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Quantum Monte Carlo study of the superfluid density in quasi-one-dimensional systems
of hard-core bosons: Effect of the suppression of phase slippage
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We study the superfluid density of hard-core bosons on quasi-one-dimensional lattices using the quantum
Monte Carlo method. Because of phase slippage, the superfluid density drops quickly to zero at finite
temperatures with increasing the system length � and the superfluid transition temperature is zero in one
spatial dimension and also in quasi-one dimension in the limit of � → ∞. We calculate the superfluid density
of a model where no phase slippage is allowed and show that the superfluid density remains finite at finite
temperatures even in the one-dimensional limit. We also discuss how finite superfluid density can be observed in
a quasi-one-dimensional system using a torsional oscillator.

DOI: 10.1103/PhysRevB.100.224515

I. INTRODUCTION

Superfluidity is one of the most fascinating phenomena in
condensed matter systems. It is well known that the spatial
dimensionality plays a remarkable role in superfluidity. In
two dimensions, the Berezinskii-Kosterlitz-Thouless (BKT)
transition [1,2], a unique topological phase transition, occurs
at a finite temperature despite the absence of true long-range
order [3].

Recently, 4He atoms confined in straight nanopores have
attracted much attention [4–17]. For example, Wada and
coworkers studied He atoms adsorbed on the inner walls
of one-dimensional pores of porous material, FSM (folded
sheet mesoporous materials)-16 [4–7]; typical pore length is
200–300 nm and its diameter R can be systematically changed
from R = 1.5 nm to 4.7 nm. Superfluid density was measured
using a torsional oscillator and a frequency shift was found to
set in at a temperature close to the BKT transition temperature,
TBKT [1,2], determined by the areal density of adsorbed He
atoms. They carefully analyzed the results and concluded that
the frequency shift was caused by finite superfluid density
in the one-dimensional part of the system, i.e., the one-
dimensional He tube [6,7].

On the other hand, Taniguchi and Suzuki studied superflu-
idity of liquid 4He filling nanopores [8–10,12,14]. Superfluid
density was then measured with a torsional oscillator. They
found a two-step increase, that is, they found an additional
increase in the resonance frequency at a temperature lower
than the bulk λ transition temperature. They also ascribed
the second increase to the onset of superfluidity of liquid He
filling one-dimensional pores [8–10].

In these experiments, three-dimensionality plays only
a minor role in contrast to the previous experiments
using interconnected porous materials [3,18–22], because the
pores are connected only via their ends. Moreover, as the
pores are regularly arranged, randomness caused by irregular

connection of pores, which has significant effects in Vycor
glass, for example, is also considered to be irrelevant.

It is a well-established fact that no Bose-Einstein condensa-
tion (BEC) occurs at a finite temperature in one or two dimen-
sions [23,24]. However, the relation of existence or absence
of BEC to superfluidity is not necessarily a well-understood
problem [25]. In particular, we should note that superfluidity
is detected dynamically in torsional oscillator experiments.
Therefore, in discussing superfluidity in one dimension or
quasi-one dimension, a dynamical aspect of the phenomenon
has to be considered. For example, Shevchenko showed that
the characteristic temperature for one-dimensional superfluid-
ity is given by

Tc ∼ h̄2n1

kBM�z
, (1)

where n1 is the one-dimensional number density of boson
atoms, M the atomic mass, and �z the one-dimensional length
of the system [26]. Although it simply vanishes as �z → ∞,
he argued that superfluidity would be observed at a much
higher temperature than Tc, if ωτ � 1 is fulfilled, where ω

is the frequency at which superfluidity is measured (e.g., the
frequency of a torsional oscillator) and τ is the relaxation time
of the supercurrent [26].

