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Origin of hour-glass magnetic dispersion in underdoped cuprate superconductors
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In this work we explain the hour-glass magnetic dispersion in underdoped cuprates. The dispersion arises
due to the Lifshitz-type magnetic criticality. Superconductivity also plays a role, but the role is secondary. We
list six major experimental observations related to the hour glass and explain all of them. The theory provides
a unified picture of the evolution of magnetic excitations in various cuprate families, including “hour-glass”
and “wine-glass” dispersions and an emergent static incommensurate order. We propose the Lifshitz spin-liquid
“fingerprint” sum rule, and show that the latest data confirm the validity of the sum rule.
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I. INTRODUCTION

The “hour-glass” (HG) dispersion, observed in inelastic
neutron scattering, is a generic property of hole-doped high-
temperature cuprate superconductors [1–5] (for a review see
Ref. [6]). The dispersion shown in Fig. 1(a) consists of the
upper and the lower branches, the so-called (π, π ) “spin
resonance” separates the two branches. In this work, we shift
momentum origin to (π, π ) [see Fig. 2(a)], so our q = 0
corresponds to (π, π ) in neutron scattering. This shift is con-
venient for theory and quite often is used in neutron scattering
papers. The HG dispersion is a major effect of strong electron
correlations. While there is a general feeling that the upper
part of the HG is due to localized spins and the lower part is
related to itinerant holes [6,7], there is no understanding of
the mechanism of this phenomenon in spite of two decades of
efforts. There are a set of observations that must be explained,
and they are as follows:

(O1) The lower part of the HG shrinks to zero when doping
is decreasing, x → 0 [6].

(O2) In optimally doped cuprates, x ≈ 0.15, the lower part
of the HG is observed in the superconducting (SC) state and
disappears in the normal (N) state [8].

(O3) Contrary to (O2), in underdoped cuprates the lower
part of HG is almost the same or exactly the same in the SC
state and the N state just above Tc [6,9–11]. Moreover, the HG
and the (π, π ) resonance were recently observed [12] in the
insulating La2−xSrxCuO4 at x = 0.0192 where SC does not
exist.

(O4) The upper part of HG is always almost the same in
the SC state and in the N state, and the slope of the upper part
decreases with doping [Fig. 1(a)].

(O5) In heavily underdoped cuprates, the lower part of HG
propagates down to zero energy resulting in an emergent static
incommensurate magnetic order [13,14].

(O6) All cuprate families are microscopically similar, val-
ues of the superexchange and hopping matrix elements are
close. At the same time, details of the lower part of the HG
dispersion vary across different cuprate families. Moreover,
in underdoped HgBa2CuO4+δ the HG evolves to the “wine
glass” [11,15].

Theoretical models of the magnetic dispersion and the
(π, π ) resonance are split into two classes, models based on
the normal Fermi-liquid picture with a large Fermi surface and
usual electrons with spin [17–21], and models based on the
picture of a doped Mott insulator with a small Fermi surface
and spinless holons [22,23]. All early models have been
motivated by experiment [8] in optimally doped YBa2Cu3O7

and belong to the first class. In this approach, the (π, π )
resonance is explained as a spin exciton in the d-wave SC
phase. These models are consistent with observation (O2),
but inconsistent with all other observations which appeared
later and that indicate that SC is not essential. In light of
this inconsistency, the spin exciton model was modified by
artificial introduction of localized spins in the normal Fermi-
liquid model [19,21]. This modification partially explains the
observation (O4) [in addition to (O2)], but is still inconsistent
with all other observations.

The second theoretical approach based on the picture of
a doped Mott insulator was developed later after the low-
doping data were obtained. This approach naturally explains
the observation (O1). The model of Ref. [22] is based on
the picture of static spin spiral [24]. This model explains the
observations (O1), (O3), (O5), but fails in all other points.
The model of Ref. [23] explains (O1) and partially (O4),
but fails in all other points. Thus, the theoretical situation is
unsatisfactory.

In this work we pursue the approach of a lightly doped
Mott insulator. There are four major experimental facts sup-
porting the Mott insulator approach, and they are as follows:

(F1) According to NMR, the nearest-site antiferromagnetic
exchange J ≈ 125 meV is doping independent [25].

(F2) The second fact is the observation (O1) from the HG
list presented above. It is hardly possible to shrink the HG to
zero at zero doping in any model but doped Mott insulator.

(F3) Resonant inelastic x-ray scattering (RIXS) data in-
dicate that the high-energy magnons, ω ∼ 200–300 meV, in
doped compounds are practically the same as in undoped
ones, this includes both the dispersion and the spectral weight
[26].

(F4) The momentum-integrated structure factor S(ω) mea-
sured in neutron scattering at ω ≈ 50–80 meV in doped
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FIG. 1. (a) Theoretical HG dispersions for λ = 1.1 and for two
values of doping, x = 0.1 (red) and x = 0.16 (blue). The black line
represents the magnon dispersion in the parent undoped compound
(x = 0). (b) Zero-temperature λ-x phase diagram of extended t-J
model consists of three phases, Néel, Lifshitz spin liquid, spin spiral
[16]. The tricritical Lifshitz point is λ = 1, x = 0. The squares, the
circle, and the star are the points considered in the text as examples
(r.l.u. = reciprocal lattice units).

compounds is practically the same as in undoped ones.
We will demonstrate this observation at the end of this
paper.

