtained in Sec. V A. Our results
for Za/Zp = 0.32037 are summarized in Table V. The results
obtained for ξ2nd/L = 0.59238 are compatible.

APPENDIX B: THE N DEPENDENCE OF THE INVERSE
CRITICAL TEMPERATURE AND D∗

1. The Caley tree

In order to get a first idea, we have computed numerically
βc for the model put on a Caley tree with the coordination
number z = 6. The phase transition is of mean-field type.

TABLE V. We give our numerical result for the inverse critical
temperature βc for N = 8 at the values of D not considered in
Sec. V A. Here, we use (Za/Zp)∗ = 0.32037(6). The number given
in [] is the error due to the uncertainty of (Za/Zp)∗.

D βc

∞ 0.45416467(10) [7]
1.24 0.54365020(30) [10]
0.9 0.57645235(30) [11]
0.45 0.63625739(10) [8]
0.0 0.7191494(3) [1]
−0.5 0.8423571(7) [1]
−0.7 0.9008977(10) [1]

However, βc for the Caley tree should be a better approxima-
tion of βc for the three-dimensional model than simple mean
field.

For given values of D and β > βc, we computed the
magnetization. Estimates of the inverse critical temperature
are obtained by solving

m = c(β − βc)1/2 (B1)

for two different values of β with respect to c and βc. Itera-
tively, we diminish β − βc until corrections to Eq. (B1) can
be ignored. This way, we obtain the critical temperature up to
about 10 accurate digits.

We computed βc for D = ∞, 1.0, and 0.0 and N = 5,
6, . . . , 12. Our results are given in Table VI. We find that,
at the level of our precision, the results are identical starting
from N = 10 for D = ∞ and D = 1. For D = 0, this holds
starting from N = 11. Deviations from the limit N → ∞
seem to increase with decreasing D. The approach N → ∞
is compatible with an exponential decay with a large, D-
dependent, decay rate.

2. N dependence of βc: Three-dimensional model

We performed simulations for N 
= 8 for a small number
of lattice sizes. We determined β f ,Za/Zp=0.32037, where Za/Zp =
0.32037, and β f ,ξ2nd/L=0.59238, where ξ2nd/L = 0.59238. Since
the difference of βc for different values of N is essentially
related to the microscopic details of the model at small scales,
we expect that differences or ratios of β f obtained for moder-
ate lattice sizes are good approximations of the differences or
ratios of βc. Note that Za/Zp is only defined for even values of

TABLE VI. We give our numerical result for the inverse critical
temperature βc,Caley for the Caley tree with coordination number
z = 6.

N \ D ∞ 1 0

5 0.4081307306 0.5224090169 0.6890295689
6 0.4082712294 0.5227444788 0.6898803344
7 0.4082770202 0.5227621638 0.6899394147
8 0.4082772183 0.5227629375 0.6899428166
9 0.4082772241 0.5227629665 0.6899429844
10 0.4082772243 0.5227629675 0.6899429916
11 0.4082772243 0.5227629675 0.6899429919
12 0.4082772243 0.5227629675 0.6899429919
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TABLE VII. We give our numerical estimates for the ratio
r = βc,N=8/βc,N obtained from β f ,Za/Zp=0.32037 and β f ,ξ2nd/L=0.59238. In
addition, results based on Ref. [45] are reported.

D N Za/Zp = 0.32037 ξ2nd/L = 0.59238 Ref. [45]

∞ 5 1.001442(5)
∞ 6 1.00007847(22) 1.00007837(20) 1.000075(5)
∞ 7 1.00000362(21)
∞ 10 1.00000015(21) 0.99999984(20)

1.07 6 1.00017147(32) 1.00017141(29)
1.07 7 1.00000946(15)
1.07 12 0.99999938(16) 0.99999947(16)

1.02 6 1.0001772(3) 1.0001769(3)

N . We study the ratio

r(L) = β f ,N=8(L)

β f ,N (L)
. (B2)