A more explicit argument was independently given by
Machta and Guyer [27,28]. They proposed two different def-
initions of superfluid density. One is denoted by ρs, which
is the coefficient of the increase in the free energy in the
presence of a slow supercurrent, and the other by ρp, which
is the coefficient of the increase in the free energy caused by
an infinitesimal phase twist between both ends of the system.
They found the relation

ρp(T ) � 2Leff
kBT

J
exp

[
− Leff

2ρs(T )

kBT

J

]
, (2)
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at temperature T � Jρs/(kBLeff ), where Leff = �z/(n1a2),
J = h̄2/(Ma2), and a is the average interparticle distance [28].
The superfluid densities are normalized so that ρs,p(T =0)=1.
Out of the two superfluid densities, ρp(T ) is affected by
phase slippage and readily vanishes at T � Jρs/(kBLeff ) �
h̄2n1/(kBM�z ) ∼ Tc. In other words, it vanishes at any finite
temperatures in the limit of �z → ∞. On the other hand, ρs(T )
does not suffer from phase slippage and can be finite at finite
temperatures. They argued that it is ρs(T ) that is observed
in torsional oscillator experiments, but did not discuss the
explicit temperature dependence of ρs(T ). A similar relation
between ρs(T ) and ρp(T ) was also derived by Prokof’ev and
Svistunov [29]. It should also be noted that it is ρp(T ) that
is obtained with calculations under the thermal equilibrium
condition.

It is not trivial which one, ρs(T ) or ρp(T ), will be
observed in a torsional oscillator experiment. If ωτ � 1 at
low temperatures, it must be ρs(T ) that will be observed in
an experiment as was suggested by Machta and Guyer [28].
However, τ is temperature dependent and should decrease
as T increases. Therefore, ρp(T ) will be observed once ωτ

becomes small enough. In actual dynamical experiments, this
kind of crossover will be observed.

Superfluid density in one-dimensional systems was also
analyzed using the Tomonaga-Luttinger theory [30–32]. In
particular, the dynamical aspect of superfluid behavior was
discussed by Eggel et al. [32] and experimental results [14]
were analyzed based on this theory. However, the theory is
limited to low temperatures and the temperature range or the
range of pore radius where the theory can be justified is not
clear.

Quantum Monte Carlo simulations were also performed
for liquid 4He confined in nanopores [33,34]. The results,
in particular, those in narrower pores, R < 0.4 nm with R
being the radius of a pore, are successfully analyzed using
the Tomonaga-Luttinger theory. However, for wider pores,
R > 0.9 nm, the system length used in the simulations may
not be long enough to study the quasi-one-dimensional cases.

Superfluid density in quasi-one-dimensional systems was
also analyzed on the basis of classical spin models (XY mod-
els) [35,36]. Superfluid density ρs(T ) that is not affected by
phase slippage in quasi-one dimension was calculated using a
special boundary condition or a restricted sampling method
[36]. It was then found that, without the effect of phase
slippage, superfluid density can survive up to the transition
temperature of the extended film or the bulk system even in
the one-dimensional limit [36]. Although the main conclusion
in Ref. [36] is expected to be also valid in quantum systems,
it is highly desirable to demonstrate it explicitly in a quantum
system. This is precisely the purpose of this paper.

In this study, we examine superfluid density of hard-core
bosons on quasi-one-dimensional lattices using the quantum
Monte Carlo method. As was done in Ref. [36], we calculate
superfluid density ρs(T ) by modifying the model used in
the calculation. In this study, we suppress phase slippage
by introducing special transfer integrals. We then show that
superfluid density can remain finite up to the BKT transition
temperature TBKT or the bulk transition temperature Tλ even in
the one-dimensional limit when the effect of phase slippage is
completely suppressed.

The rest of this paper is organized as follows. Section II
introduces a hard-core Bose-Hubbard model and modify it
so that the phase slippage is prevented. In addition, we define
the superfluid density for this modified model. Section III
presents the results of the simulations, which clearly show that
the superfluid density can be finite at high temperatures when
the phase slippage is not allowed. Section IV summarizes this
paper.

II. MODEL AND METHOD

A. Model without phase slippage

In order to study a quasi-one-dimensional system such as
4He atoms in nanopores, we consider hard-core bosons on an
anisotropic square or cubic lattice described by the following
Hamiltonian:

H = −
∑
〈i, j〉

(ti jb
†
i b j + H.c.), (3)

where bi (b†
i ) is the annihilation (creation) operator of a boson

at site i and no multiple occupancy at the same site is allowed
because of the strong repulsion between bosons, i.e., b†

i bi = 0
or 1. For simplicity, we consider only the transfer integral
ti j between the nearest neighboring sites, and accordingly
the sum in Eq. (3) runs over all the nearest neighboring
sites 〈i, j〉. Furthermore, we do not consider the interaction
between bosons at different sites. In this study, we set the
boson density at half-filling, i.e., N = 0.5NL, where N (NL)
is the total number of bosons (lattice sites), and thus the
chemical potential μ is always zero. Note that this model
can be mapped onto the spin S = 1/2 XY model with only
the nearest-neighbor exchange interaction with no external
magnetic field [37].