These four facts unambiguously favor the Mott insulator
approach. The Mott insulator approach necessarily implies a
small Fermi surface [Fig. 2(a)] and this immediately leads to
two conclusions that are evident without calculations. The first
conclusion concerns superconductivity. The Fermi energy is
proportional to the doping x, εF ∼ xJ . For optimal doping,
x = 0.15, the Fermi energy is εF ≈ 35 meV. On the other
hand, we know experimentally that the superconducting gap is
�SC ≈ 30 meV. Thus, all cuprates are in the strong coupling
limit εF ≈ �SC. The second conclusion concerns the spin-
liquid ground state. Consistently with small Fermi surface the
number of charge carriers measured via Hall effect is equal to
the doping x � 1. The number of uncompensated spins in a
doped Mott insulator is 1 − x, so unlike a normal metal the
number of spins is much larger than the number of charge
carriers. We also know that the static magnetic order disap-
pears above several percent doping, when x � 1 − x. These
points indicate that spin and charge are separated and that
quantum spin fluctuations “melt” the static magnetic order to
a spin liquid (SL). Of course, the notion of SL in cuprates is

FIG. 2. (a) Small Fermi surface and momenta qx , qy for magnetic
scattering. (b) The spin-liquid gap versus doping (cyan line) [16].
The theoretical curve corresponds to λ = 1. Points show experi-
mental data. In different compounds, values of λ can be somewhat
different and this explains scattering of experimental points. (c) The
ω scan of the spectral function at q = 0. The black solid line
illustrates the perfect δ function, and the dashed red line shows the
temperature (disorder) broadened line.

not new, the same motivation is behind the resonating valence
bond (RVB) SL model [27].

This work is based on the recent progress in understanding
of the SL state of cuprates [16]. The SL in cuprates is different
to the RVB model. It is the quantum critical Ioffe-Larkin–type
SL (“Lifshitz SL”) [16]. This insight allows us to perform
calculations and to explain all properties of the HG. There
are the following sections in the paper. Section II gives
the magnetic response in the spin-liquid phase. In Sec. III,
calculated q scans of the spectral function at optimal doping
are discussed and in Sec. IV outlines the magnetic critical-
ity mechanism of the hour-glass dispersion. In Sec.V, the
following question is addressed: Is there a hole in the hour
glass? In Sec. VI, calculated q scans of the spectral function in
the underdoped case and emergent incommensurate magnetic
order are addressed. In Sec. VII the wine-glass dispersion and
in Sec. VIII the Lifshitz spin-liquid fingerprint relation are
discussed. Conclusions are given in Sec. IX. Technical details
are presented in the Appendices.

II. MAGNETIC RESPONSE IN THE SPIN-LIQUID PHASE

We start with the zero-temperature λ-x phase diagram from
Ref. [16] presented in Fig. 1(b). The dimensionless parameter
λ defined as

λ = 2g2m∗

πρs
(1)

plays a crucial role in the theory, it controls magnetic crit-
icality. Here, m∗ is the holon effective mass, ρs is bare
spin stiffness, and g is the holon-magnon coupling constant.
The Lifshitz quantum tricritical point is λ = 1, x = 0. Three
phases meet at the tricritical point, the collinear Néel phase,
Lifshitz SL, the spin spiral state, see Appendix B. The Lifshitz
SL is characterized by a parameter � that we term the
SL gap. It is worth noting that in the exact sense the SL
is gapless. Below we also introduce and explain the spin
pseudogap �s. Aside from the Lifshitz quantum tricritical
point, there is another critical point λ = 2 related to the
phase separation. Our analysis is based on the extended t-J
model which is described by the antiferromagnetic exchange
J ≈ 125 meV and hopping parameters. The relation between
parameters of the extended t-J model and λ is discussed in
Appendix A 1. Having the nearest-site hopping parameter t
fixed, t/J ≈ 3, one can vary distant hopping parameters. In
principle, this results in variation of λ in a very broad range,
0 < λ < ∞. Using values of the hopping matrix elements
obtained in local density approximation (LDA) calculations
[28] one can obtain the following range for the criticality
parameter ∼0.7 � λ � 2. Nevertheless, this range of λ is
too wide, it is even sufficient to drive the system to the
phase separation. Experiments indicate that most cuprates
are magnetically disordered except of the emergent mag-
netism at very low doping. This observation allows us to
restrict the range to approximately λ = 1.1 ± 0.3 shown
in Fig. 1(b). The criticality parameter λ can vary from
one cuprate family to another and can slightly depend on
doping. For more details regarding the derivation of the
field-theoretical description of the extended t-J model, see
Appendix A 2.
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To avoid misunderstanding, we note that the magnetic
criticality we are talking about is unrelated to the quan-
tum critical point at doping x = x∗ ≈ 0.2 (the end point of
the “pseudogap” regime) where presumably the small Fermi
surface is transformed to the large one [29]. We only consider
x < x∗ and claim that all hole-doped cuprates are close to the
Lifshitz magnetic criticality. One can also call it the “hidden”
criticality. It is hidden in the sense that unlike doping, the
parameter λ cannot be directly measured.

The first message of our paper is that the HG dispersion is
a direct consequence of the SL gap and the Lifshitz magnetic
criticality. SC plays a secondary role, it only influences the
particle-hole decay phase space and narrows the spectral lines
in the lower part of HG. The first message resolves the generic
problems (O1)–(O5) listed in the Introduction. The second
message is that due to proximity to the quantum critical point
a small (∼10%) variation of λ results in sizable change of
the lower part of HG. This explains the point (O6) from the
observation list.