As discussed in Sec. III, there is an N dependence of all scal-
ing fields. In particular, there should be a dependence, albeit
small, of the scaling field related to the leading correction to
scaling. Therefore, we expect that

r(L) = βc,N=8

βc,N
+ cL−ε + · · · . (B3)

where ε = 1/ν + ω is the exponent related with the leading
correction. We performed simulations for D = ∞, 1.07, and
D = 1.02. Let us first discuss our results for D = ∞. For
N = 6, we simulated the linear lattice sizes L = 32, 36, and
40. The ratios, Eq. (B2), for these three lattice sizes are
consistent within their error bars. The average is given in
Table VII. For N = 7, we simulated the lattice sizes L = 36
and 40. For N = 10, we simulated the lattice sizes L = 32,
40, and 48. Also for these two values of N , the averages are
given in Table VII. In addition, we make use of the estimates
1/βc,N=5 = 2.20502(1) and 1/βc,N=6 = 2.20201(1) reported
in Ref. [45]. Note that for N = 6, the result of Ref. [45] is fully
consistent with ours. Similar to the Caley tree approximation,
we see a rapid convergence of βc,N with N → ∞. Already
for N = 8 and 10, we cannot find a difference at our level of
accuracy. Extrapolating the ratios for smaller values of N , we
get βc,N=8/βc,9 ≈ 0.99999985. At our level of precision, the
same ratio holds for all N � 9. Using this estimate, we arrive
at βc,XY = 0.45416474(10) [7]. In Table VIII, we summarize
estimates of βc,XY given in the literature.

Next, let us discuss the results for D = 1.07. Here, we
simulated the linear lattice sizes L = 64 for N = 6, L = 32,
40, 48, and 64 for N = 7 and L = 48 and 64 for N = 12.
The averages of the ratios of β f are reported in Table VII.
Similar to D = ∞, we see a rapid convergence of βc,N , which
is, however, slightly slower than it is the case for D = ∞.
In particular, our estimate for βc,N=8/βc,N=12 differs from 1
by about 3.6 times the error bar. Extrapolating the results for
N < 8, we arrive at βc,N=8/βc,N>8 ≈ 0.9999995.

Finally, for D = 1.02, we have simulated L = 4, 5, . . . ,
14, 16, 18, 20, and 64 for N = 6. These simulations were
performed at an early stage of the study, mainly to determine
the correction exponent y6. Here, we see a dependence of the

TABLE VIII. We summarize results from the literature for the
inverse critical temperature of the XY model on the simple cubic
lattice.

Ref. Year βc

[46] 2005 0.4541655(10)
[12] 2006 0.4541652(5)[6]
[47] 2012 0.45416313(20)
[47] 2012 0.45416742(12)
[37] 2014 0.4541664(12)
[13] 2019 0.45416466(10)

This work 2019 0.45416474(10)[7]

ratio r, Eq. (B2), on the lattice size L. First, we analyzed
the results obtained for β f ,Za/Zp=0.32037. We fitted our data with
the ansatz

r(L) = a + cL−ε, (B4)

using the numerical value ε = 1/ν + ω = 2.27779. In-
cluding data with L � 8, we get a = 1.0001772(3), c =
0.00155(12), and χ2/d.o.f. = 0.70. The analysis of the data
for β f ,ξ2nd/L=0.59238 gives very similar results. Our final esti-
mates are given in Table VII.

3. N dependence of D∗

As discussed in Sec. III, the value of D∗ depends on N . To
get a numerical estimate, we analyze the Binder cumulant Ū4

at either Za/Zp = 0.32037 or ξ2nd/L = 0.59238 at values of D
close to D∗.

First, we estimate the slope of the correction amplitude
close to D∗ for N = 8 by fitting the data with the ansatz

Ū4(N = 8, D = 1.07) − Ū4(N = 8, D = 1.02) = bd L−ω,

(B5)
where we have fixed ω = 0.789, or

Ū4(N = 8, D = 1.07) − Ū4(N = 8, D = 1.02)

= bd L−ω + cd L−2. (B6)

In the following, we assume that the dependence of

db

dD

∣∣∣∣
D=D∗

≈ bd

0.05
(B7)

on N can be ignored. We get bd = −0.00616(10) for fix-
ing Za/Zp = 0.32037 and bd = −0.00705(16) for fixing
ξ2nd/L = 0.59238.