To simulate 4He atoms adsorbed on the inner walls
of nanopores [4,6,7,11,13,17], we consider an anisotropic
two-dimensional square lattice, i.e., a film, composed of
Lx × Lz sites with Lz � Lx (see Fig. 1). The periodic
condition is imposed in both directions. We thus consider

( )( )

( )

z x

x

y

FIG. 1. (a) Quasi-one-dimensional lattice system with the peri-
odic boundary condition along the z-direction, forming a torus-like
geometry. Phase slippage is suppressed in a spin model if the central
hole of the torus is closed [36]. This is equivalent to setting the
transfer integrals along a single row (indicated by the red line) to
be infinite in the hard-core boson model studied here. The inner part
is empty in the film case (b) and it is filled with lattice sites in the bar
case (c).
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hard-core bosons on a long tube, as schematically shown in
Fig. 1(b). For a film, the effective length Leff = �z/(n1a2) ∼
Lz/Lx ∼ �z/�x, i.e., the aspect ratio of the anisotropic lat-
tice, because n1 = N/�z = NL/(2�z ) and Lα ∼ �α/a (α = x
and z). Experimentally, the aspect ratio Lz/Lx can be es-
timated to be 15–50 [4,6,7,11,13,17]. On the other hand,
to simulate 4He atoms filling nanopores, we consider an
anisotropic three-dimensional cubic lattice, i.e., a bar, com-
posed of NL = LxLyLz sites with Lz � Lx, Ly [see Figs. 1(a)
and 1(c)]. For a bar, the effective length Leff can be estimated
as Leff ∼ Lz/(LxLy) ∼ �za/(�x�y) and typically Lz/(LxLy) =
5–30 [5,8–10,15]. In our simulations, the periodic boundary
condition is imposed in the z-direction and the open boundary
condition is applied in the remaining two directions.

The superfluid density ρp(T ) in these systems vanishes at
finite temperatures in the limit of Lz → ∞ because of phase
slippage. To calculate the superfluid density ρs(T ) that is not
affected by phase slippage, a slight modification of the model
is required. In a spin model, phase slippage is suppressed
when all the Lz spins in a single row of the lattice (out of Lx or
Lx × Ly rows) are replaced with a single spin [36]. By doing
so, one can close the central hole of the torus as is shown in
Fig. 1(a). This is equivalent to setting the exchange interaction
in this row to be infinity. The exchange interaction in the XY
model is mapped to the transfer integral in the hard-core boson
system studied here. Thus, by setting the transfer integral in
a single row of the lattice (out of Lx or Lx × Ly rows) along
the z direction to be infinity, we can prohibit phase slippage.
With this modification, the translational invariance along the
transverse directions (x- or/and y-direction) is violated, but
the system remains translationally invariant in the z-direction.

In the numerical calculations, we set the transfer integral
ti j along this single row to be t∗, which is much larger than
the other transfer integral ti j = t . Typically, we set t∗ ∼ Lzt
but we also investigate the dependence of the results on the
choice of t∗. As is shown in the following, by calculating the
superfluid density of the model with this transfer integral t∗,
we can obtain the superfluid density ρs(T ) that is not affected
by phase slippage.