We introduce superconductivity in the theory ad hoc via
the phenomenological d-wave SC gap

�k = �SC
1
2 (cos kx − cos ky). (2)

For details, see Appendix C. In our theory, the (π, π ) reso-
nance (the neck of the HG) is unrelated to SC. The resonance
is a manifestation of the SL gap � which is practically the
same in the N state and in the SC state. Quite often in neutron
scattering papers the energy of the neck of HG is denoted by
Ecross, this is the same as the SL gap, � = Ecross. The gap �

was calculated in Ref. [16] and is plotted versus doping in
Fig. 2(b). The scattering of experimental points in this plot
is one of the manifestations of the observation (O6) which is
explained by proximity to the magnetic criticality.

We describe magnetic response at energy ω � J in terms of
fluctuating staggered magnetization �n. The Green’s function
of the �n field in the SL phase reads, see Appendix A 3

D(ω, q) = 16J
√

1 − μx

ω2 − c2q2 − �2 − 	(ω, q) + i0
. (3)

Here, � is the SL gap and 	(ω, q) is the magnon polarization
operator. The magnon speed is c ≈ c0

√
1 − μx, where c0 ≈√

2J is the magnon speed in the undoped compound. The
coefficient μ ≈ 4 has been calculated numerically within the
t-J model [16]. The uncertainty of this calculation is about
4 < μ < 5. The coefficient μ determines the dispersion slope
softening at high energy. The softening is known experimen-
tally and therefore the value of μ can be also extracted from
experimental data. This gives the same uncertainty interval
4 < μ < 5.

The magnetic spectral function is S(ω, q) = − A
16πJ ImD.

The proportionality coefficient A depends on the onsite mag-
netic moment, Cu atomic form factor, etc. This coefficient is
practically the same for all hole-doped cuprates, at least for
the single-layer cuprates. The spectral function in the parent
compound (Néel state, x = 0) is

SNéel(ω, q) = Aδ
(
ω2 − c2

0q2). (4)

The holon polarization operator 	(ω, q) calculated in Ap-
pendix C is a complex function of ω and q, however,
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FIG. 3. Calculated momentum scans of the spectral function for
x = 0.16, � = 0.35J , �SC = 0.2J and six different energies. Ener-
gies in units of J are shown near the respective lines. (a) Corresponds
to the SC state and (b) to the N state. Black curves correspond to λ =
1 and red curves correspond to λ = 1.1. Black and red practically
coincide for higher energies.

	(ω, 0) = 0. Therefore, the spectral function at finite doping
at q = 0, S(ω, 0) = A

√
1 − μxδ(ω2 − �2), is a perfect (π, π )

resonance shown in Fig. 2(c). Impurities and finite tempera-
ture give rise to a broadening illustrated by the red dashed line
in Fig. 2(b). Importantly, the spectral weight is independent of
the broadening and is defined by the SL gap � in the particular
compound:

W =
∫ ∞

0
S(ω, 0)dω ≈ A

√
1 − μx

2�
. (5)

III. CALCULATED q SCANS OF THE SPECTRAL
FUNCTION AT OPTIMAL DOPING

In order to explain mechanism of the HG we consider
separately the upper and the lower parts of the HG [see
Fig. 1(a)]. In a crude approximation one can neglect the
polarization operator in Eq. (3) for the upper part of the HG
and this results in the dispersion

ωq ≈
√

�2 + c2
0(1 − μx)q2. (6)

Of course, we can do better than this crude approximation.
In Fig. 3 we plot qx scans of the spectral function calculated
numerically [for definition of axes, see Fig. 2(a)]. The calcu-
lation accounts for the polarization operator and is performed
for x = 0.16 and six values of ω. The value of the SL gap is
taken from Fig. 2(b), � = 0.35J , and �SC = 0.2J ≈ 25 meV
(see Appendix C). Figure 3(a) corresponds to the SC state
and Fig. 3(b) to the N state [30]. The plot demonstrates that
the upper part of the HG, ω > �, is only weakly sensitive
to SC in agreement with observation (O4). In both SC and
N phases, the polarization operator gives a broadening and
some asymmetry of peaks in the spectral function, but overall
the upper part of HG is consistent with crude Eq. (6). On
the other hand, according to Fig. 3 sharp peaks in the lower
part of HG, ω < �, exist in the SC state and disappear in
the N state in agreement with observation (O2). However, the
peaks are still present in the N state, they just become very
broad due to the decay to the particle-hole continuum. The
spectra in Fig. 3(a) correspond to the HG dispersion plotted
in Fig. 1(a) by the blue line. We plot the dispersion again in
Fig. 4(a) with indication of SL gap � and the spin pseudogap
�s. According to Fig. 3(a) in the SC state the magnetic
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FIG. 4. (a) The HG dispersion for x = 0.16 deduced from spectra
in Fig. 3(a). In this plot we indicate the SL gap � and the spin
pseudogap �s. (b) The HG dispersion in La1.84Sr0.16CuO4 from
Ref. [31].

response is strongly suppressed at low frequencies ω � 0.1J .
The suppression can be described by the spin pseudogap �s

indicated in Fig. 4(a). Unlike the true gap �, the �s is a
pseudogap since at the incommensurate q points there is some
response down to zero energy. In the N state [Fig. 3(b)],
the low-energy response is strongly enhanced. The presence
of the zero-frequency magnetic response in the vicinity of
the incommensurate wave vector Q ≈ 0.14 r.l.u. results in a
nonzero NMR relaxation rate. We illustrate sensitivity of the
spin pseudogap �s to the magnetic criticality parameter λ by
plotting in Fig. 3 the spectral function for two values of λ:
λ = 1 (black) and λ = 1.1 (red). These values correspond to
red and black squares on the phase diagram Fig. 1(b). Both in
the SC and the N states the upper part of HG is not sensitive to
the small variation of λ. Conversely, the lower part in the SC
state ω < � is very sensitive. Naturally, the spin pseudogap
�s is smaller at λ = 1.1 compared to that at λ = 1 since the
former is closer to the phase boundary in Fig. 1(b).