In the second step, we analyze how Ū4 changes with N at a
fixed value of D. To this end, we define


U (N1, N2, D) = Ū4(N1, D) − Ū4(N2, D), (B8)

where here N2 = 8. We fitted our data with the ansätze


U (N1, N2, D) = 
b(N1, N2, D)L−ω, (B9)

where we have fixed ω = 0.789 and


U (N1, N2, D) = 
b(N1, N2, D)L−ω + 
c(N1, N2, D)L−ε,

(B10)
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where we fixed ε = 2. In the case of N1 = 6, we used in
addition ε = 2.4. The shift in D∗ is given by

D∗(N1) − D∗(8) ≈ −
b(N1, 8, D)
0.05

bd
. (B11)

For the purpose of this section, we have simulated the
linear lattice size L = 4, 5, 6,..., 16 for N = 10 at D = 1.07
with a statistics similar to that for N = 8. It turns out that

U (10, 8, 1.07) is compatible with zero for most of the lattice
sizes. Fitting the data for L � 8 with the ansatz (B9), we get

b(10, 8, 1.07) = −0.000004(10) and −0.000012(10) for
fixing Za/Zp = 0.32037 and ξ2nd/L = 0.59238, respectively.
Fitting with the ansatz (B10), the estimates stay compatible
with zero, but with a larger error bar. Taking also these results
into account, we conclude that |D∗(10) − D∗(8)| � 0.0005.

Next, we have analyzed our data for N = 6 and D =
1.02. Taking into account the results of the fits using dif-
ferent ansätze, we arrive at 
b(6, 8, 1.02) = 0.00163(6) for
fixing Za/Zp = 0.32037 and 
b(6, 8, 1.02) = 0.00198(13)
for fixing ξ2nd/L = 0.59238. Plugging in the numbers into
Eq. (B11), we arrive at D∗(6) − D∗(8) = 0.0132(5) and
0.0140(10), for fixing Za/Zp = 0.32037 or ξ2nd/L = 0.59238,
respectively. As our final result, we take

D∗(6) − D∗(8) = 0.0136(14), (B12)

covering both the results for fixing Za/Zp = 0.32037 and for
fixing ξ2nd/L = 0.59238.

Assuming that D∗(N ) converges rapidly to D∗(∞), we
conclude that |D∗(N ) − D∗(8)| for N > 8 is much smaller
than the error of D∗(8), Eq. (62). It seems plausible that
D∗(7) − D∗(8) is smaller than D∗(6) − D∗(8) computed
above. Likely |D∗(5) − D∗(8)| is considerably larger than the
error of D∗(8) and an effort beyond that of this section is
required to obtained an accurate estimate of D∗(5).

4. N dependence of the magnetic susceptibility
and the slope of dimensionless quantities

Finally, we have studied the dependence of quantities that
we used to compute the critical exponents ν and η on N .
In particular, we consider the magnetic susceptibility and the
slopes of dimensionless quantities at either Za/Zp = 0.32037
or ξ2nd/L = 0.59238. Let us discuss the results obtained for
the susceptibility. Those for the slopes of dimensionless quan-
tities are qualitatively the same.

We computed the ratio

Rχ (6, 8) = χ (N = 6)

χ (N = 8)
(B13)

for either Za/Zp = 0.32037 or ξ2nd/L = 0.59238 fixed at D =
1.02. Following the discussion of Sec. III, this ratio should
behave as

Rχ (6, 8) = a (1 + bL−ω + · · · ), (B14)

where all possible types of corrections should appear, and not
only those related to the breaking of the O(2) symmetry. We
have fitted our data by using a single correction term. In the
case of Za/Zp = 0.32037, we get the following results:

Using the correction exponent ε = 0.789 and
Lmin = 6, we get a = 1.000187(14), b = 0.00126(8), and

χ2/d.o.f. = 0.36. Using instead ε = 2 and Lmin = 8, we get
a = 1.000295(9), b = 0.0091(10), and χ2/d.o.f. = 0.56.

