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Surface density of states in superconductors with inhomogeneous
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We consider a superconductor with surface suppression of the BCS pairing constant λ(x). We analytically
find the gap in the surface density of states (DOS), behavior of the DOS ν(E ) above the gap, a “vertical”
peculiarity of the DOS around an energy equal to the bulk order parameter �0, and a perturbative correction
to the DOS at higher energies. The surface gap in the DOS is parametrically different from the surface value of
the order parameter due to a difference between the spatial scale rc at which λ(x) is suppressed and the coherence
length. The vertical peculiarity implies an infinite-derivative inflection point of the DOS curve at E = �0 with
square-root behavior as E deviates from �0. The coefficients of this dependence are different at E < �0 and
E > �0, so the peculiarity is asymmetric.
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I. INTRODUCTION

The standard BCS theory of superconductivity assumes a
homogeneous pairing constant λ(r) = λ0 that leads to the for-
mation of Cooper pairs and the superconducting condensate
characterized by the order parameter �(r) = �0 [1,2]. Obvi-
ously, the inhomogeneous pairing constant should essentially
influence the superconducting properties of the system. One
of the basic examples of inhomogeneous λ(r) dependence
is a hybrid superconductor/normal-metal (SN) structure, in
which λ = 0 in the N part. The corresponding inhomogeneity
of �(r) gives rise to a prominent effect of Andreev reflection
at the SN interface and to possibility of Andreev bound states
in the N section of the structure [2,3].

In the absence of interfaces, effects of local inhomo-
geneities of the pairing constant on the quasiparticle density
of states (DOS) and other physical quantities have been stud-
ied in bulk (clean) superconductors with both conventional
s-wave and anisotropic d-wave pairing [4–6]. Although de-
tails depend on the specific type of system under discussion,
the modifications of the DOS are generally related to the
formation of the Andreev bound states at inhomogeneities of
λ(r) and �(r). Periodic-in-space modulations of λ(r) influ-
ence basic superconducting properties such as the critical
temperature and the energy gap [7,8]. Inhomogeneous pair-
ing also influences superconducting properties in non-BCS
models [9].

An inhomogeneous spatial profile of �(r) represents the
Andreev potential well. While in clean superconductors this
results in the Andreev bound states, in the diffusive limit,
the discrete Andreev levels are effectively smeared out and
a spectral gap is formed instead. This spectral gap Eg is a
functional of the full �(r) profile and marks the minimal
energy of a continuum quasiparticle spectrum (see examples
of the Eg calculation in Refs. [10,11]).

In a conventional s-wave superconductor, a surface by itself
does not cause pair breaking. Theoretically, if a surface simply
defines the geometry of a sample, the order parameter and
the DOS do not vary in space, i.e., the bulk solution is valid
everywhere inside the superconductor and is not distorted by
the surface [2].

At the same time, in realistic samples, the surface can be
imperfect in the sense that it influences superconductivity due
to additional effects such as thin oxide layers, absorbed im-
purities, deviations from stoichiometry, etc. [12,13]. Surface
properties can also be manipulated on purpose by chemical
treatment or by irradiation [14]. A theoretical description
of those effects is complicated and definitely nonuniversal.
To model suppression of superconductivity near the surface,
one can assume surface suppression of the BCS pairing
constant λ(r) [15–18]. Microscopically, this effect can be
due to changes in lattice properties (i.e., phonons) or in
electron-phonon interaction in the vicinity of an imperfect
surface. Moreover, even in ideal samples, the near-surface
pairing constant can be suppressed due to properties of surface
phonons [19] (note at the same time that the opposite effect
of surface enhancement of superconductivity has also been
discussed [20]).

In this paper, we study the surface DOS in a diffusive
superconductor with the pairing constant λ(r) varying near
the surface. The surface DOS can be directly probed by
scanning tunneling spectroscopy and also directly influences
the surface impedance (in particular, its real part, the surface
resistance) [2,17,18].

A complementary problem of the DOS in superconductors
with random λ(r) has been studied before by Larkin and
Ovchinnikov [21] and in subsequent publications [22,23]. In
contrast, similarly to Gurevich and Kubo [17], we assume
deterministic form of the λ(r) dependence; see Fig. 1. In
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FIG. 1. Surface suppression of the BCS pairing constant λ(x)
(schematic plot). The superconductor occupies the x > 0 region. The
bulk value is denoted λ0. The surface suppression takes place near the
surface, at x ∼ rc. The same model was considered in Refs. [15–17].

Ref. [17], the analytical approach to calculating the DOS in
the model of Fig. 1 was formulated and numerical results for
the surface DOS were presented. In this paper, we mainly
focus on analytical results for the surface DOS. In particular,
we analyze the suppression of the gap edge Eg (with respect to
the bulk value of the order parameter �0) and behavior of the
DOS above Eg. We also demonstrate peculiar DOS behavior
in the vicinity of E = �0.