Two-dimensional (qx, qy) color maps of the calculated
structure factor corresponding to the “red” spectra in Fig. 3(a)
are presented in Fig. 5. The maps are close to data for
La1.84Sr0.16CuO4 (Fig. 1 in Ref. [31]). Detail comparison
shows that La1.84Sr0.16CuO4 is slightly more critical. Increas-
ing λ = 1.1 to λ ≈ 1.15–1.2 we can even better reproduce
data of Ref. [31] However, we do not perform the fit due to
the reason explained in Sec. VIII.

IV. MAGNETIC CRITICALITY MECHANISM OF
THE HOUR-GLASS DISPERSION

The results presented in the previous section indicate that
the HG is driven by the SL Lifshitz magnetic criticality, SC
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FIG. 5. Color maps of fixed energy (qx, qy ) scans of magnetic
spectral function S(ω, q) for x = 0.16 in SC phase. The magnetic
criticality parameter λ = 1.1, the SL gap is � = 0.35J , the SC gap
is �SC = 0.2J .
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FIG. 6. Denominators of the Green’s function (3) versus qx for
x = 0.16, � = 0.35J , �SC = 0.2J . (a) SC state, ω = 0, three differ-
ent values of λ. (b) SC state, ω = 0.15J , λ = 1.1, real (black) and
imaginary (red) parts. (c) N state, ω = 0.15J , λ = 1.1, real (black)
and imaginary (red) parts.

plays a secondary role and leads to the spectral line narrowing
in the lower part of HG. In order to elucidate this point, we
plot in Fig. 6 denominators of the Green’s function (3) versus
qx for x = 0.16. At ω = 0 the denominator is real and Fig. 6(a)
displays the ω = 0 denominator in the SC state for three
different values of λ. For λ = 1.1 and 1.25, the denominator
is negative indicating stability of the SL phase. However, at
λ = 1.36 the denominator vanishes, D−1 = 0, at qx ≈ 0.135
r.l.u. indicating condensation of the spin spiral with this wave
vector [see the phase diagram Fig. 1(b)]. In Fig. 6(b) we plot
the denominator in the SC state for ω = 0.15J and λ = 1.1,
and in Fig. 6(c) we plot the same denominator but in the N
state. In the SC state, the Green’s function denominator is
close to zero at qx ≈ 0.12 r.l.u. and this results in a narrow
peak in the ω = 0.15J red curve in Fig. 3(a). In the N state the
real part of the denominator is also small, but the imaginary
part is large, thus the magnetic critical enhancement just
results in a very broad structure in the ω = 0.15J red curve
in Fig. 3(b).

Thus, the HG is a collective excitation driven by the
Lifshitz magnetic criticality. The role of SC is just to suppress
the decay rate of the collective excitation.

V. IS THERE A HOLLOW NECK IN THE HOUR GLASS?

Sometimes experimental HG dispersion is plotted with a
hollow “neck” as it is shown in Fig. 4(b). We think that
the hollow neck does not exist, but we understand how it
can mistakenly arise in the analysis of experimental data.
Figure 3(a) demonstrates pairs of narrow peaks for scans
above and below the HG neck and a broad peak at the neck
ω = � = 0.35J . An assumption that the broad peak consists
of two narrow peaks leads to the hollow neck. However, we
believe this is wrong, the neck of the HG is intrinsically broad.
We believe that there is no hollow neck in HG.

VI. CALCULATED q SCANS OF THE SPECTRAL
FUNCTION IN THE UNDERDOPED CASE: EMERGENT

INCOMMENSURATE MAGNETIC ORDER

Next, we look at the lower doping x = 0.1. The SL gap
according to Fig. 2(b) is � = 0.3J . We keep the value of
the magnetic criticality parameter unchanged, λ = 1.1, but
the value of the SC gap is reduced, �SC = 0.1J ≈ 13 meV
(see Appendix C). Figure 7 presents calculated qx scans of the
spectral function for six values of ω. The red circle on the
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FIG. 7. Calculated momentum scans of the spectral function for
x = 0.1, � = 0.3J , �SC = 0.1J , λ = 1.1, and six different energies.
Energies in units of J are shown near the respective lines. (a) Corre-
sponds to the SC state and (b) to the N state.

phase diagram Fig. 1(b) corresponding to these parameters is
located close to the critical line. Therefore, the low-frequency
response in Fig. 7 is strongly enhanced compared to that in
Fig. 3. In this case, the spin pseudogap is practically zero,
�s ≈ 0. Moreover, the lower part of HG becomes evident
even in the N state in agreement with the observation (O3).
Further decreasing of doping would result in an emergent
static incommensurate magnetic order in agreement with the
observation (O5).

The HG dispersion deduced from Figs. 3(a) and 7(a) are
plotted in Fig. 1(a) by the blue and red lines, respectively.

