
PHYSICAL REVIEW B 100, 224514 (2019)

Josephson current through a ferromagnetic bilayer: Beyond the quasiclassical approximation
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Based on the Bogoliubov–de Gennes equations, we provide an exact numerical solution for the critical
current of Josephson junctions with a composite ferromagnetic bilayer. We demonstrate that for the antiparallel
orientation of the magnetic moments of the bilayer, the presence of a potential barrier at the bilayer interface
results in large oscillations of the critical current as a function of ferromagnet thickness and/or exchange field.
Because of this, and remarkably, in the range of small exchange field and thicknesses, the magnetism leads
to the increase of the critical current. This effect is well pronounced at low temperature but disappears near
Tc. If the potential barrier is replaced by a spin-active barrier at the bilayer interface the conventional 0-π
transition, similar to the case of an uniform ferromagnetic Josephson junction, is observed. Strikingly, for a
parallel orientation of the magnetic moments of the bilayer, the presence of the spin-active barrier restores
the anomalous behavior—potential barrier in the antiparallel case. These behaviors result from the resonant
tunneling of Cooper pairs across the composite barrier—an effect related to the spin-dependent Fermi vector in
the presence of the ferromagnets’ exchange field.

DOI: 10.1103/PhysRevB.100.224514

I. INTRODUCTION

In recent years the superconductor (S)-ferromagnet (F)
systems attracted a lot of attention due to the possibility
to fabricate the new devices based on the superconducting
spintronics [1–5]. The properties of different S/F systems
may be rather well qualitatively understood in the framework
of quasiclassical Eilenberger [6] and Usadel [7] approaches.
However, the applicability of these methods assumes that the
exchange field h in the ferromagnet should be much smaller
than the Fermi energy h � EF and the use of the Usadel
equations implies even more restrictive conditions hτ � 1,
where τ is the electrons scattering time. These circumstances
lead to the fact that some subtle qualitative effects may
be missed by the quasiclassical approach, see, for example,
[8–10]. Moreover, a lot of experimental activities with the S/F
heterostructures deal with the strong ferromagnets (or even
half-metals [11–13]) for which the quasiclassical approxima-
tion cannot provide an adequate quantitative description.

The alternative approach for the analysis of proximity
effects in strong ferromagnets is the use of the microscopical
approach on the basis of the Bogoliubov–de Gennes (BdG)
equations [14]. The exact numerical solutions of these equa-
tions may provide additional information to the quasiclassical
approach and this method was used in [15–24] and references
cited therein. Recently the interesting experimental results
were obtained for the Josephson junctions containing a fer-
romagnetic spin valve [25–31]. Taking in mind these exper-
iments in the present work we study the SFS junctions with
a composite F layer consisting of two parallel or antiparallel
ferromagnetic layers separated by either a potential or a spin-
active barrier.

Note that previously the Josephson junctions with fer-
romagnetic bilayers were studied theoretically by different
methods [15–19,32–39] . However, most of the theoretical
analysis was made in the framework of the quasiclassical
approach, while in the present work we discuss some effects
which cannot be found by this approach and has not been
discussed before. We have calculated the critical current of
the Josephson junctions with a composite (spin-valve) F1F2

interlayer and studied the role of the potential and spin-active
barrier at the F1/F2 interface. The obtained results show an
anomalous behavior of the critical current as a function of
the exchange field and/or F layer thickness which is very
sensitive to the type of barrier at the F1/F2 interface.

II. MODEL AND FORMULA

The considered SF1F2S Josephson junction with a cen-
tral potential or spin-active barrier is shown schematically
in Fig. 1. The x axis is chosen to be perpendicular to the
layer interfaces with the origin located at the central F1/F2

interface. The BCS mean-field effective Hamiltonian is [2,14]

Heff =
∑
α,β

∫
dr{ψ̂†

α (r)[He − (hzσ̂z )αα]ψ̂α (r)

+ 1

2
[(iσ̂y)αβ�(r)ψ̂†

α (r)ψ̂†
β (r) + H.c.]