The paper is organized as follows: In Sec. II, we formulate
equations of the self-consistent quasiclassical theory in the
diffusive limit. In Sec. III, we recall how self-consistency for
the order parameter is taken into account in the case of small
disturbance of λ(r). In Sec. IV, we analyze the perturbative
regime of energies E > �0. In Sec. V, we consider the
nonperturbative regime of E ∼ �0; this section contains our
main results for the gap Eg and the behavior of the DOS at
E ≈ Eg and E ≈ �0. In Sec. VI, we illustrate and discuss our
results. In Sec. VII, we present our conclusions. Finally, some
details of calculations are presented in the Appendixes.

Throughout the paper, we employ the units
with kB = h̄ = 1.

II. GENERAL EQUATIONS

To calculate the DOS in a diffusive inhomogeneous su-
perconductor, we employ the quasiclassical approach [24,25].
With the help of the standard θ parametrization, we can write
the normal and anomalous Green’s functions as G = cos θ and
F = sin θ , respectively. The coupled system of the Usadel
equation [24] and the self-consistency equation can then be
written as

D

2
∇2θ (ωn, r) − ωn sin θ (ωn, r) + �(r) cos θ (ωn, r) = 0,

(1)

�(r) = λ(r)πT
∑

n

sin θ (ωn, r). (2)

Here D is the diffusion constant, T is temperature, ωn =
πT (2n + 1) is the Matsubara frequency, and � is the super-
conducting order parameter.

We consider a superconductor with a flat surface, so that all
quantities depend only on x, the coordinate along the normal
to the surface (the superconductor occupies the x > 0 half
space). To complete the system of equations, we must take
into account the boundary condition at the surface,

∂θ/∂x
∣∣
x=0 = 0. (3)

Our model of the surface suppression of superconductivity
is defined by the form of the λ(x) dependence (similarly to
Ref. [17]). At x → ∞, the pairing constant λ(x) tends to its
bulk value λ0, while we assume it to vary near the surface at
some characteristic length scale rc; see Fig. 1.

The DOS at each point (normalized to the normal-metallic
value ν0) can be calculated from the normal Green’s function
after analytical continuation to real energies E :

ν(E , x)

ν0
= Re cos θ (ωn, x)

∣∣∣∣
ωn �→−i(E+i0)

. (4)

The DOS in our problem is an even function of energy, so
below we discuss only E > 0.

One could reformulate Eqs. (1)–(3) in the real-energy
representation from the very beginning. However, we prefer to
start from the Matsubara representation since it is convenient
for treating the self-consistency equation (2) (no singularities
in the anomalous Green’s function under the sum) and switch
to real E only in the end of calculation, according to Eq. (4).

The solution of the system of Eqs. (1)–(3) is inhomoge-
neous only because of the λ(x) dependence. In the case of
λ(x) ≡ λ0, the bulk solution would be valid everywhere in the
superconductor up to the surface. This bulk solution yields

cos θ0(ωn) = ωn√
ω2

n + �2
0

, sin θ0(ωn) = �0√
ω2

n + �2
0

, (5)

and Eq. (4) then immediately produces the BCS DOS,

νBCS(E )

ν0
= Re

E√
E2 − �2

0

. (6)

III. SELF-CONSISTENT PERTURBATION THEORY

Small spatially dependent inhomogeneities in λ(r) gener-
ate small inhomogeneities in �(r) and θ (ωn, r):

λ = λ0 + λ1(r), (7)

� = �0 + �1(r), (8)

θ = θ0(ω) + θ1(ωn, r). (9)

Expanding the Usadel equation (1) with respect to small
inhomogeneities, we find

θ1(ωn, k) = �1(k)
cos θ0

D
2 k2 + ωn cos θ0 + �0 sin θ0

, (10)

and the self-consistency equation (2) yields [21,23]

�1(k)

�0
= L0(k)

λ1(k)

λ2
0

(11)
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(the combination |λ1|/λ2
0 naturally arises as variation of 1/λ).

Here L0(k) is the static propagator of superconducting fluc-
tuations; see Eq. (A1) in Appendix A for the definition. This
function is real (positive) and even. The behavior of L0(k) in
some limiting cases is considered in Appendix A.

A given form of λ(k) thus directly determines �1(k)
according to the general relation (11). Although the charac-
teristic scale for L0(k) is inverse coherence length, at this
scale the decay law only changes to a very slow 1/ ln(k2)
form [21]. This decay law cannot lead to convergence of
integration when we transform Eq. (11) to coordinate space,
so the characteristic scale for �1(x) is eventually the same as
for λ1(x), i.e., it is given by rc [21].

It is most convenient to treat relation (11) within the
framework of the Matsubara technique [summation over the
Matsubara frequencies is contained in the expression for
L0(k)]. The correction to the Green’s functions [encoded in the
correction to the spectral angle θ1(ωn, k)] is then immediately
given by Eq. (10). Finally, we need to calculate the DOS
according to Eq. (4). This final step must be done at real
energies, so there will be a problem at E ≈ �0 due to the BCS
singularity in the unperturbed Green’s functions. The above
perturbative approach therefore works only at E above (and
not too close to) �0.