For ξ2nd/L = 0.59238 fixed, we get the following: Using
the correction exponent ε = 0.789 and Lmin = 8, we get a =
1.000222(15), b = −0.00010(11), and χ2/d.o.f. = 0.64. Us-
ing instead ε = 2 and Lmin = 4, we get a = 1.000219(4),
b = −0.00143(13), and χ2/d.o.f. = 0.59.

We conclude that the ratio (B13) consists of an overall
constant that is close to one and corrections with a small
amplitude. Since these corrections come with a very small
amplitude, it is impossible to assign them clearly to the
correction exponents that are theoretically expected.

In the case of N = 8 and N = 10 at D = 1.07, the data
barely differ. For example, for χ at ξ2nd/L = 0.59238, we
get for L = 4 the estimates 17.01708(4) and 17.01707(5),
respectively. Therefore, we abstain from any further analysis.

APPENDIX C: THE CORRECTION EXPONENT yN=6

We define

XN = 〈max j �m�r j〉, (C1)

YN = 〈max j �m �p j〉, (C2)

where

�r j = [cos(2π j/N ), sin(2π j/N )], (C3)

�p j = {cos[2π ( j + 1/2)/N], sin[2π ( j + 1/2)/N]}, (C4)

where j ∈ {0, . . . , N − 1} and

(m(0), m(1) ) = �m =
∑

x

�sx (C5)

is the magnetization. Now, we consider the quantity

qN = XN − YN

XN + YN
(C6)

as a measure of the deviation from O(2) invariance. We per-
formed simulations for N = 6 and D = 1.02 close to our final
estimate of D∗(6) = 1.058(13) + 0.0136(14). We simulated
the lattice sizes L = 4, 5, . . ., 16, 18, 20, and 64, as discussed
already above. The quantities XN and YN are taken at Za/Zp =
0.32037. Note that qN for L = 64 is equal to zero within error
bars. Therefore, we did not include L = 64 in our analysis.
We fitted our numerical results with the ansätze

qN = cLyN=6 (C7)

and

qN = cLyN=6 × (1 + bL−2). (C8)

We find yN=6 = −2.42(2) and χ2/d.o.f. = 0.53 with Lmin =
8 using the first ansatz and yN=6 = −2.46(3) and χ2/d.o.f. =
0.59 with Lmin = 6 using the second ansatz. As our final
estimate, we take yN=6 = −2.43(6), where the error estimate
includes the results of both fits.

This value has to be compared with yN=6 = −2.55(6) and
−2.509(7) given in Refs. [45] and [5], respectively.

Note that for N > 6 it is virtually impossible to get a
reliable estimate of yN using the method used here, since the
relative error of qN is rapidly increasing with increasing L.
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At a late stage of the project, we have implemented the
quantity

φN = 〈cos(N�)〉, (C9)

where � = arccos(m(0)/| �m|), which is used in Ref. [45]; see
Eq. (3) of Ref. [45]. We simulated the linear lattice sizes

L = 4, 6, 8, and 12, measuring both φN and qN . We find that
the relative error is slightly smaller for qN , the two quantities
are highly correlated, and their ratio φN/qN is within the
statistical error the same for the lattice sizes L = 6, 8, and
12. For L = 4, it deviates by little. Hence, for our purpose the
two quantities are equivalent.

[1] K. G. Wilson and J. Kogut, The renormalization group and the
ε expansion, Phys. Rep. C 12, 75 (1974).

[2] M. E. Fisher, The renormalization group in the theory of critical
behavior, Rev. Mod. Phys. 46, 597 (1974).

[3] M. E. Fisher, Renormalization group theory: Its basis and
formulation in statistical physics, Rev. Mod. Phys. 70, 653
(1998).

[4] A. Pelissetto and E. Vicari, Critical phenomena and
renormalization-group theory, Phys. Rept. 368, 549 (2002).