+ ψ̂†
α (r)(U σ̂0 − �ρ · �σ )αβψ̂β (r)}, (1)

where He = − h̄2∇2

2m − EF , and ψ̂†
α (r) and ψ̂α (r) represent

creation and annihilation operators with spin α. σ0 denotes
a 2 × 2 unit matrix, and �σ = (σ̂x, σ̂y, σ̂z ) is the vector of Pauli
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FIG. 1. The sketch of the SF1F2S Josephson junction with a
potential or spin-active barrier at F1/F2 interface. The lengths of F1

and F2 are denoted by d1 and d2, respectively.

matrices. Here m denotes the effective mass of the quasipar-
ticles in both the superconductors and the ferromagnets and
EF is the Fermi energy. We assume equal Fermi energies in
the different regions of the junction. The superconducting gap
is supposed to be constant in the superconducting leads and
absent inside the ferromagnetic region:

�(r) =
⎧⎨
⎩

�eiφ/2, x < −d1,

0, −d1 < x < d2,

�e−iφ/2, x > d2,

(2)

where � is the magnitude of the gap, and φ is the phase
difference between the two superconducting leads. This ap-
proximation is justified when, for example, the width of the
superconducting layers is much larger than the width of F
layers. We model the central F1/F2 interface by a δ function
potential barrier which consists of a spin-independent part
U = V0δ(x) and a spin-active part �ρ = (ρx, ρy, ρz )δ(x). The
exchange field in two ferromagnetic layers is parallel or
antiparallel to the z axis. It has the form

hz =
{

h1ẑ, −d1 < x < 0,

±h2ẑ, 0 < x < d2,
(3)

where ẑ is the unit vector along the z axis.
To diagonalize the effective Hamiltonian, we use the Bo-

goliubov transformation ψ̂α (r) = ∑
n[unα (r)γ̂n + v∗

nα (r)γ̂ †
n ]

and take into account the anticommutation relations of the
quasiparticle annihilation operator γ̂n and creation operator
γ̂ †

n . Using the presentation unα (r) = uα
peipx, vnα (r) = vα

p eipx,
the resulting Bogoliubov–de Gennes (BdG) equations can be
expressed as [14](

Ĥ0 + V̂ δ(x) iσ̂y�(x)
−iσ̂y�

∗(x) −Ĥ0 − V̂ ∗δ(x)

)(
û(x)
v̂(x)

)
= ε

(
û(x)
v̂(x)

)
, (4)

where

Ĥ0 =
(

ξp − hz 0
0 ξp + hz

)

and

V̂ =
(

V0 − ρz −(ρx − iρy)
−(ρx + iρy) V0 + ρz

)
.

Here ξp = h̄2 p2

2m − EF , and û(x) = [u↑
p (x), u↓

p (x)]T and v̂(x) =
[v↑

p (x), v↓
p (x)]T are quasiparticle and quasihole wave func-

tions, respectively.

The BdG equation (4) can be solved for each supercon-
ducting electrode and each ferromagnetic layer, respectively.
For a given energy ε in the superconducting gap, we find the
following plane-wave solutions in the left superconducting
electrode:

ψS
L (x) =C1ζ̂1e−ik+

S x + C2ζ̂2eik−
S x

+ C3ζ̂3e−ik+
S x + C2ζ̂4eik−

S x, (5)

where k±
S = kF

√
1 ± i

√
�2 − ε2/EF − (k‖/kF )2 are the lon-

gitudinal components of the wave vectors for quasiparti-
cles in both superconductors. ζ̂1 = [1, 0, 0, R1e−iφ/2]T , ζ̂2 =
[1, 0, 0, R2e−iφ/2]T , ζ̂3 = [0, 1,−R1e−iφ/2, 0]T , and ζ̂4 =
[0, 1,−R2e−iφ/2, 0]T are the four basis wave functions of the
left superconductor, in which R1(2) = (ε ∓ i

√
�2 − ε2)/�.