B. Method: Superfluid density

To calculate superfluid density, we apply the world-line
Monte Carlo method employing the directed-loop implemen-
tation [38–40] of the worm algorithm [41]. The well-known
definition of the superfluid density [42] in a spatially homoge-
neous system is given by

ρs =
∑

α

〈
L2

αW 2
α

〉
2tβNL

, (4)

where L = (Lx, Ly, Lz ) stands for the linear system size in
a three-dimensional cubic lattice system, W = (Wx,Wy,Wz )
is the winding number in each spatial direction, 〈· · · 〉 =
Tr(e−βH · · · )/Tre−βH, β = 1/T , and the Boltzmann constant
kB is set to be 1. The total number of lattice sites is NL =
LxLyLz. The hopping integral t in Eq. (4) is assumed to be
uniform. When we calculate the winding number Wα (α =
x, y, and z), we count the number of kinks of world lines
that correspond to the hopping operator b†

i b j . For example,
the winding number in the z direction can be explicitly

written as

L2
z W 2

z =
⎡
⎣∑

bz

(
n+

bz
− n−

bz

)⎤⎦
2

, (5)

where the summation of bz runs over all bonds along the
z-direction. The number of kinks of world lines on the bz-th
bond in the positive (negative) z-direction, n+

bz
(n−

bz
), is given

by n+
bz

= b†
i+ez

bi (n−
bz

= b†
i bi+ez ) with site i + ez being the

nearest-neighbor site of site i in the positive z direction.
In the present system, the definition of superfluid density

has to be generalized to take account of the non-uniform trans-
fer integral [43]. Allowing for the bond-dependent transfer
integral, the superfluid density in the z direction is given as

ρz
s =

〈
L2

z W̃ 2
z

〉
2tβLz

(
Ld−1

x − 1
) , (6)

where the normalized winding number is

L2
z W̃ 2

z =
⎡
⎣t

∑
bz

(
n+

bz
− n−

bz

)
tbz

⎤
⎦

2

(7)

with tbz = t∗ along the bonds in the special row of the lattice
(denoted by the red line in Fig. 1) and tbz = t along the
other bonds, and d = 2 (3) in the system of a film (bar)
geometry. Here, we assume that Lx = Ly in the system of the
bar geometry.

III. RESULTS

A. Film: Anisotropic two-dimensional lattices

Figure 2 shows temperature dependence of the superfluid
density in the z direction of hard-core bosons on an anisotropic
two-dimensional lattice (i.e., a film) of different sizes. When
the system is isotropic and large, that is, Lx = Lz � 1 and
t∗ = t , the superfluid density is found to vanish at T � 0.7t
[see Fig. 2(c)], which is close to the known results TBKT/t =
0.68606 in two dimensions [44]. In the one-dimensional limit,
i.e., Lz � Lx, with t∗ = t , the superfluid density vanishes at
a much lower temperature than TBKT, in agreement with the
theoretical prediction [26,28,29] and the previous result for
a classical model [35] [see the results for NL = 480 × 8 and
480 × 1 in Fig. 2(c)].

We then suppress phase slippage by setting t∗ = Lzt to find
that the superfluid density remains finite at finite temperatures.
In Fig. 2(a), Lx is fixed at Lx = 8 and the length Lz of
the system is changed. It is observed that the temperature
dependence hardly depends on Lz although the aspect ratio
Lz/Lx significantly changes. This result clearly shows that the
superfluid density remains finite up to T � t even in the one-
dimensional limit of Lz → ∞ as long as the phase slippage is
suppressed.

In Fig. 2(b), on the other hand, Lz is kept constant at
Lz = 480 and Lx is varied. As Lx increases, the superfluid
density is found to drop more sharply as a function of T . As
Lx approaches to Lz, the result almost converges to that in the
two dimensional case for NL = 480 × 480 with t∗ = t shown
in Fig. 2(c). Figure 2(c) shows the superfluid density for a

224515-3



MASAKI-KATO, YUNOKI, AND HIRASHIMA PHYSICAL REVIEW B 100, 224515 (2019)

0

0.1

0.2

0.3

0.4

0.5

0.5 1 1.5 2

t∗ = tLz

0.5 1 1.5 2

t∗ = tLzρ
z s

T/t

NL = 240 × 8
NL = 480 × 8
NL = 960 × 8

T/t

NL = 480 × 8
NL = 480 × 12
NL = 480 × 16
NL = 480 × 32
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ρ
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NL = 240 × 8 (t∗ = tLz)
NL = 480 × 16 (t∗ = tLz)
NL = 720 × 24 (t∗ = tLz)
NL = 960 × 32 (t∗ = tLz)

NL = 8 × 8 (t∗ = t)
NL = 480 × 480 (t∗ = t)