IV. DENSITY OF STATES: PERTURBATIVE
REGIME, E > �0

The perturbation theory, Eqs. (10) and (11), immediately
produces

ν1(E , x)

ν0
= − Re [θ1(ωn, x) sin θ0(ωn)]

∣∣∣∣
ωn �→−iE

(12)

for deviation of the DOS from the BCS result, Eq. (6).
The given function λ1(x) is real and defined at x > 0. We

can symmetrically continue it to the whole axis obtaining an
even function. The Fourier transform can then be written as
λ1(k) = ∫

dx cos(kx)λ1(x); it is also real and even. We then
find the result for the DOS:

ν1(E , x)

ν0
= −�2

0

λ2
0

E

�2
0 − E2

Im
∫ ∞

−∞

dk

2π

eikxL0(k)λ1(k)

Dk2

2 +
√

�2
0 − E2

.

(13)

The integral
∫

dkeikx (· · · ) can be written as∫
dk cos(kx)(· · · ), and the result is manifestly zero

at E < �0. Of course, the actual local DOS in the
inhomogeneous case can be finite at E < �0, however,
this region is “nonperturbative” from the point of view of
our straightforward perturbation theory. This approach only
works well at E > �0 (not too close to �0).

The general perturbative result (13) simplifies considerably
if λ1(k) is a decaying function with small characteristic scale
so that the integral in Eq. (13) converges at this scale. Phys-
ically, this means that λ(x) varies slowly enough so that the
DOS in this case has the BCS form corresponding to the local
value of �(x) [21]. Equation (13) then yields

ν1(E , x)

ν0
= �2

0

λ2
0

L0(0)λ1(x) Re
E(

E2 − �2
0

)3/2 , (14)

and the same result is obtained directly by varying the BCS
expression (6) and taking into account Eq. (11).

At zero temperature, L0(0) = 1, and at E > �0 we obtain

ν1(E , x)

ν0
= E�2

0(
E2 − �2

0

)3/2

λ1(x)

λ2
0

. (15)

The same result is obtained directly by varying the BCS
expression (6) and taking into account the BCS relation �0 =
2ωDe−1/λ0 at T = 0 (here ωD is the Debye frequency).

From now on, we consider the case T = 0 in order to maxi-
mize characteristic energy scales related to superconductivity.

The coherence length

ξ0 =
√

D

2�0
(16)

sets the characteristic scale for the fluctuation propagator
L0(k) [at the same time, as we have mentioned above, at
k � ξ−1

0 the L0(k) function decays very slowly]. At the same
time, the denominator in the integral in Eq. (13) varies at
k ∼ ξ−1

E , where the scale is set by a different, energy-
dependent coherence length,

ξE =
√√√√ D

2
√∣∣�2

0 − E2
∣∣ . (17)

The physical picture beyond the perturbative results (14)
and (15) is that the DOS adiabatically follows variations of
�(x) and has the BCS form corresponding to the local value
of the order parameter. This result is valid if rc exceeds both
ξ0 and ξE [slow λ(x) function] and reproduces the result for
the case of inhomogeneities of large size, obtained by Larkin
and Ovchinnikov [21].

The calculated DOS at E > �0 is valid at any x, in par-
ticular, at the surface. However, the perturbative results (14)
and (15) become invalid at E → �0 due to divergence in the
denominators (and breakdown of the requirement rc > ξE ).

At the same time, we are mainly interested in calculating
the surface DOS near �0 and below. In particular, we want to
find the shift of the spectrum edge due to inhomogeneity. This
region of energies is nonperturbative and should be treated
differently.

V. DENSITY OF STATES: NONPERTURBATIVE
REGIME, E ∼ �0

Now we assume short-range variation of the pairing con-
stant, so that

rc 	 ξ0. (18)

We substitute θ = π/2 + iψ (this is convenient for finding
the energy gap since ψ is real below the gap). Introducing
dimensionless energy, order parameter (its inhomogeneous
part), and coordinate according to

ε = E/�0, δ1(x) = �1(x)/�0, X = x/ξ0, (19)

we rewrite the Usadel equation (1) in the real-energy repre-
sentation as

ψ ′′ − κ
2 sinh (ψ − ψ0) = δ1(X ) sinh ψ, (20)
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where

κ = (1 − ε2)1/4, ψ0 = arctanh ε. (21)

Here ψ0 is the bulk solution [the real-energy counterpart
of Eq. (5)]. Note that in terms of κ, the energy-dependent
coherence length (17) can be written as ξE = ξ0/|κ|.

At ε ∼ 1, we have either |κ| < 1 or |κ| ∼ 1. The charac-
teristic spatial scale for ψ (X ), which is determined by |κ|−1,
is then much larger than rc/ξ0, the characteristic spatial scale
for δ1(X ). The right-hand side (r.h.s.) of Eq. (20) therefore acts
as a δ function and can be taken into account as an effective
boundary condition [16,17]. For that, we integrate Eq. (20)
from 0 to X0, such that rc/ξ0 	 X0 	 |κ|−1. This scale is
small for ψ (X ) and large for δ1(X ). As a result, we obtain
the following effective problem:1

ψ ′′ − κ
2 sinh (ψ − ψ0) = 0, (22)

ψ ′(0) = −d1 sinh ψ (0), (23)

where

d1 = −
∫ ∞

0
δ1(X )dX. (24)

Since |δ1(X )| does not exceed unity and the characteristic
scale of integration in Eq. (24) is set by rc/ξ0, due to condition
(18) we have

d1 	 1. (25)

Expressing d1 in terms of λ1 with the help of Eq. (11) and
taking into account condition (18), we find

d1 = −L0(0)

λ2
0ξ0

∫ ∞

0
λ1(x)dx. (26)

Equation (22) is solved by

ψ = 4 arctanh(ae−κX ) + ψ0, (27)

where a should be determined from the boundary condition
(23):

κ
3

d1
= 4a(1 + a2) + √

1 − κ
4(1 + 6a2 + a4)

4a(1 − a2)
. (28)

This equation was derived in Ref. [16] and (in different
notations) in Ref. [17].