The corresponding wave function in the right superconducting
electrode can be described by

ψS
R (x) = D1η̂1eik+

S x + D2η̂2e−ik−
S x

+ D3η̂3eik+
S x + D4η̂4e−ik−

S x, (6)

where η̂1 = [1, 0, 0, R1eiφ/2]T , η̂2 = [1, 0, 0, R2eiφ/2]T , η̂3 =
[0, 1,−R1eiφ/2, 0]T , and η̂4 = [0, 1,−R2eiφ/2, 0]T .

The wave function in the F1 layer is

ψF1 (x) = (M1eik1x + M ′
1e−ik1x )ê1 + (M2eik2x + M ′

2e−ik2x )ê2

+ (M3eik3x + M ′
3e−ik3x )ê3 + (M4eik4x+M ′

4e−ik4x )ê4,

(7)

where ê1 = (1 0 0 0)T , ê2 = (0 1 0 0)T , ê3 = (0 0 1 0)T , and
ê4 = (0 0 0 1)T are basis wave functions in the ferromag-
netic region, and k1(2) = kF

√
1 + (ε ± h1)/EF − (k‖/kF )2

and k3(4) = kF

√
1 − (ε ∓ h1)/EF − (k‖/kF )2 are the longitu-

dinal components of the wave vectors for the quasiparticles in
the F1 layer. The corresponding wave function ψF2 (x) in the F2

layer can be obtained from Eq. (7) by replacement h1 → h2. It
is worthy to note that the parallel component k‖ is conserved
in transport processes of the quasiparticles.

The wave functions [ψS
L (x), ψF1(x), ψF2(x), and ψS

R (x)]
and their first derivatives should satisfy the boundary condi-
tions at the S/F1, F1/F2, and F2/S interfaces,

ψS
L (−d1) = ψF1(−d1),

∂ψS
L

∂x

∣∣∣∣
x=−d1

= ∂ψF1

∂x

∣∣∣∣
x=−d1

, (8)

ψF1(0) = ψF2(0),

dψF2

dx

∣∣∣∣
x=0+

− dψF1

dx

∣∣∣∣
x=0−

= kF

(
Ŵ 0
0 Ŵ ∗

)
ψ (0), (9)

ψF2(d2) = ψS
R (d2),

∂ψF2

∂x

∣∣∣∣
x=d2

= ∂ψS
R

∂x

∣∣∣∣
x=d2

, (10)

where

Ŵ =
(

Z − Pz −(Px − iPy)
−(Px + iPy) Z + Pz

)
. (11)

We define the dimensionless spin-independent parameter
Z = 2mV0/(h̄2kF ) measuring the strength of the potential
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barrier and the dimensionless spin-dependent parameter
Px,y,z = 2mρx,y,z/(h̄2kF ) describing the spin-active barrier at
the F1/F2 interface. For simplicity we just consider the effect
of y-component Py and ignore the role of x and y components
(Px and Pz).

From these boundary conditions we can set up 24 linear
equations in the following form:

ÂX = B̂, (12)

where X contains 24 scattering coefficients and Â is a 24 × 24
matrix. The solution of the characteristic equation

det Â = 0 (13)

allows one to identify two Andreev bound-state solutions for
energies EAω (ω = 1, 2). Below we will consider the case of
the short Josephson junction with a thickness much smaller
than the superconducting coherence length ξ . In such a case
the main contribution to the Josephson current is provided
by the Andreev bound states (see, e.g., [40,41]). In a one-
dimensional (1D) SF1F2S junction, the Josephson current can
be calculated by the general formula

I1D(φ) = 2e

h̄

∂�

∂φ
, (14)

where � is the phase-dependent thermodynamic potential.
This potential can be obtained from the excitation spectrum
by using the formula [42,43]

� = −2T
∑

ω

ln

[
2 cosh

EAω(φ)

2T

]
, (15)

where �, h1, h2, Z , and Py are assumed to be the equilib-
rium values, which minimize the free energy of the SF1F2S
structure and depend on microscopic parameters [44]. The
summation in (15) is taken over all positive Andreev energies
[0 < EAω(φ) < �]. For each value of φ, we solve Eq. (13)
numerically to obtain the two spin-polarized Andreev levels.
Since the Andreev energy spectra are doubled as they include
the Bogoliubov redundancy, and only half of the energy states
should be taken into account, we can find the 1D Josephson
current via Eqs. (14) and (15).