VII. WINE-GLASS DISPERSION

It is clear from the above discussion that decreasing of
the magnetic criticality parameter λ reduces the intensity of
the lower part of the HG. In Fig. 8 we present momentum
scans for λ = 0.9. All other parameters are the same as that in
Fig. 7, x = 0.1, � = 0.3J , �SC = 0.1J . The blue star on the
phase diagram Fig. 1(b) corresponds to this set of parameters.
In Fig. 8 the intensity in the lower part of the spectrum
is dramatically reduced compared to that in Fig. 7. At the
same time, the upper part of the spectrum is practically the
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FIG. 8. Calculated momentum scans of the spectral function
in the SC state for x = 0.1, � = 0.3J , λ = 0.9, and six different
energies. Energies in units of J are shown near the respective lines.
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FIG. 9. (a) The SL sum rule W � = 0.5A
√

1 − μx [Eq. (5)]
versus doping. Two theoretical curves indicate uncertainty of μ. The
red points are extracted from La2−xSrxCuO4 data [32] and the blue
points from HgBa2CuO4+δ data [11,15]. (b) Black line represents
theoretical q-integrated spectral function S(ω) for x = 0.16, � =
0.35J , �SC = 0.2J , λ = 1.1. The red line is experimental S(ω)
for La1.84Sr0.16CuO4 [31]. The blue horizontal line shows S(ω) in
La2CuO4.

same. Thus, reducing λ one drives the HG dispersion to the
“wine-glass” regime reported in Refs. [11,15].

VIII. LIFSHITZ SPIN-LIQUID FINGERPRINT RELATION

In the previous sections we have explained all the major
HG observations (O1)–(O6) listed in the Introduction. Is there
a further experimental confirmation of the developed theory?
The answer is yes. The central point of the theory is that the
Lifshitz SL is very similar to the parent antiferromagnet. Most
explicitly, this point is reflected in Eqs. (4) and (5). The spec-
tral weight W in the SL phase [Eq. (5)] is expressed via the
coefficient A known from the parent antiferromagnet [Eq. (4)].
For this reason, we call Eq. (5) the Lifshitz SL “fingerprint”
relation. Let us compare this relation with experimental data.

Using Eq. (4) and fitting the 5-K data in Fig. 4(a) of
Ref. [32] for undoped La2CuO4 we find A ≈ 0.35μ2

B eV/f.u.
Hence, using Eq. (5) we plot in Fig. 9(a) theoretical curves for
the product W × � versus doping. We know the value of the
coefficient μ in (5) only approximately, therefore, we present
curves for μ = 4, 5 to indicate theoretical uncertainty. At the
same, in Fig. 9(a) we present experimental points extracted
from data for La2−xSrxCuO4 (red) [32] and HgBa2CuO4+δ

(blue) [11,15]. The red point at x = 0 gives the normalization
of the theoretical curve. The agreement is quite good, the data
are consistent with the SL “fingerprint” relation.

It would be very interesting to perform a similar analysis
for YBa2Cu3O6.5 (YBCO). The compound has theoretical
complications related to the double-layer structure and to the
oxygen chains, but these issues are probably resolvable. The
major problem is that there is not enough data with absolute
normalization of intensity.

The next point we address is the q-integrated spectral
function S(ω) = ∫

S(ω, q) d2q
(2π )2 . To be specific, we take the

same set of parameters as that in Fig. 3, x = 0.16, � =
0.35J , λ = 1.1, �SC = 0.2J . The calculated spectral function
in the SC state is shown in Fig. 9(b) by the black line. For
normalization we use the value of A extracted from undoped
La2CuO4 as described in the second paragraph of this sec-
tion. In the same Fig. 9(b) we plot the experimental curve
(red) for La1.84Sr0.16CuO4 [31]. The agreement between the
theory and the experiment both in shape and in the abso-
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lute normalization is good. The characteristic double-hump
structure has been also observed in YBa2Cu3O6.5 [10]. As we
pointed out above, a slight increase of criticality parameter
λ = 1.1 → λ ≈ 1.15–1.2 would shift the low peak down
close to the experimental position. In principle, one can try to
fit the data by changing λ. However, there are recent evidences
[33,34] indicating a phonon with energy ω ≈ 18–20 meV. The
phonon adds some intensity to the lower peak in Fig. 9(b). Of
course, the phonon is not described by our theory. This is why
we do not fit data of Ref. [31] presented in Fig. 9(b).

According to Eq. (4), the q-integrated spectral func-
tion in the parent antiferromagnet is S(ω) = A

8πJ2 ≈
0.95μ2

B/(eV f.u.). This value is shown in Fig. 9(b) by the
blue horizontal line. In the energy interval above the neck
of HG, ω = 50–80 meV, this value coincides with S(ω) for
La1.84Sr0.16CuO4 presented in the same figure. This proves the
point (F4) listed in the Introduction. The same point is true for
YBCO. Relevant data are presented in Fig. 2(a) of Ref. [10].
Solid lines in this figure represent S(ω) in YBa2Cu3O6.5

for three different temperatures and the horizontal dashed
line shows S(ω) in the parent antiferromagnet [35]. From
these data we conclude that in the interval ω = 50–80 meV
the structure factor S(ω) in YBa2Cu3O6.5 and in the parent
antiferromagnet has the same value.