Finally, the DOS (4) is given by

ν(E , x)

ν0
= Im sinh ψ (E , x). (29)

In the following, we analyze the DOS assuming that ε is
close to 1, so that

κ ≈ [2(1 − ε)]1/4, |κ| 	 1 (30)

(see Appendix B, where the applicability conditions are for-
mulated in terms of the input parameters of our model). We

1Deriving Eq. (23), we assume X0κ
2 sinh(ψ (0) − ψ0 ) 	 ψ ′(0). As

follows from our further calculations, this condition is most restric-
tive near the gap, where we have [ψ (0) − ψ0] ∼ 1 and ψ ′(0) ∼ κ,
so our assumption reduces to X0 	 κ

−1. This allows us to choose X0

in the desired range between rc/ξ0 and κ
−1.

FIG. 2. Right-hand side of Eq. (31) at −1 < a < 1. The minimal
positive value 33/2/2 is reached at ag = 2 − √

3.

can then replace the square root in the numerator of Eq. (28)
by 1, obtaining the simplified equation

κ
3

d1
= (1 + a)3

4a(1 − a)
. (31)

A. Energy gap Eg

Below the gap (at E < Eg), the DOS (29) is equal to zero,
which leads to the condition that ψ is real. The form of the
solution (27) then implies that a is real and |a| < 1. The
behavior of the r.h.s. of Eq. (31) in this range of a is shown
in Fig. 2.

The case we are interested in (suppression of � near the
surface) corresponds to d1 > 0 (while κ is real and positive
near the gap). Equation (31) then yields two solutions for a
at large enough κ. They merge and disappear as κ decreases
to κg = (31/2/21/3)d1/3

1 , which determines the dimensionless
gap εg. The gap value is then given by

Eg

�0
= 1 − 32

27/3
d4/3

1 , (32)

which means that the gap in the surface DOS is suppressed
in comparison with the bulk value of the order parameter.
Assumption (30) implies that d1 	 1.

We can interpret the result as follows: The spatial scale
for the Green’s function is ξE = ξ0/|κ|, so from the point
of view of the spectral gap, information about suppression
of �(x) is gathered on this scale. At the same time, �(x)
itself is suppressed on much smaller scale of rc. Therefore,
the effect of � suppression on the gap value will be weakened
accordingly:

�0 − Eg ∼ 1

ξE

∫ ∞

0
|�1(x)|dx. (33)

In the dimensionless units, this is written as

1 − εg ∼ κgd1. (34)

Taking into account Eq. (30), we then find κ
3
g ∼ d1, in agree-

ment with Eq. (31) and hence with Eq. (32).
Note that the r.h.s. of Eq. (33) can be estimated as

|�1(0)|rc/ξE , which is much smaller than |�1(0)|. This im-
plies that the surface suppression of the gap edge [the l.h.s. of
Eq. (33)] is much smaller then the surface suppression of the
order parameter.
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In terms of the discussion presented in Sec. I, we deal with
a shallow Andreev potential well formed near the surface.
Impurities smear the Andreev levels out in such a way that
the resulting spectral edge Eg is close to the top of the well.

B. Density of states near Eg

According to Eq. (32), deviation of Eg from �0 in dimen-
sionless units is given by

γ ≡ 1 − εg = 32d4/3
1 /27/3. (35)

We want to calculate how a finite DOS appears immediately
above Eg. For that we define dimensionless deviation of E
from Eg,

ε ≡ ε − εg, (36)

and consider ε 	 γ . In this case

κ ≈ κg = (2γ )1/4. (37)

Above the gap (at ε > 0, i.e., at κ < κg), there are no real
solutions of Eq. (31) for a (on the physical branch depicted in
Fig. 2), and at ε 	 γ we find the following complex solution
(the sign is chosen so that the DOS is positive):

a = ag(1 + i
√

3ε/2γ ). (38)

This leads to

ψ (ε, X ) ≈ ψ0(εg) + 4 arctanh(age−κgX ) + 4(a − ag)e−κgX

1 − a2
ge−2κgX

(39)

and

ν(ε, X )

ν0
= Im sinh ψ ≈ 1

2
Im eψ

= 2
√

3ag
e−κgX (1 + age−κgX )

(1 − age−κgX )3

√
ε

γ
, (40)

where we have employed the fact that Re ψ � 1 due to
ε ≈ 1 [ψ0(εg) in Eq. (39) is large in this case]. At x = 0, the
expression for the DOS simplifies to

ν(ε, 0)

ν0
= 3

√
ε

γ
. (41)

The square-root dependence of the DOS near the spec-
tral edge is characteristic for the mean-field problem of a
superconductor with weak magnetic impurities, considered
by Abrikosov and Gor’kov (AG) [26], and various other
problems that can be mapped onto it. In terms of the AG
pair-breaking parameter η = 1/τs�0 (where τs is the spin-flip
scattering time), in the limit of η 	 1, the AG result [26]
for the energy gap corresponds to γAG = 3η2/3/2, while the
relation between ν(ε) and γ has the form

νAG(ε)

ν0
=

√
3

2

√
ε

γAG
. (42)

Interestingly, our Eq. (41) differs from this relation by a
factor of

√
6.