In a three-dimensional (3D) case, the Josephson current
can be expressed as

I3D(φ) = S

4π2

2e�

h̄

∫ kF

0
I1D(k‖)2πk‖dk‖

= 4π�

eRN

∫ 1

0
I1D(k̃‖)k̃‖dk̃‖, (16)

where R−1
N = e2k2

F S/(4π2 h̄) is the Sharvin resistance and
k̃‖ = k‖/kF is the normalized wave vector. The 3D critical
current can be derived from I3D

c = maxφ|I3D(φ)|.

III. RESULTS AND DISCUSSIONS

In our calculations we use the superconducting gap � as
a unit of energy and take the Fermi energy EF = 1000�. All
lengths and the exchange field strengths are measured in units
of the inverse Fermi wave vector kF and the Fermi energy
EF , respectively. Note that the approximation of the short

(b)(a)

FIG. 2. The dependence of the 3D critical current I3D
c on the

ferromagnetic thickness kF d for the exchange field h/EF = 0.1
(a) and on the exchange field h/EF for the ferromagnetic thickness
kF d = 20 (b) when the potential barrier Z takes several different
values. Here we consider an antiparallel orientation of the exchange
fields.

Josephson junction (kF d1, kF d2 � 1000) is fully satisfied in
the presented calculations. The normalized unit of current is
I0 = 2π�/(eRN ) in the 3D case.

We study the SF1F2S structures with a potential barrier Z
or a spin-active barrier Py at the F1/F2 interface. We present
the results for h1 = h2 = h for parallel exchange field and
h1 = −h2 = h for antiparallel exchange field, and define the
ferromagnetic thickness d1 = d2 = d .

We draw in Fig. 2 the dependence of the critical current
I3D
c on the ferromagnetic thickness kF d and the exchange

field h/EF for an antiparallel alignment of the magnetic
moment h1 = −h2 = h when the potential barrier Z takes
several different values. It is shown that the critical current
decreases monotonically with the increasing exchange field
for the transparent F1/F2 interface Z = 0, while it reveals the
oscillating behavior for Z > 0. By increasing Z , the amplitude
of the critical current decreases as a whole, but the oscillation
behavior still remains. The critical current shows the same
characteristic if one increases the ferromagnetic thickness
kF d . These features indicate that the oscillation of the critical
current originates from the resonant tunneling of the Cooper
pairs occurring between the F1 and F2 layers. In fact the spin-
dependent wave vector of the pairing electrons will change
when the Cooper pairs pass through the F1 and F2 layer, and
therefore the phase evolution of the Cooper pairs leads to the
resonances occurring in F1 and F2. Therefore, the oscillation
period depends on the exchange field and/or thickness of the
ferromagnets, not on the properties of the central insulating
barrier.

If one changes the exchange field h/EF and thickness
kF d of the ferromagnetic layers, the oscillation period of the
critical current changes accordingly. The calculation results
are illustrated in Fig. 3. The observed oscillations remind us of
the oscillations observed previously in [19] for the 1D model
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(a)

(b)

FIG. 3. The dependence of the 3D critical current I3D
c on the

ferromagnetic thickness kF d (a) and on the exchange field h/EF

(b) in the case of an antiparallel orientation. Here the potential barrier
is Z = 2.