[5] D. Banerjee, S. Chandrasekharan, and D. Orlando, Conformal
Dimensions via Large Charge Expansion, Phys. Rev. Lett. 120,
061603 (2018).

[6] J. Hove and A. Sudbø, Criticality versus q in the (2+1)-
dimensional Zq clock model, Phys. Rev. E 68, 046107 (2003).

[7] J. Lou, A. W. Sandvik, and L. Balents, Emergence of U(1)
Symmetry in the 3D XY Model with Zq Anisotropy, Phys. Rev.
Lett. 99, 207203 (2007).

[8] J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and
U. E. Israelsson, Heat Capacity and Thermal Relaxation of Bulk
Helium Very Near the λ Point, Phys. Rev. Lett. 76, 944 (1996).

[9] J. A. Lipa, D. R. Swanson, J. A. Nissen, Z. K. Geng, P. R.
Williamson, D. A. Stricker, T. C. P. Chui, U. E. Israelsson, and
M. Larson, Specific Heat of Helium Confined to a 57-μm Planar
Geometry, Phys. Rev. Lett. 84, 4894 (2000).

[10] J. A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson and
T. C. P. Chui, Specific heat of liquid helium in zero gravity very
near the λ-point, Phys. Rev. B 68, 174518 (2003).

[11] R. Guida and J. Zinn-Justin, Critical exponents of the N vector
model, J. Phys. A 31, 8103 (1998).

[12] M. Campostrini, M. Hasenbusch, A. Pelissetto, and E. Vicari,
Theoretical estimates of the critical exponents of the superfluid
transition in 4He by lattice methods, Phys. Rev. B 74, 144506
(2006).

[13] W. Xu, Y. Sun, J.-P. Lv, and Y. Deng, High-precision Monte
Carlo study of several models in the three-dimensional U(1)
universality class, Phys. Rev. B 100, 064525 (2019).

[14] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, Precision
islands in the Ising and O(N ) models, J. High Energy Phys. 08
(2016) 036.

[15] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E.
Vicari, Critical behavior of the three-dimensional XY universal-
ity class, Phys. Rev. B 63, 214503 (2001).

[16] D. Simmons-Duffin, The lightcone bootstrap and the spectrum
of the 3d Ising CFT, J. High Energy Phys. 03 (2017) 086.

[17] J. H. Chen, M. E. Fisher, and B. G. Nickel, Unbiased Estimation
of Corrections to Scaling by Partial Differential Approximants,
Phys. Rev. Lett. 48, 630 (1982).

[18] M. E. Fisher and J. H. Chen, The validity of hyperscaling in
three dimensions for scalar spin systems, J. Phys. (Paris) 46,
1645 (1985).

[19] H. W. J. Blöte, E. Luijten, and J. R. Heringa, Ising universality
in three dimensions: A Monte Carlo study, J. Phys. A: Math.
Gen. 28, 6289 (1995).

[20] H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, and
A. Muñoz Sudupe, Finite size scaling and “perfect” actions:
The three-dimensional Ising model, Phys. Lett. B 441, 330
(1998).

[21] M. Hasenbusch, K. Pinn, and S. Vinti, Critical exponents
of the 3D Ising universality class from finite size scaling
with standard and improved actions, Phys. Rev. B 59, 11471
(1999).

[22] M. N. Barber, in Finite-Size Scaling in Phase Transitions and
Critical Phenomena, Vol. 8, edited by C. Domb and J. L.
Lebowitz (Academic Press, New York, 1983).

[23] M. Hasenbusch, A Monte Carlo study of leading order scaling
corrections of φ4 theory on a three-dimensional lattice, J. Phys.
A 32, 4851 (1999).

[24] M. Hasenbusch and T. Török, High precision Monte Carlo study
of the 3D XY -universality class, J. Phys. A 32, 6361 (1999).

[25] M. Hasenbusch, F. Parisen Toldin, A. Pelissetto, and E. Vicari,
Universality class of 3D site-diluted and bond-diluted Ising
systems, J. Stat. Mech. (2007) P02016.