C. Density of states near �0

1. E = �0

At E → �0, the parameter κ
3/d1 in Eq. (31) tends to zero,

so a → −1. To calculate the DOS at E = �0, we have to keep
the correction to this solution. This can be done perturbatively:

a = −1 + α, |α| 	 1, (43)

which immediately yields α = (−1)1/3 × 2κ/d1/3
1 . There are

three possible values of (−1)1/3. The real one, −1, leads to
zero DOS. The complex one producing the positive DOS is

α = 2eiπ/3
κ/d1/3

1 . (44)

With the help of the identity

arctanh z = 1

2
ln

1 + z

1 − z
, (45)

the solution (27) at x = 0 can be written as

ψ (ε, 0) = ln

[(
1 + a

1 − a

)2(1 + ε

1 − ε

)1/2
]
. (46)

Taking into account Eqs. (43) and (44), we obtain

ψ (ε, 0) = ln
(
2e2π i/3

/
d2/3

1

)
. (47)

Since Re ψ (ε, 0) � 1, we may write2

ν(E = �0, 0)

ν0
≈ 1

2
Im eψ =

√
3

2d2/3
1

= 33/2

213/6γ 1/2
. (48)

2. E → �0

Next, we want to find ν(E ) when E deviates slightly from
�0. For that, the main-order result (44) in the solution (43) is
not sufficient, and we have to calculate α to higher orders with
respect to κ (that encodes the deviation of E from �0; note
that κ is real at E < �0 and complex at E > �0). Introducing
for brevity

κ̃ ≡ κ/d1/3
1 , (49)

we rewrite Eq. (31) as

α3 = −8κ̃
3(1 − α)(1 − α/2). (50)

Its solution at small κ̃ is expanded into integer powers of
κ̃, and for our calculation the following precision of the
perturbation theory is required:

α = O(κ̃) + O(κ̃2) + O(κ̃3). (51)

Three steps of the perturbation theory for Eq. (50) yield3

α ≈ 2eiπ/3
κ̃ − 2e2iπ/3

κ̃
2 − 4κ̃

3/3. (52)

2Equation (48) parametrically coincides with the corresponding
AG result

νAG(E = �0)

ν0
= 3

211/6γ
1/2
AG

,

differing only by a numerical factor of 31/2/21/3.
3In Sec. V C 2, perturbation theory with respect to small κ [or, more

precisely, small κ̃; see Eqs. (49)–(51)] is based on Eq. (31). Since
Eq. (31) itself is obtained from Eq. (28) at κ 	 1, it is necessary to
make sure that no essential contribution is lost within this approach.
One can check that this is indeed so. The reason is that the lost

224513-5



FOMINOV, MAZANIK, AND RAZUMOVSKIY PHYSICAL REVIEW B 100, 224513 (2019)

FIG. 3. Surface DOS ν(E , 0) obtained from Eqs. (29) and (27)
after finding a from Eq. (28) numerically. The colored curves corre-
spond to d1 = 0.2 (blue), d1 = 0.1 (red), and d1 = 0.05 (green). The
black dotted curve is the BCS DOS (corresponding to d1 = 0).

Plugging this into Eqs. (43), (46), and (29), we find the surface
DOS:4

ν(ε, 0)

ν0
=

√
3

2d2/3
1

+
√

2

3d4/3
1

Im[(1 + i
√

3)(1 − ε)1/2]

= 33/2

213/6γ 1/2
+ 3

211/6γ

√
|1 − ε| ×

{√
3, ε < 1,

−1, ε > 1.

(53)

The (dimensionless) shift of the spectral edge in the surface
DOS corresponds to (1 − ε) = γ [see Eq. (35)], which sets
the natural energy scale for our result (53). At (1 − ε) ∼ γ ,
both terms in Eq. (53) are of the same order and ν(ε, 0)/ν0 ∼
1/γ 1/2. This can be viewed as moving from �0 towards Eg.
On the other hand, moving from Eg towards �0, we can apply
Eq. (41), which yields the same estimate for the DOS at
ε ∼ γ . So, the results are consistent and match each other.

VI. DISCUSSION

We illustrate our results in Fig. 3, which is obtained by
solving Eq. (28) numerically. Although Eq. (28) itself can
be considered at arbitrary valued of d1, it was derived and
describes our physical system only at d1 	 1. Therefore, in
Fig. 3, we show the DOS only at small values of d1.