of the junction with noncollinear magnetization and attributed
to the geometrical resonances. The interesting consequence
of the presence of barrier is the counterintuitive increase
of the critical current with increasing exchange field [up to
hmax/EF ∼ 0.12 when kF d = 10, see Fig. 3(b)] or ferromag-
netic layer thickness [up to kF dmax ∼ 24 when h/EF = 0.05,
see Fig. 3(a)]. Note that the similar increase of the current with
the exchange field was obtained in the models of S/F tunnel
structures [34–36]. The key difference between our results and
Refs. [34–36] is that the initial increase was not followed by
the oscillatory behavior of the critical current with exchange
field and/or ferromagnetic layer thickness. We find also that
the growth range of the critical current with the exchange
field strongly depends on the ferromagnetic layer thicknesses.
Moreover, note that in presence of a potential barrier the
critical current slightly increases with normal-metal thickness
when both ferromagnets become the normal-metal (h/EF =
0) [see Fig. 3(a)]. This circumstance reflects the presence of
some resonance effects in this case too. It should be noted that
the oscillatory effect mentioned above is revealed only at low
temperatures. The dependence of the critical current on the
temperature is illustrated in Fig. 4. We see that the oscillations
of the critical current I3D

c will decrease as the temperature
T/� increases, which should be related to the smearing of the
resonance tunneling from the lowest Andreev levels. When
T/� reaches 0.9, the oscillation completely disappears and
I3d
c decreases monotonously.

(a) (b)

FIG. 4. The dependence of the 3D critical current I3D
c on the fer-

romagnetic thickness kF d for the exchange field h/EF = 0.1 (a) and
on the exchange field h/EF for the ferromagnetic thickness kF d = 20
(b) in the case of an antiparallel orientation. Here the temperature
T/� varies from 0 to 0.9 with a step 0.1, which corresponds to the
curves from top to bottom. The potential barrier is Z = 2.

(a)

(b)

FIG. 5. The dependence of the 3D critical current I3D
c on the

ferromagnetic thickness kF d (a) and on the exchange field h/EF

(b) in the case of a parallel orientation. Here the spin-active barrier is
taken as Py = 2.
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(b)

(a)

FIG. 6. The dependence of the 3D critical current I3D
c on the

ferromagnetic thickness kF d (a) and on the exchange field h/EF

(b) in the case of an antiparallel orientation. Here the spin-active
barrier is taken as Py = 2. The dips at the curves signal the transitions
between 0 and π states.

In Fig. 5 we show the variation characteristics of the critical
current in SF1F2S structure with the magnetic moment in
F1 and F2 being parallel and with a spin-active barrier at
the F1/F2 interface. It is found that the critical current also
displays an oscillating behavior. The behavior is similar to
the cases in which the magnetic moments are antiparallel and
there is a potential barrier at the F1/F2 interface. So we can
say that the spin-active barrier at the F1/F2 interface can play
two roles: (i) It creates a spin-flip effect to flip the spin of
the conduction electrons crossing the F1/F2 interface. The
two ferromagnets have the same energy band because of the
parallel polarized direction of the magnetic moments. In such
a case, spin-↑ (↓) electrons will be transformed into spin-↓
(↑) electrons when they pass from the F1 layer into the F2

layer. The same electron will occupy the opposite spin band in
the F1 and F2 layers. This situation is similar to the antiparallel
ferromagnets without the spin-flip in the central interface.
(ii) It acts as a potential barrier, which hinders electron tun-
neling and reduces the transmission of the F1/F2 interface.
Therefore, we can still see the oscillating phenomenon of the
critical current in this structure.

Similarly, the above two roles caused by the spin-active
barrier can also present in the antiparallel SF1F2S junction. If
one only considers the role of the spin-flip effect, the antipar-
allel SF1F2S junction with a central spin-flip is equivalent to a
homogeneous SFS junction. In this case, the 0-π transition

(b)

(a)

FIG. 7. The dependence of the 3D critical current I3D
c on the

ferromagnetic thickness kF d (a) and on the exchange field h/EF

(b) in the case of a parallel orientation. Here the potential barrier is
taken as Z = 2. The dips at the curves signal the transitions between
0 and π states.

will resume. For example, at h/EF = 0.05 the inversion of
the current sign takes place at kF d ≈ 10 and kF d ≈ 40 (see
Fig. 6(a) and Fig. 1 in the Supplemental Material [45]). In
other words, the junction is in π state for kF d ≺ 10 and
kF d � 40, as well as it will become 0 state in the region 10 ≺
kF d ≺ 40. Moreover, the insulating property of the spin-active
barrier causes a resonant tunneling of electrons. This results in
the largest peaks that appear periodically in the current I3D

c .
For example, if one looks at the curve for h/EF = 0.10 in
Fig 6(a), the resonance produces the peaks at kF d ≈ 10 and
kF d ≈ 40, which appear in similar positions in Fig. 3(a).