IX. CONCLUSIONS

We show that the hour-glass magnetic dispersion in under-
doped cuprates is driven by properties of the Lifshitz magnetic
critical spin liquid. Superconductivity plays a secondary role
and only responsible for the narrowing of the spectral lines.
We list the six major observations related to the hour-glass
dispersion and explain all of them. We propose a spin-liquid
“fingerprint relation” and demonstrate that neutron scattering
data support the relation.
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APPENDIX A: EFFECTIVE ACTION

1. Extended t-J model

The Hamiltonian of the extended t-J model reads as
[36–38]

H = −t
∑
〈i j〉

c†
i,σ c j,σ − t ′ ∑

〈〈i j〉〉
c†

i,σ c j,σ

− t ′′ ∑
〈〈〈i j〉〉〉

c†
i,σ c j,σ + J

∑
〈i, j〉

[
Si · S j − 1

4
NiNj

]
, (A1)

where c†
iσ (ciσ ) is the creation (annihilation) operator for

an electron with spin σ =↑,↓ at Cu site i; the operator of
electron spin reads as Si = 1

2 c†
iασαβciβ . The electron number

density operator is Ni = ∑
σ c†

iσ ciσ , where x is the hole dop-

ing, so that the sum rule 〈Ni〉 = 1 − x is obeyed. In addition
to Hamiltonian (A1) there is the no-double-occupancy con-
straint, which accounts for a strong electron-electron onsite
repulsion. The value of superexchange is approximately the
same for all cuprates, J ≈ 125 meV. The superexchange has
been directly measured and shown to be independent of
doping [25]. While in Eq. (A1) we present only three hopping
matrix elements, the nearest-site hopping t , the next-nearest-
site hopping t ′, and the next-next-nearest-site hopping t ′′, we
know from LDA calculations [28] that more distant hoppings,
t (3), t (4), and even t (5), are also significant. Unfortunately,
values of the hopping matrix elements cannot be directly
measured. It is widely believed that the value t ≈ 400 meV ≈
3J is reliable and common for all cuprates, we use this value
in this work. However, values of the distant hopping matrix
elements are rather uncertain and can vary from one family to
another.

The Fermi surface of a lightly doped extended t-J
model consists of Fermi pockets shown in Fig. 2(a) and
centered at the nodal points k0 = (±π/2,±π/2), and
k0 = (±π/2,∓π/2). The single-hole dispersion can be
parametrized as [39]

εk = β1(γ +
k )2 + β2(γ −

k )2, γ ±
k = 1

2
(cos kx ± cos ky),

εk ≈ β1
p2

1

2
+ β2

p2
2

2
. (A2)

Here, p = k − k0 [see Fig. 2(a)]. We set the lattice spacing
equal to unity a = 3.81 Å → 1. The second line in Eq. (A2)
corresponds to the quadratic expansion of the fermion dis-
persion in the vicinity of the centers of Fermi pockets. The
ellipticity of the holon pocket is

√
β1/β2. The Fermi energy is

related to doping as

εF ≈ πβx,

β =
√

β1β2 = 1

m∗ . (A3)

Values of the inverse effective masses β1, β2 follow from
Hamiltonian (A1). They have been calculated using self-
consistent Born approximation (SCBA) (see Refs. [39,40]).
The values strongly depend on distant hopping parameters
which are essentially unknown, even t (3)-t (5) significantly in-
fluence SCBA results. For illustration we present here values
of β1, β2 obtained for several sets of the distant hopping
parameters. We consider only the sets that result in positive
β1 and β2. For the “pure” t-J model, t ′ = t ′′ = t (3) = t (4) =
t (5) = 0, the values are β1 = 1.96J , β2 = 0.30J . For the set
t ′ ≈ 0.23J , t ′′ = 0, t (3) = t (4) = t (5) = 0 one gets the Van
Hove singularity β2 = 0. On the other hand, in the limit t ′′ �
t ′, J the inverse masses are very large β1 ≈ β2 ≈ 8t ′′ � J .
For the middle of the LDA range [28], t ′ = −0.5J , t ′′ = 0.5J ,
t (3) = t (4) = t (5) = 0 the inverse masses are β1 ≈ 2.76J , β2 ≈
2.62J . While we can claim that β = √

β1β2 ∼ 2, the so strong
dependence on unknown parameters indicates that in the end
the effective masses and especially the ellipticity of the Fermi
pocket have to be taken from experiment.
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Even more important than the effective masses is the
dimensionless magnetic criticality parameter [22,40]

λ = 8g2

π
√

β1β2
. (A4)

Here, g = Zt is the magnon-holon coupling constant, Z is
the holon quasiparticle residue. In theory by varying t ′ and
t ′′ one can vary λ from zero to infinity. In the large-t ′′ limit,
t ′′ � t ′, J , the parameter is very small, λ → 0. On the other
hand, near the Van Hove singularity β2 → 0, the parameter is
very large λ → ∞. For the “pure” t-J model, t ′ = t ′′ = t (3) =
t (4) = t (5) = 0 the criticality parameter value is λ = 2.51. For
the middle of the LDA range [28], t ′ = −0.5J , t ′′ = 0.5J ,
t (3) = t (4) = t (5) = 0, the criticality parameter value is λ =
1.1. Within the overall LDA range of the hopping parame-
ters [28], λ varies from 1 to 2. Numerically, the difference
between λ = 2 and 1 is not that large, but physically the
difference is enormous. The value λ � 2 implies that the
system is unstable with respect to the phase separation (see
Refs. [40,41]). So, the “pure” t-J model with λ ≈ 2.5 is
unstable and hence inconsistent with experiment. On the
other hand, the value λ = 1 corresponds to the stable spin-
liquid phase which is perfectly consistent with experiment
[see Fig. 1(b) and Ref. [16]]. While from LDA+SCBA we
can claim that λ ∼ 1, the strong dependence on unknown
parameters indicates that in the end the value of λ must be
taken from experiment. Based on the phase diagram Fig. 1(b),
we see that values 0.8 < λ < 1.3 are generally consistent with
data.