Equation (28) and hence the curves in Fig. 3 contain
information about microscopic parameters of our model only

contributions behave as powers of κ, while the result that we find
contains powers of κ̃, which is much larger since d1 	 1.

4In the vicinity of ε = 1, quantities (1 − ε)1/2 and κ are real
(positive) at ε < 1 and complex at ε > 1. In the latter case, the
branches of the complex functions should be correctly chosen. It can
be checked that in the case of the retarded Green’s functions that we
work with, the correct choice is

(1 − ε)1/2 = e−iπ/2(ε − 1)1/2, κ = e−iπ/4(ε2 − 1)1/4.

This refers to Eqs. (20)–(22), (27), (28), (30), (31), (46), and (49)–
(53).

through d1. As examples of the λ1(x) dependence, we may
consider

λ1(x) = −|λ1(0)| ×
{

exp (−x/rc), case (a)

exp
(−x2

/
r2

c

)
, case (b).

(54)

Assuming T = 0 for simplicity, from Eq. (26) we then find
the corresponding results for d1,

d1 = |λ1(0)|
λ2

0

rc

ξ0

{
1, case (a)
√

π/2, case (b).
(55)

Figure 3 demonstrates suppression of the gap Eg in the
surface DOS in comparison with the bulk gap �0; the suppres-
sion grows with increasing d1. Above the gap, the DOS grows
as

√
E − Eg, reaches a maximum at Eg < E < �0, and then

decreases passing through the vertical peculiarity at E = �0.
At E > �0, the DOS rapidly approaches the BCS result.

The vertical peculiarity is asymmetric. Indeed, according
to Eq. (53), the square-root deviation of the DOS from its
value at E = �0 has a prefactor that takes different values on
the two sides of the peculiarity (on the left, it is

√
3 times

larger than on the right).

VII. CONCLUSIONS

We have calculated the surface DOS in a superconductor
with relatively weak surface suppression of the BCS pairing
constant λ(x). We are mainly interested in the case of short-
range λ(x) variation, when its characteristic spatial scale rc

is much smaller than the superconducting coherence length.
This case can be experimentally relevant if surface imperfec-
tions are limited to the immediate vicinity of the surface. Our
main results are analytic and refer to several regions of the
ν(E ) dependence.

The gap Eg in the surface DOS differs from the surface
value of the order parameter, �(0). With respect to the bulk
value of the order parameter, �0, the gap Eg is suppressed
much weaker than �(0) [see Eqs. (32)–(34)]. Suppression
of Eg with respect to �0 smears the BCS singularity and
hence is somewhat similar to the pair breaking considered
by Abrikosov and Gor’kov (AG) [26]. Similarly to the AG
case, ν(E ) ∝ √

E − Eg immediately above the gap. At the
same time, the exact prefactor, being expressed in terms of
the gap-edge shift, differs from the AG result by a numerical
factor [see Eqs. (41) and (42)].

At E = �0, we find a “vertical” peculiarity of the DOS,
which implies an infinite-derivative inflection point of the
DOS curve. The value of ν at E = �0 is large [see Eq. (48)]
and ν(E ) deviates from this value as

√|E − �0| when E
deviates from �0. The prefactor of this dependence depends
on the sign of E − �0, so the peculiarity is asymmetric
[see Eq. (53)].

At higher energies, E > �0, the correction to the DOS is
found perturbatively.

Experimentally, the surface DOS can be directly probed
by scanning tunneling spectroscopy and also directly influ-
ences the surface impedance [2,17,18]. The zero-temperature
threshold for the radiation absorption is given by 2Eg. This
energy determines the threshold behavior of the dissipative
conductivity and the surface resistance.
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APPENDIX A: FLUCTUATION PROPAGATOR

The static propagator of superconducting fluctuations,
L0(k), is defined by the following relations [23]:

L−1
0 (k) = πT

∑
n

(
sin θ0

�0
− cos2 θ0

D
2 k2 + ωn cos θ0 + �0 sin θ0

)

= 2π
T

�0

∞∑
n=0

1+k2ξ 2
0

√
(ωn/�0)2+1

[(ωn/�0)2+1]
(
k2ξ 2

0 +
√

(ωn/�0)2+1
) .

(A1)

The sum over the Matsubara frequencies here cannot be
calculated in the general case, and we now consider some
important limiting cases.

At zero temperature (T = 0), the Matsubara sum in
Eq. (A1) is substituted by the integral, which can be calculated
and written in terms of K ≡ kξ0 as [22,23]

L−1
0 (k) = π

2K2
+

√
K4 − 1

K2
ln(K2 +

√
K4 − 1). (A2)

Near the critical temperature (T → Tc), we may put
[(ωn/�0)2 + 1] ≈ (ωn/�0)2 in Eq. (A1), and then the sum
can be calculated:

L−1
0 (k) = π�0(T )

4K2Tc
+

(
1 − 1

K4

)

×
[
ψ

(
1

2
+ K2�0(T )

2πTc

)
− ψ

(
1

2

)]
, (A3)

where ψ is the digamma function. The temperature depen-
dence of the order parameter near Tc is given by [27]

�0(T ) = π

√
8

7ζ (3)