To further demonstrate the coexistence of resonant tun-
neling and 0-π transition, we calculated the current in the
parallel SF1F2S junction with a central potential barrier. It
is known that, in a uniform SFS junction, the critical cur-
rent decays with increasing ferromagnetic thickness (or ex-
change field) and also reveals oscillations caused by the 0-π
transition. If the potential barrier is introduced at the center
of the ferromagnet, the amplitude of the critical current will
be suppressed overall because the potential barrier reduces
the transmission of the conduction electrons. Meanwhile, the
resonant tunneling of the conduction electrons between F1 and
F2 layers induces the periodic peaks in the critical current. As
a result, the critical current shows singular features in Fig. 7
and Fig. 2 of the Supplemental Material [45].
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(b)

(a)

FIG. 8. The dependence of the 3D critical current I3D
c on the

ferromagnetic thickness kF d1 (a) and on the exchange field h1/EF

(b) for the SF1S configuration (d2 = 0) with the potential barrier
Z = 2 at the right F1/S interface. The dips at the curves signal the
transitions between 0 and π states.

Finally, in order to illustrate the previous conjecture re-
garding resonant tunneling, we discuss the current in the SF1S
junction (d2 = 0) with the potential or spin-active barriers at
the F1/S interface. As shown in Figs. 8 and 9, the critical cur-
rent displays a damped oscillation with increasing thickness
kF d1 and/or exchange field h1/EF . These current oscillations
can be attributed to the 0-π transition (see Figs. 3 and 4 in
the Supplemental Material [45]) but not to the periodic peaks
induced by the resonant tunneling between the F1 and F2

layers, because the resonant tunneling cannot exist in these
structures. In addition, we find that the critical current at
the transition between the 0 and π states is close to zero
in the SF1S junction with the potential barrier Z = 2 at the
F1/S interface, when the thickness kF d1 and/or exchange field
h1/EF take larger values. However, this current is much larger
when the F1/S interface has a spin-active barrier Py = 2 (see
Fig. 9). This may be related to the important contribution from
the second harmonic current in the presence of spin-active
interface structure [34,46–48].

IV. CONCLUSION

On the basis of the exact numerical solution of the
Bogoliubov–de Gennes equations, we have studied the
Josephson current in the SF1F2S junctions containing a po-
tential or spin-active barrier at the F1/F2 interface. We show

(a)

(b)

FIG. 9. The dependence of the 3D critical current I3D
c on the

ferromagnetic thickness kF d1 (a) and on the exchange field h1/EF

(b) for the SF1S configuration (d2 = 0) with the spin-active barrier
Py = 2 at the right F1/S interface. The dips at the curves signal the
transitions between 0 and π states.

that at low temperature the potential barrier may result in
large oscillations of the critical current as a function of the
ferromagnetic layer thickness and exchange field even for
the antiparallel orientation of the magnetic moment in the F1

and F2 layers. Such behavior is related to the interference
effects of the electrons wave functions and may be consid-
ered as some form of the geometrical resonance phenomena.
Specifically, comparing to the normal-metal junction (h = 0
in our model), the exchange field (h > 0) can enhance the
critical current for the antiparallel configuration. In contrast,
the spin-active barrier in this antiparallel configuration leads
to the 0-π transitions, which is similar to the case of the
uniform SFS junction. The spin-active barrier in the parallel
configuration can also cause the oscillations of the critical cur-
rent. The obtained results may be useful for the interpretation
of the experimental data on the Josephson junctions with a
composite ferromagnetic barrier.
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