[26] M. Hasenbusch, A finite size scaling study of lattice models
in the 3D Ising universality class, Phys. Rev. B 82, 174433
(2010).

[27] K. Binder, Finite size scaling analysis of Ising model block
distribution functions, Z. Phys. B: Condens. Matter 43, 119
(1981).

[28] M. Hasenbusch, Two- and three-point functions at criticality:
Monte Carlo simulations of the improved three-dimensional
Blume-Capel model, Phys. Rev. E 97, 012119 (2018).

[29] A. Maciolek, M. Krech, and S. Dietrich, Phase diagram of a
model for 3He-4He mixtures in three dimensions, Phys. Rev. E
69, 036117 (2004).

[30] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Two-
point correlation function of three-dimensional O(N) models:
The critical limit and anisotropy, Phys. Rev. E 57, 184 (1998).

[31] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, 25th-
order high temperature expansion results for three-dimensional
Ising like systems on the simple cubic lattice, Phys. Rev. E 65,
066127 (2002).

[32] K. E. Newman and E. K. Riedel, Critical exponents by the
scaling-field method: The isotropic N-vector model in three
dimensions, Phys. Rev. B 30, 6615 (1984).

[33] D. F. Litim and L. Vergara, Subleading critical exponents from
the renormalisation group, Phys. Lett. B 581, 263 (2004).

[34] A. Jüttner, D. F. Litim, and E. Marchais, Global Wilson-Fisher
fixed points, Nucl. Phys. B 921, 769 (2017).

[35] U. Wolff, Collective Monte Carlo Updating for Spin Systems,
Phys. Rev. Lett. 62, 361 (1989).