NL = 480 × 8 (t∗ = t)
NL = 480 (t∗ = t)

T/πt

FIG. 2. Superfluid density ρz
s along the z-direction in the film

geometry of different lattice sizes (NL = Lz × Lx) with t∗ = tLz.
(a) Lz is varied with keeping Lx = 8, (b) Lx is varied with keeping
Lz = 480, and (c) Lx and Lz are varied with keeping the aspect ratio
Lz/Lx = 30. For comparison, the results for NL = 8 × 8, 480 × 480,
480 × 8, and 480 × 1 with t = t∗ are also shown in (c). The dashed
line in (c) represents ρz

s = T/(πt ). The BKT transition temperature
TBKT for the two-dimensional system determined previously by the
quantum Monte Carlo method is TBKT/t = 0.68606 [44].

fixed aspect ratio Lz/Lx = 30. We find that the temperature
dependence of the superfluid density is very similar to that
shown in Fig. 2(b).

These results clearly demonstrate that the temperature
dependence of the superfluid density is similar for all
cases on the two-dimensional, quasi-one-dimensional, or one-
dimensional lattice, that is, the superfluid density remains
finite at finite temperatures, provided that the phase slippage is
prohibited. It is also noticed that the temperature dependence
of the superfluid density is primarily determined by Lx.

In Fig. 2(c), the dashed line represents the universal jump
of the superfluid density for the BKT transition [45]. The
result for Lz/Lx = 30 appears to merge at T � 0.7t to the
universal jump line, as the data for Lx = Ly (i.e., NL = 8 × 8
and 480 × 480) do. This strongly suggests that the system
undergoes a transition that belongs to the BKT universality
class. In Sec. III D, we shall perform the scaling analysis
to show that the transition is indeed the BKT transition and
estimate the transition temperature.

B. Bar: Anisotropic three-dimensional lattices

Now, we study the superfluid density of hard-core bosons
on an anisotropic cubic lattice composed of NL = Lx × Ly ×
Lz sites with Lz � Lx, Ly. As in the case with the film geom-
etry, the superfluid density rapidly diminishes at temperatures
much smaller than the bulk transition temperature Tλ � 2t

0

0.1

0.2

0.3

0.4

0.5

0.5 1 1.5 2 2.5

t∗ = tLz

0.5 1 1.5 2 2.5

t∗ = tLzρ
z s

T/t

NL = 120 × 4 × 4
NL = 240 × 4 × 4
NL = 480 × 4 × 4
NL = 720 × 4 × 4

T/t

NL = 480 × 2 × 2
NL = 480 × 4 × 4
NL = 480 × 8 × 8

FIG. 3. Superfluid density ρz
s along the z-direction in the bar

geometry of different lattice sizes (NL = Lz × Lx × Ly) with t∗ =
Lzt . (a) Lz is varied with keeping Lx = Ly = 4 and (b) Lx = Ly is
varied with keeping Lz = 480.

[46–50] when Lz � Lx = Ly and t∗ = t , although those re-
sults are not presented here.

Figure 3(a) shows the results of the superfluid density for
different values of Lz with keeping Lx = Ly = 4 and t∗ =
Lzt to suppress the phase slippage. It is observed that the
superfluid density is now survived up to the bulk transition
temperature Tλ � 2t [46–50]. Interestingly, the results hardly
depend on the value of Lz and remain intact even in the
one-dimensional limit of Lz → ∞. This is very similar to the
results for the film case [see Fig. 2(a)]. Figure 3(b) shows
the results for different values of Lx = Ly with keeping Lz =
480 and t∗ = Lzt . As Lx increases, the superfluid density
vanishes more steeply with T . However, it quickly converges
in increasing Lx. These results shown in Figs. 3(a) and 3(b)
imply, as in the case of the film geometry, that the superfluid
density remains finite up to the bulk transition temperature
even in the one-dimensional limit of Lz → ∞, as long as the
phase slippage is prohibited.

C. t∗-dependence

Thus far, we have set t∗ = Lzt to suppress the effect of
phase slippage. However, this value is chosen rather arbitrar-
ily. Here, we examine the dependence of the superfluid density
on the value of t∗ and show that the results do not depend
on the precise value of t∗ as long as it is large enough (i.e.,
t∗ � Lzt/8 for Lz = 480).