√
Tc(Tc − T ). (A4)

At k = 0, considering L−1
0 (0) as a function of temperature,

we find

L−1
0 (0) =

{
1, T 	 Tc

7ζ (3)�2
0(T )

4π2T 2
c

, (Tc − T ) 	 Tc.
(A5)

With the help of Eq. (A4), the result at (Tc − T ) 	 Tc can be
written as

L−1
0 (0) = 2(1 − T/Tc). (A6)

APPENDIX B: APPLICABILITY OF
NONPERTURBATIVE RESULTS

The results of Sec. V require conditions (18) and (30) to
be satisfied (meaning that the energies E considered are close
enough to �0). The conditions can be summarized as

rc 	 ξ0 	 ξE . (B1)

The first condition rc 	 ξ0 is formulated in terms of the
input parameters of our model (small spatial scale of the
pairing-constant variations). However, the second condition
ξ0 	 ξE depends on the energy E that we consider. It becomes
most restrictive at E = Eg. Our result (32) thus implies that it
is sufficient to require condition (25).

Since the spatial scale for �1(x) is rc, with the help of the
definition of d1 in Eq. (24), we can rewrite condition (25) as

|�1(0)|
�0

rc

ξ0
	 1. (B2)

In terms of λ1(x), the d1 parameter is given by Eq. (26). At
T = 0, we have L0(0) = 1, and Eq. (26) allows us to rewrite
condition (25) in terms of the input parameters of our model
as

|λ1(0)|
λ2

0

rc

ξ0
	 1. (B3)

At the same time, during construction of the self-consistent
perturbation theory in Sec. III, conditions

|�1(0)|/�0 	 1, |λ1(0)|/λ2
0 	 1 (B4)

had to be satisfied. Then Eqs. (B2) and (B3) do not add
anything new.

The applicability conditions for the results of Sec. V are
therefore given by Eqs. (18) and (B4), while condition (25) is
their direct consequence.
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[4] A. Shnirman, İ. Adagideli, P. M. Goldbart, and A. Yazdani,
Resonant states and order-parameter suppression near pointlike
impurities in d-wave superconductors, Phys. Rev. B 60, 7517
(1999).

[5] B. M. Andersen, A. Melikyan, T. S. Nunner, and P. J.
Hirschfeld, Andreev States Near Short-Ranged Pairing Poten-
tial Impurities, Phys. Rev. Lett. 96, 097004 (2006).

[6] A. A. Bespalov, Impurity-induced subgap states in supercon-
ductors with inhomogeneous pairing, Phys. Rev. B 100, 094507
(2019).

[7] I. Martin, D. Podolsky, and S. A. Kivelson, Enhancement of
superconductivity by local inhomogeneities, Phys. Rev. B 72,
060502(R) (2005).

[8] Y. Zou, I. Klich, and G. Refael, Effect of inhomogeneous
coupling on BCS superconductors, Phys. Rev. B 77, 144523
(2008).

224513-7

https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRevB.60.7517
https://doi.org/10.1103/PhysRevB.60.7517
https://doi.org/10.1103/PhysRevB.60.7517
https://doi.org/10.1103/PhysRevB.60.7517
https://doi.org/10.1103/PhysRevLett.96.097004
https://doi.org/10.1103/PhysRevLett.96.097004
https://doi.org/10.1103/PhysRevLett.96.097004
https://doi.org/10.1103/PhysRevLett.96.097004
https://doi.org/10.1103/PhysRevB.100.094507
https://doi.org/10.1103/PhysRevB.100.094507
https://doi.org/10.1103/PhysRevB.100.094507
https://doi.org/10.1103/PhysRevB.100.094507
https://doi.org/10.1103/PhysRevB.72.060502
https://doi.org/10.1103/PhysRevB.72.060502
https://doi.org/10.1103/PhysRevB.72.060502
https://doi.org/10.1103/PhysRevB.72.060502
https://doi.org/10.1103/PhysRevB.77.144523
https://doi.org/10.1103/PhysRevB.77.144523
https://doi.org/10.1103/PhysRevB.77.144523
https://doi.org/10.1103/PhysRevB.77.144523


FOMINOV, MAZANIK, AND RAZUMOVSKIY PHYSICAL REVIEW B 100, 224513 (2019)

[9] A. T. Rømer, S. Graser, T. S. Nunner, P. J. Hirschfeld, and B. M.
Andersen, Local modulations of the spin-fluctuation-mediated
pairing interaction by impurities in d-wave superconductors,
Phys. Rev. B 86, 054507 (2012).

[10] A. A. Golubov and M. Yu. Kupriyanov, Josephson effect in
SNINS and SNIS tunnel structures with finite transparency of
the SN boundaries, Zh. Eksp. Teor. Fiz. 96, 1420 (1989) [Sov.
Phys. JETP 69, 805 (1989)].

[11] F. Zhou, P. Charlat, B. Spivak, and B. Pannetier, Density of
states in superconductor–normal metal–superconductor junc-
tions, J. Low Temp. Phys. 110, 841 (1998).