224517-18

https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1103/PhysRevLett.120.061603
https://doi.org/10.1103/PhysRevLett.120.061603
https://doi.org/10.1103/PhysRevLett.120.061603
https://doi.org/10.1103/PhysRevLett.120.061603
https://doi.org/10.1103/PhysRevE.68.046107
https://doi.org/10.1103/PhysRevE.68.046107
https://doi.org/10.1103/PhysRevE.68.046107
https://doi.org/10.1103/PhysRevE.68.046107
https://doi.org/10.1103/PhysRevLett.99.207203
https://doi.org/10.1103/PhysRevLett.99.207203
https://doi.org/10.1103/PhysRevLett.99.207203
https://doi.org/10.1103/PhysRevLett.99.207203
https://doi.org/10.1103/PhysRevLett.76.944
https://doi.org/10.1103/PhysRevLett.76.944
https://doi.org/10.1103/PhysRevLett.76.944
https://doi.org/10.1103/PhysRevLett.76.944
https://doi.org/10.1103/PhysRevLett.84.4894
https://doi.org/10.1103/PhysRevLett.84.4894
https://doi.org/10.1103/PhysRevLett.84.4894
https://doi.org/10.1103/PhysRevLett.84.4894
https://doi.org/10.1103/PhysRevB.68.174518
https://doi.org/10.1103/PhysRevB.68.174518
https://doi.org/10.1103/PhysRevB.68.174518
https://doi.org/10.1103/PhysRevB.68.174518
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1103/PhysRevB.74.144506
https://doi.org/10.1103/PhysRevB.74.144506
https://doi.org/10.1103/PhysRevB.74.144506
https://doi.org/10.1103/PhysRevB.74.144506
https://doi.org/10.1103/PhysRevB.100.064525
https://doi.org/10.1103/PhysRevB.100.064525
https://doi.org/10.1103/PhysRevB.100.064525
https://doi.org/10.1103/PhysRevB.100.064525
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1103/PhysRevB.63.214503
https://doi.org/10.1103/PhysRevB.63.214503
https://doi.org/10.1103/PhysRevB.63.214503
https://doi.org/10.1103/PhysRevB.63.214503
https://doi.org/10.1007/JHEP03(2017)086
https://doi.org/10.1007/JHEP03(2017)086
https://doi.org/10.1007/JHEP03(2017)086
https://doi.org/10.1007/JHEP03(2017)086
https://doi.org/10.1103/PhysRevLett.48.630
https://doi.org/10.1103/PhysRevLett.48.630
https://doi.org/10.1103/PhysRevLett.48.630
https://doi.org/10.1103/PhysRevLett.48.630
https://doi.org/10.1051/jphys:0198500460100164500
https://doi.org/10.1051/jphys:0198500460100164500
https://doi.org/10.1051/jphys:0198500460100164500
https://doi.org/10.1051/jphys:0198500460100164500
https://doi.org/10.1088/0305-4470/28/22/007
https://doi.org/10.1088/0305-4470/28/22/007
https://doi.org/10.1088/0305-4470/28/22/007
https://doi.org/10.1088/0305-4470/28/22/007
https://doi.org/10.1016/S0370-2693(98)01100-9
https://doi.org/10.1016/S0370-2693(98)01100-9
https://doi.org/10.1016/S0370-2693(98)01100-9
https://doi.org/10.1016/S0370-2693(98)01100-9
https://doi.org/10.1103/PhysRevB.59.11471
https://doi.org/10.1103/PhysRevB.59.11471
https://doi.org/10.1103/PhysRevB.59.11471
https://doi.org/10.1103/PhysRevB.59.11471
https://doi.org/10.1088/0305-4470/32/26/304
https://doi.org/10.1088/0305-4470/32/26/304
https://doi.org/10.1088/0305-4470/32/26/304
https://doi.org/10.1088/0305-4470/32/26/304
https://doi.org/10.1088/0305-4470/32/36/301
https://doi.org/10.1088/0305-4470/32/36/301
https://doi.org/10.1088/0305-4470/32/36/301
https://doi.org/10.1088/0305-4470/32/36/301
https://doi.org/10.1088/1742-5468/2007/02/P02016
https://doi.org/10.1088/1742-5468/2007/02/P02016
https://doi.org/10.1088/1742-5468/2007/02/P02016
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1007/BF01293604
https://doi.org/10.1007/BF01293604
https://doi.org/10.1007/BF01293604
https://doi.org/10.1007/BF01293604
https://doi.org/10.1103/PhysRevE.97.012119
https://doi.org/10.1103/PhysRevE.97.012119
https://doi.org/10.1103/PhysRevE.97.012119
https://doi.org/10.1103/PhysRevE.97.012119
https://doi.org/10.1103/PhysRevE.69.036117
https://doi.org/10.1103/PhysRevE.69.036117
https://doi.org/10.1103/PhysRevE.69.036117
https://doi.org/10.1103/PhysRevE.69.036117
https://doi.org/10.1103/PhysRevE.57.184
https://doi.org/10.1103/PhysRevE.57.184
https://doi.org/10.1103/PhysRevE.57.184
https://doi.org/10.1103/PhysRevE.57.184
https://doi.org/10.1103/PhysRevE.65.066127
https://doi.org/10.1103/PhysRevE.65.066127
https://doi.org/10.1103/PhysRevE.65.066127
https://doi.org/10.1103/PhysRevE.65.066127
https://doi.org/10.1103/PhysRevB.30.6615
https://doi.org/10.1103/PhysRevB.30.6615
https://doi.org/10.1103/PhysRevB.30.6615
https://doi.org/10.1103/PhysRevB.30.6615
https://doi.org/10.1016/j.physletb.2003.11.047
https://doi.org/10.1016/j.physletb.2003.11.047
https://doi.org/10.1016/j.physletb.2003.11.047
https://doi.org/10.1016/j.physletb.2003.11.047
https://doi.org/10.1016/j.nuclphysb.2017.06.010
https://doi.org/10.1016/j.nuclphysb.2017.06.010
https://doi.org/10.1016/j.nuclphysb.2017.06.010
https://doi.org/10.1016/j.nuclphysb.2017.06.010
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361


MONTE CARLO STUDY OF AN IMPROVED CLOCK … PHYSICAL REVIEW B 100, 224517 (2019)

[36] M. Weigel, Simulating spin models on GPU, Comput. Phys.
Commun. 182, 1833 (2011).