Figure 4 shows the superfluid density for different values
of t∗ in the film geometry of NL = 480 × 8. As t∗ increases,
the superfluid density at low temperatures increases, because
of the suppression of the phase slippage, and the results
are essentially converged for t∗ � Lzt/8. This implies that
the results obtained above are not the results for a particular
value of t∗, but represent the characteristic behavior of the
superfluid density in the systems where phase slippage is
suppressed.

D. Finite size scaling for ρz
s

1. Film geometry

When the system size increases, the system ultimately
reaches the thermodynamic limit irrespective of the shape of
the system. For the film geometry with a fixed aspect ratio
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FIG. 4. Superfluid density ρz
s for different values of t∗ in the film

geometry of NL = 480 × 8 sites with Lz = 480 and Lx = 8.

of Rfilm = Lz/Lx, we can reach the thermodynamic limit of
the two dimensional system as Lz → ∞ even when Lx 
 Lz.
However, it is known that ρz

s depends on the aspect ratio Rfilm,
and the temperature where superfluidity sets in decreases
from TBKT for Rfilm = 1 with increasing Rfilm, when the phase
slippage is not prohibited [44].

As shown in the previous section, if the phase slippage is
suppressed, ρz

s can be clearly finite up to the temperature close
to TBKT for the isotropic two-dimensional lattice with Rfilm=1,
even when Rfilm � 1 [see Fig. 2(c)]. Here, using the finite
size scaling, we show that the transition in the absence of the
phase slippage is indeed the BKT transition and estimate the
transition temperature.

Assuming that the transition is the BKT transition, we can
expect that the quantity

x = π

2

2tρz
s

T
− 2, (8)

i.e., the deviation of the superfluid density from the universal
value at T = TBKT, satisfies the following finite size scaling
equation:

x(T, Lz ) = l−1F ((K − KBKT)l2), (9)

where K = t/T and l = ln(Lz/L0) with L0 being a phe-
nomenological constant [51,52]. Figure 5 shows the scaling
plot of x(T, Lz ) for the systems in the film geometry with
a fixed value of Rfilm = 30 and t∗ = Lzt . We employ the
Baysian analysis [53,54] to find the best scaling function.
It is clearly observed in Fig. 5 that the numerical data for
different sizes collapse excellently onto a universal curve.
The estimated values are KBKT = 1.49 (2) and ln L0 = −3 (1).
This confirms that the transition is indeed the BKT transition
for the systems in the film geometry with no phase slip-
page allowed. The estimated transition temperature TBKT/t =
0.671 (9) is to be compared with the value for the isotropic
two-dimensional system, TBKT/t = 0.68606 (16) [44], where
the phase slippage is not prohibited.

2. Bar geometry

For anisotropic three-dimensional (3D) lattices (i.e., bars),
the system also reaches the bulk limit when we increase
Lx, Ly, and Lz with keeping its relative magnitude constant,
Lα = cαL (α = x, y, and z), where L and cα are constant,

(π
ρ

z s
/T

−
2)

ln
(L

z
/L

0
)

(K − KBKT)(ln(Lz/L0))2

NL = 240 × 8
NL = 480 × 16
NL = 720 × 24
NL = 960 × 32

FIG. 5. Finite size scaling of superfluid density ρz
s in the film

geometry with a fixed value of the aspect ratio Rfilm = Lz/Lx = 30
and t∗ = Lzt for Lz = 240, 480, 720, and 960. The black solid curve
is the scaling function obtained by the Baysian scaling analysis
[53,54].

even if Lz � Lx and Ly. However, the effective length given
by Leff � Lz/(LxLy) = cz/(cxcyL) becomes zero as L → ∞.
Therefore, this limit is rather trivial. In contrast, the limit
of Lz → ∞ with a constant Rbar = Lz/(LxLy) is expected to
be nontrivial and here we discuss the finite-size scaling for
the bar systems in this limit. Figure 6 shows the results for
the finite-size scaling of ρz

s with Rbar = 10. We obtained the
transition temperature Tc/t = 2.022(1) in this system when
we use the known critical exponent ν = 0.6717 of 3D-XY
universality class yielded by classical Monte Carlo simula-
tions[55,56]. The transition temperature Tc estimated here is
shifted from Tc/t = 2.0169 (5) obtained for the half-filled
three-dimensional hard-core boson model [50] but compared
well. Therefore, our system in the bar geometry with fixed
Rbar, provided that phase slippage is prohibited, is not com-
pletely equivalent to the three-dimensional isotropic hard-
core boson model but belongs to the three-dimensional XY
universality class.