To summarize this section: We base our analysis on the
extended t-J model and use the value J ≈ 125 meV known
from experiment. In the calculation we use the value t = 3J ,
we have checked that a variation of t within 2.5J < t <

3.5J influences our results very weakly. However, a variation
of distant hopping matrix elements t ′, t ′′, t (3), . . . have an
enormous effect on physics. Variation of these matrix ele-
ments within the window given by LDA calculations [28]
can drive the system from the Néel state through the spin-
liquid state to the spin spiral state and even to the phase
separation. Based on the spin-liquid theory, we conclude
that the range 0.8 < λ < 1.3 is consistent with experimen-
tal observations, so in our calculations we use this range.
Specifically in the paper we present results for λ = 1.1, 1,
and 0.9 to demonstrate sensitivity to the criticality param-
eter. The value of the effective mass is less important, in
the paper we present results for β = √

β1β2 = 2J (m∗ =
2.1me) and β1/β2 = 6. We have checked that the set β =√

β1β2 = 3J and β1/β2 = 4 results in practically the same
answers.

2. Quantum field theory: The low-energy limit
of the extended t-J model

While the t-J model is the low-energy reduction of the
three-band Hubbard model, the total energy range in the t-J
model �ε ∼ 8t ∼ 24J ≈ 3 eV is still very large. Account
for quantum fluctuations at lower energy scales practically
unavoidably requires a quantum field theory approach. The-
oretical arguments explaining this point have been discussed
in several theoretical papers including our recent work [16].

En
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FIG. 10. Magnetic dispersion along the (1,0) direction. Points
show combined data on resonant inelastic x-ray scattering and in-
elastic neutron scattering in NdBCO and YBCO at T = 15 K [26].
Vertical lines separate three different regimes that we call “infrared
regime,” “intermediate regime,” and “ultraviolet regime.”

Here, we repeat only experimental arguments supporting this
statement. In Fig. 10 we present magnetic dispersion along
the (1,0) direction taken from Ref. [26]. The dispersion is
based on combined data on resonant inelastic x-ray scattering
and inelastic neutron scattering. The data indicate three
distinct regimes separated in Fig. 10 by vertical lines. In the
“ultraviolet regime” the dispersion only very weakly depends
on doping, practically independent. This is where our “fact”
(F2) in the Introduction comes from. In the “intermediate
regime” there is a significant softening with doping and the
most dramatic doping dependence takes place in the “infrared
regime.” The low-energy effective field theory is relevant
to the “infrared” and the “intermediate” regimes. In these
regimes, energies of magnetic excitations and energies of
holons are small, ω, ε < 2J . On the other hand, in the “ultravi-
olet regime” the energies are large, ω ∼ 2J and 8t > ε � 2J .
The field theory has the ultraviolet cutoff �q which is the
upper edge of the “intermediate regime” as it is indicated in
Fig. 10. The value of the cutoff that follows from the data is
�q ∼ 0.2 r.l.u. The same value follows from the theory (see
Ref. [16]).

The low-energy Lagrangian of the t-J model was first
derived in Ref. [24] with some important terms missing.
The full effective Lagrangian was derived in Ref. [22]. This
approach necessarily requires an introduction of two checker-
board sublattices, independent of whether there is a long-
range antiferromagnetic (AFM) order or the order does not
exist. The two checkerboard sublattices allow us to avoid a
double counting of quantum states in the case when spin and
charge are separated. A holon carries charge and does not
carry spin, but it can be located at one of the sublattices and
this is described by the pseudospin 1

2 . Due to the checkerboard
sublattices, the Brillouin zone coincides with magnetic Bril-
louin zone (MBZ) even in the absence of a long-range AFM
order. Therefore, there are four half-pockets in Fig. 2(a) or
two full pockets within MBZ. Finally, the Lagrangian reads
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as [22]

L = χ⊥
2

�̇n2− ρs

2
(∇�n)2 +

∑
α

{
i

2
[ψ†

αDtψα − (Dtψα )†ψα]

− ψ†
αεα (P )ψα +

√
2g(ψ†

α �σψα ) · [�n × (eα · ∇)�n]

}
.

(A5)

Fermions (holons) are described by a spinor ψα with the
pseudospin 1

2 , and the vector of staggered magnetization n
normalized as n2 = 1 corresponds to localized spins at Cu
sites. The first line in (A5) is O(3) nonlinear sigma model that
describes spin dynamics, the second line is the Lagrangian
for noninteracting holons. The long covariant derivatives in
Eq. (A5) are defined as

P = −i∇ + 1
2 �σ · [�n × ∇�n], Dt = ∂t + 1

2 �σ · [�n × ∂t �n].

The index α = 1, 2 enumerates two full holon pockets in
Fig. 2(a). The term in the bottom line in Eq. (A5) describes
the coupling between holons and the staggered magnetization.
Pauli matrices σ in Eq. (A5) act on the holon’s pseudospin
and eα = 1/

√
2(1,±1) denotes a unit vector orthogonal to the

face of the MBZ where the holon is located. The coupling
constant g enters Eq. (A4).