[37] Y. Komura and Y. Okabe, CUDA programs for GPU computing
of Swendsen-Wang multi-cluster spin flip algorithm: 2D and
3D Ising, Potts, and XY models, Comput. Phys. Commun. 185,
1038 (2014); Improved CUDA programs for GPU computing of
Swendsen-Wang multi-cluster spin flip algorithm: 2D and 3D
Ising, Potts, and XY models, 200, 400 (2016).

[38] M. Saito and M. Matsumoto, SIMD-oriented fast Mersenne
twister: A 128-bit pseudorandom number generator, in Monte
Carlo and Quasi-Monte Carlo Methods 2006, edited by A.
Keller, S. Heinrich, and H. Niederreiter (Springer, Berlin,
2008); M. Saito, master’s thesis, Hiroshima University, Japan,
2007 (unpublished). The source code of the program is provided
at http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/SFMT/
index.html.

[39] J. D. Hunter, MATPLOTLIB: A 2D graphics environment,
Comput. Sci. Eng. 9, 90 (2007).

[40] T. E. Oliphant, PYTHON for scientific computing, Comput. Sci.
Eng. 9, 10 (2007); P. Virtanen, R. Gommers, T. E. Oliphant
et al., SciPy 1.0–fundamental algorithms for scientific comput-
ing in python, arXiv:1907.10121.

[41] K. Levenberg, A method for the solution of certain non-linear
problems in least squares, Quart. Appl. Math. 2, 164 (1944).

[42] D. Marquardt, An algorithm for least-squares estimation of
nonlinear parameters, SIAM J. Appl. Math. 11, 431 (1963).

[43] J. J. Moré, The Levenberg-Marquardt algorithm, Lecture Notes
Math. 630, 105 (1978).

[44] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, User guide
for MINPACK-1, Argonne National Laboratory Report ANL-
80-74, Argonne, IL, 1980; J. J. Moré, D. C. Sorensen, K. E.
Hillstrom, and B. S. Garbow, The MINPACK project, in Sources
and Development of Mathematical Software, edited by W. J.
Cowell (Prentice-Hall, New York, 1984).

[45] H. Shao, W. Guo, and A. W. Sandvik, Monte Carlo renormaliza-
tion flows in the space of relevant and irrelevant operators: Ap-
plication to three-dimensional clock models, arXiv:1905.13640
(unpublished).

[46] Y. Deng, H. W. J. Blöte, and M. P. Nightingale, Surface and bulk
transitions in three-dimensional O(n) models, Phys. Rev. E 72,
016128 (2005).

[47] T.-Y. Lan, Y.-D. Hsieh, and Y.-J. Kao, High-precision Monte
Carlo study of the three-dimensional XY model on GPU,
arXiv:1211.0780 (unpublished).

224517-19

https://doi.org/10.1016/j.cpc.2010.10.031
https://doi.org/10.1016/j.cpc.2010.10.031
https://doi.org/10.1016/j.cpc.2010.10.031
https://doi.org/10.1016/j.cpc.2010.10.031
https://doi.org/10.1016/j.cpc.2013.10.029
https://doi.org/10.1016/j.cpc.2013.10.029
https://doi.org/10.1016/j.cpc.2013.10.029
https://doi.org/10.1016/j.cpc.2013.10.029
https://doi.org/10.1016/j.cpc.2015.10.003
https://doi.org/10.1016/j.cpc.2015.10.003
https://doi.org/10.1016/j.cpc.2015.10.003
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
http://arxiv.org/abs/arXiv:1907.10121
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1007/BFb0067700
https://doi.org/10.1007/BFb0067700
https://doi.org/10.1007/BFb0067700
https://doi.org/10.1007/BFb0067700
http://arxiv.org/abs/arXiv:1905.13640
https://doi.org/10.1103/PhysRevE.72.016128
https://doi.org/10.1103/PhysRevE.72.016128
https://doi.org/10.1103/PhysRevE.72.016128
https://doi.org/10.1103/PhysRevE.72.016128
http://arxiv.org/abs/arXiv:1211.0780