0

0.5

1

1.5

−3 −2 −1 0 1 2 3

ρ
z s
L

x

(T−Tc)
t

L
1/ν
x

NL = 360 × 6 × 6
NL = 640 × 8 × 8

NL = 1000 × 10 × 10
NL = 1440 × 12 × 12

FIG. 6. Finite size scaling of superfluid density ρz
s in the bar

geometry with a fixed value of the ratio Rbar = Lz/(LxLy ) = 10 and
t∗ = Lzt for Lz = 360, 640, 1000, and 1440. Using ν = 0.6717, the
transition temperature is estimated to be Tc/t = 2.022(1).
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IV. CONCLUSIONS

We have studied the superfluid density of the quasi-one-
dimensional hard-core boson system focusing on the effect of
phase slippage. We have demonstrated that the phase slippage
is suppressed by setting the large transfer integral between the
neighboring sites along a single row of the system. We have
successfully shown that superfluid density remains finite at
high temperatures (TBKT in the film geometry and Tλ in the
bar geometry) even in the one-dimensional limit, Lz → ∞,
as long as the phase slippage is prohibited. In particular, we
have found that the transition in the film geometry is the BKT
transition if the phase slippage is suppressed.

Although we have shown that the superfluid density can be
finite up to TBKT or Tλ in a quasi-one-dimensional system, it
does not necessarily mean that one always observes a finite
superfluid density up to those temperatures in experiments.
At very low temperatures, i.e., T 
 TBKT or Tλ, the relaxation
time τ should be long enough compared with the inverse of
the frequency ω at which the the superfluidity is measured.
Therefore ωτ � 1, and thus ρs is observed in a torsional
oscillator experiment. As T increases, τ rapidly decreases and
eventually ωτ becomes much smaller than unity (ωτ 
 1).
In this case, it is ρp that is observed with a torsional oscil-
lator. However, ρp readily vanishes at very low temperatures
and thus ρp � 0 at temperatures where ωτ 
 1. Thus, in
dynamical experiments, one observes a crossover from finite
ρs to vanishing ρp (or vice versa) at a temperature where
ωτ � 1. The crossover temperature (or the onset temperature)
To increases as ω increases. What we have found in this study
is that the onset temperature would be TBKT or Tλ in the limit
of ωτ → ∞. In other words, the upper limit of the onset
temperature is TBKT or Tλ in quasi-one dimensional systems.
A crucial point to be emphasized is that the limiting value of
the onset temperature remains to be TBKT or Tλ even in the
one-dimensional limit.

If the onset temperature To is distant from TBKT or Tλ,
we expect to observe a two-step increase in the superfluid
density in a torsional oscillator experiment. However, if the
onset temperature is close the TBKT or Tλ, it might be dif-
ficult to separate To from TBKT or Tλ. In a previous publi-
cation [36], it was argued that this difference might be the
cause for a difference in observation in the film and bar
geometries; To 
 Tλ in the bar geometry, but To � TBKT in
the film geometry. A more detailed analysis of frequency
dependence of the superfluid onset is required to clarify this
point.

Now, two comments are in order on the direction of future
study. First, it is desirable to extend the present calcula-
tion to a continuous system. It is not clear at all how we
can suppress the phase slippage in a continuous system. A
position-dependent mass might be a possible way to suppress
the phase slippage. Next, it is desirable to calculate the su-
perfluid density observed with a torsional oscillator in a given
system directly under a non-equilibrium condition. For this,
we further have to specify the microscopic mechanism of the
dissipation of supercurrent, which determines τ , such as peri-
odic or random potential caused by the substrate. However,
currently, sufficient information is not available about such
microscopic details of the system.
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