[12] C. Z. Antoine, Materials and Surface Aspects in the Develop-
ment of SRF Niobium Cavities (Institute of Electronic Systems,
Warsaw University of Technology, Warsaw, 2012).

[13] A. Gurevich, Superconducting radio-frequency fundamentals
for particle accelerators, Rev. Accel. Sci. Technol. 5, 119
(2012).

[14] H. J. Halama, Effects of radiation on surface resistance of su-
perconducting niobium cavity, Appl. Phys. Lett. 19, 90 (1971).

[15] A. A. Mazanik, Bachelor’s thesis, MIPT, 2016 (unpublished),
http://chair.itp.ac.ru.

[16] M. V. Razumovskiy, Bachelor’s thesis, MIPT, 2017 (unpub-
lished), http://chair.itp.ac.ru.

[17] A. Gurevich and T. Kubo, Surface impedance and optimum sur-
face resistance of a superconductor with an imperfect surface,
Phys. Rev. B 96, 184515 (2017).

[18] T. Kubo and A. Gurevich, Field-dependent nonlinear sur-
face resistance and its optimization by surface nanos-

tructuring in superconductors, Phys. Rev. B 100, 064522
(2019).

[19] J. Noffsinger and M. L. Cohen, First-principles calculation of
the electron-phonon coupling in ultrathin Pb superconductors:
Suppression of the transition temperature by surface phonons,
Phys. Rev. B 81, 214519 (2010).

[20] V. L. Ginzburg, On surface superconductivity, Phys. Lett. 13,
101 (1964).

[21] A. I. Larkin and Yu. N. Ovchinnikov, Density of states in
inhomogeneous superconductors, Zh. Eksp. Teor. Fiz. 61, 2147
(1971) [Sov. Phys. JETP 34, 1144 (1972)].

[22] J. S. Meyer and B. D. Simons, Gap fluctuations in inhomoge-
neous superconductors, Phys. Rev. B 64, 134516 (2001).

[23] M. A. Skvortsov and M. V. Feigel’man, Subgap states in dis-
ordered superconductors, Zh. Eksp. Teor. Fiz. 144, 560 (2013)
[JETP 117, 487 (2013)].

[24] K. D. Usadel, Generalized Diffusion Equation for Supercon-
ducting Alloys, Phys. Rev. Lett. 25, 507 (1970).

[25] W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D.
Zaikin, Quasiclassical Green’s function approach to meso-
scopic superconductivity, Superlattices Microstruct. 25, 1251
(1999).

[26] A. A. Abrikosov and L. P. Gor’kov, Contribution to the theory
of superconducting alloys with paramagnetic impurities, Zh.
Eksp. Teor. Fiz. 39, 1781 (1960) [Sov. Phys. JETP 12, 1243
(1961)].

[27] A. A. Abrikosov, Fundamentals of the Theory of Metals (North-
Holland, Amsterdam, 1988).

224513-8

https://doi.org/10.1103/PhysRevB.86.054507
https://doi.org/10.1103/PhysRevB.86.054507
https://doi.org/10.1103/PhysRevB.86.054507
https://doi.org/10.1103/PhysRevB.86.054507
https://doi.org/10.1023/A:1022628927203
https://doi.org/10.1023/A:1022628927203
https://doi.org/10.1023/A:1022628927203
https://doi.org/10.1023/A:1022628927203
https://doi.org/10.1142/S1793626812300058
https://doi.org/10.1142/S1793626812300058
https://doi.org/10.1142/S1793626812300058
https://doi.org/10.1142/S1793626812300058
https://doi.org/10.1063/1.1653847
https://doi.org/10.1063/1.1653847
https://doi.org/10.1063/1.1653847
https://doi.org/10.1063/1.1653847
http://chair.itp.ac.ru
http://chair.itp.ac.ru
https://doi.org/10.1103/PhysRevB.96.184515
https://doi.org/10.1103/PhysRevB.96.184515
https://doi.org/10.1103/PhysRevB.96.184515
https://doi.org/10.1103/PhysRevB.96.184515
https://doi.org/10.1103/PhysRevB.100.064522
https://doi.org/10.1103/PhysRevB.100.064522
https://doi.org/10.1103/PhysRevB.100.064522
https://doi.org/10.1103/PhysRevB.100.064522
https://doi.org/10.1103/PhysRevB.81.214519
https://doi.org/10.1103/PhysRevB.81.214519
https://doi.org/10.1103/PhysRevB.81.214519
https://doi.org/10.1103/PhysRevB.81.214519
https://doi.org/10.1016/0031-9163(64)90672-9
https://doi.org/10.1016/0031-9163(64)90672-9
https://doi.org/10.1016/0031-9163(64)90672-9
https://doi.org/10.1016/0031-9163(64)90672-9
https://doi.org/10.1103/PhysRevB.64.134516
https://doi.org/10.1103/PhysRevB.64.134516
https://doi.org/10.1103/PhysRevB.64.134516
https://doi.org/10.1103/PhysRevB.64.134516
https://doi.org/10.1134/S106377611311006X
https://doi.org/10.1134/S106377611311006X
https://doi.org/10.1134/S106377611311006X
https://doi.org/10.1134/S106377611311006X
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1006/spmi.1999.0710