The Lagrangian (A5) is fully equivalent to the t-J model
Hamiltonian (A1). In essence, Eq. (A5) originates from the
Hamiltonian (A1) rewritten in notations convenient for analy-
sis of the low-energy physics. The relation between (A5) and
(A1) is the same as that between the nonlinear σ model and
the Heisenberg antiferromagnetic model on square lattice. The
Lagrangian (A5) contains five parameters, χ⊥, ρs, β1, β2, and
g. Of course they can be expressed in terms of parameters of
the “parent” t-J model. We have already discussed β1 and β2.
The coupling g = Zt is related to λ [see Eq. (A4)], so it is also
already discussed. In the limit x → 0 the σ -model parameters
χ⊥ and ρs coincide with that of the 2D Heisenberg model
on the square lattice, χ⊥ = 1/8J , ρs = J/4, up to an overall
scalar prefactor in Lagranian (A5) due to the renormalization
of the spin magnitude by quantum fluctuations. The magnon
speed is

c0 =
√

ρs/χ⊥ =
√

2J. (A6)

3. Dependence of the Lagrangian parameters on doping

The small parameter of our theory is doping x � 1.
The Lagrangian parameters in Appendix A 2 are written in
the limit x → 0. Here, we discuss the x dependence of the
parameters up to the linear in x approximation. The first
effect is renormalization of the σ -model parameters due to
fermionic fluctuations at the high-energy scale E ∼ 8t ∼ 24J
(see Ref. [16]):

χ⊥ = 1

8J
→ 1

8J
,

ρs = J

4
→ J

4
(1 − μx), (A7)

c =
√

ρs

χ⊥
→ c0

√
1 − μx.

Note that the numerical coefficient μ ≈ 4 in the doping-
dependent prefactor is known only approximately (see
Ref. [16]).

The magnon Green’s function generated by (A5) above
the spin-liquid energy scale �, � < ω � J after taking into
account Eqs. (A7) reads as

D(ω, q) ∝ χ−1
⊥

ω2 − c2
0(1 − μx)q2 + i0

. (A8)

Hence, the sum rule for the spin structure factor is∫
S(ω, q)dω d2q ∝

∫
ImD(ω, q)dω d2q ∝ �q√

1 − μx
.

(A9)

The integration is performed in limits 0 < ω < ∞, 0 < q <

�q, where �q ≈ 1.2 ≈ 2π ∗ 0.2 (r.l.u.) (we remind that we
set the lattice spacing equal to unity) is the ultraviolet cutoff
of the theory. Equation (A9) implies that the spin sum rule is
increasing with doping. Obviously, the sum rule should be a
doping-independent constant. This implies that magnetic fluc-
tuations at the scale ω ∼ J � � must generate the magnon
quasiparticle residue

Zx =
√

1 − μx. (A10)

Equations (A8) and (A9) must be multiplied by the residue
and this makes the sum rule doping independent.

APPENDIX B: THE FRUSTRATION MECHANISM
BEHIND THE LIFSHITZ SPIN LIQUID

Here, we explain the mechanism of the Lifshitz SL with-
out going to technical details. The details are presented in
Ref. [16]. The easiest way to understand how the Lifshitz SL
arises due to frustration of spins by mobile holons is to stay
in the Néel phase, λ < 1, and to increase λ [see the phase
diagram Fig. 1(b)]. In the Néel phase there is a collinear
long-range order 〈nz〉 �= 0, and there is a quantum fluctuation
〈n2

⊥〉 = 〈n2
x〉 + 〈n2

y〉. A calculation at small doping x gives the
following answer for the fluctuation:

〈�n2
⊥〉 = xβ

2ρs
ln

(
1

1 − λ

)
+ const. (B1)

When λ is sufficiently close to unity, the fluctuation is very
large and this results in the quantum melting of the long-range
Néel order. This explains the Néel-Lifshitz SL transition line
in Fig. 1(b). Similar arguments lead the Lifshitz SL–spin
spiral transition line on the phase diagram (see Ref. [16]).

APPENDIX C: EFFECT OF SUPERCONDUCTIVITY

With account of Zx, the magnetic Green’s function in the
SL phase reads as [16]

D(ω, q) = −i
∫

d2r dt eiωt+iqr〈T {ni(r, t ) · ni(0, 0)}〉

= 2

χ⊥

Zx

ω2 − c2q2 − �2 − 	(ω, q) + i0
. (C1)

Here, � is the SL gap and 	(ω, q) is the magnon polarization
operator (fermionic loop). The magnon-holon interaction is
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given by the Lagrangian (A5). Hence, a calculation of the
magnon polarization operator is relatively straightforward. In
the calculation, one can disregard superconducting pairing of
holons or alternatively take the pairing into account. Results
without the pairing we call the “normal-state results.”

In this work we introduce superconductivity in the theory
ad hoc via the phenomenological d-wave SC gap. We use the
simplest parametrization for the gap

�k = �SCγ −
k . (C2)

In our numerical calculations we used the following values of
the SC gap:

x = 0.16 : �SC = 0.2J,

x = 0.10 : �SC = 0.1J. (C3)

Expressed in terms of parameters of the Lagrangian (A5),
the zero-temperature polarization operator in the SC phase
reads as [42]

	(ω, q) = 2πλc2

m∗
∑

α=1,2

q2
α

∫
d2k

(2π )2

{
v2

ku2
k+q + ukvkuk+qvk+q

}

×
[

1

ω − Ek − Ek+q + i0
+ (ω → −ω)

]
, (C4)

where qα = q · eα and uk and vk are Bogoliubov parameters:

uk =
√

1

2

(
1 + ξk

Ek

)
,

vk = sign(γ −
k )

√
1

2

(
1 − ξk

Ek

)
. (C5)

The quasiparticle dispersion reads as

Ek =
√

�2
k + ξ 2

k , ξk = εk − μ, (C6)

where the chemical potential μ is defined by the condition

x = 2
∑

α=1,2

∫
d2k

(2π )2
v2

k . (C7)

Numerical evaluation of the polarization operator (C4) is
straightforward and we use it in this work.
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