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Superconducting size effect in thin films under electric field: Mean-field self-consistent model
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We consider the effects of an externally applied electrostatic field on superconductivity, self-consistently
within a BCS mean-field model, for a clean three-dimensional (3D) metal thin film. The electrostatic change
in superconducting condensation energy scales as �/μ close to subband edges as a function of the Fermi energy
μ and follows 3D scaling (�/μ)2 away from them. We discuss nonlinearities beyond the gate effect and contrast
results with recent experiments on gating effects on Josephson junctions.
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I. INTRODUCTION

Quantum oscillations in superconducting properties due to
size quantization in thin films were predicted early [1–4], and
they were later observed in metallic films [5–8]. Modification
of superconducting properties by changing the electron den-
sity by electrostatic fields was also observed [9–14] and is best
studied in high-Tc superconductors where the charge density
can be low enough to enable efficient gating. Generally, mod-
ifications of the critical temperature Tc and critical current Ic

have been reported. Modification of Ic only was also recently
reported in Refs. [14,15] in metallic thin-film samples, but the
proper interpretation in the latter is still unclear.

Electrostatics of superconductors is an old problem (see,
e.g., Ref. [16] for a historical review), and the effect of
electric fields on superconducting surfaces were theoretically
discussed in several works [17–24]. In these works, effects on
the amplitude of superconductivity (Tc) are usually related to
modulation of the electronic density of states (DOS), which is
also what contributes to the quantum size effects. A common
approach is to consider “surface doping” and assume the
DOS is modified within a Thomas-Fermi screening length
from the surface. Self-consistently screened calculations in
superconductors were previously discussed in Refs. [25–27]
in a different context. For the normal state, there is a large
body of literature on microscopic calculations with surface
screening, which are routine today, e.g., using density func-
tional theory [24,28]. Modification of Ic, on the other hand,
is often assumed to come from changes in the vortex surface
pinning potential [14,29].

In a simple picture, a static electric field appears as a
perturbation of the potential that confines electrons within
the thin film. Static perturbations generally extend up to a
screening length from the surface, so their effect decreases
towards high charge density. Although the effects increase
with the applied electric field, achievable field magnitude is
limited by electric breakdown (e.g., via field emission [30]).

Electrostatic gating of superconductivity in the BCS mean-
field picture relies on electron-hole asymmetry within an
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energy window determined by the order parameter and Debye
frequency centered at the Fermi level [31–34]. In a simple,
clean thin-film model, strong asymmetry naturally exists in
the form of the steplike multiband two-dimensional (2D)
DOS, which also gives rise to the quantum size effect, and
the picture also extends to weakly disordered samples. The
only questions are to what degree the DOS asymmetry is
retained, even though sharp features in the DOS are smeared
by disorder [35], and when samples cannot be significantly
gated (metallic regime such as in Ref. [15]) since the Fermi
level is not necessarily fixed at a sensitive point. Regardless,
sharp DOS features can increase the charge density range in
which electrostatic effects are large enough to be observed.
However, few explicit results on the interplay between the
surface field and the size effects in the high charge density
regime seem to have appeared in the literature. Motivated by
the recent experimental results [15] where large effects were
seen, we revisit the problem.

In this work, we write down and solve a simple mean-field
model for superconductivity in thin films under electric fields,
including self-consistent screening. We point out connections
between the dependence of electrostatic energy on supercon-
ductivity and modulation of superconductivity by fields and
discuss the applicability of surface doping models in this pic-
ture. We also discuss to what degree nonlinear effects beyond
linear electrostatic gating could appear in strong fields. We
conclude that effects such as those observed in Ref. [15]
likely are not present in the model considered. However, the
results are relevant for systems with lower charge density,
including epitaxial films [6–8], superconducting semiconduc-
tors [36–38], and boron-doped diamond [39].

This paper is structured as follows. In Sec. II we introduce
the mean-field model considered and discuss results obtained
for the electric fields and modulation of superconducting
properties. Section III concludes with a discussion. The
Appendixes contain auxiliary results referred to in the text.

II. MEAN-FIELD MODEL

Self-consistent electrostatic screening and the size effect
on superconductivity in a clean superconducting metal in a
simple mean-field approximation is convenient to consider
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starting from a Hartree-Bogoliubov free energy. It can be
obtained [34,40–42] by decoupling a long-range Coulomb and
a (retarded) superconducting contact interaction via Hubbard-
Stratonovich transformations and considering only the classi-
cal saddle point in the static limit:

F [�,φ] = −T Tr ln G−1

+
∫

d3r

(
ρφ − ε0

2
(∇φ)2 +

∫ 1
T

0
dτ

|�(τ )|2
λ(τ )

)
,

(1)

G−1 = −iω +
[

k̂2

2m
− U − μ − eφ

]
τ3 + �(ω)τ1. (2)

Here, G is the electron equilibrium Green’s function, U is a
background potential, μ is a chemical potential, φ is equiva-
lent to the static electric potential, � is the superconducting
order parameter, and ρ is the ion and external charge density.
The electron charge is −e, and we use units with h̄ = kB = 1.
The first term in the free energy is the electronic contribution,
and the second part contains the electrostatic and supercon-
ducting mean-field contributions. In the absence of currents
and magnetic field, at the saddle point and with a suitable
gauge, � can be chosen to be real valued, and the values of the
vector potential and phase are zero. Above, φ has to be taken
as the saddle-point solution, which, as is typical for variational
Poisson, does not minimize F .

Variations vs φ and � give the Poisson and BCS self-
consistency equations:

−ε0∇2φ(r) = ρ(r) − ene(r)

= ρ(r) + eT
∑
ωn

tr τ3G(r, r, ωn), (3)

�(r) = 1

2
T

∑
|ωn|<ωc

λ(r) tr τ1G(r, r, ωn), (4)

where G satisfies the Gor’kov equations G−1G = 1 under
the self-consistent potentials. We also consider here a BCS
weak-coupling model, with �(ω) = �θ (ωc − |ω|), with the
coupling λ taken to be constant and a cutoff ωc similar to
the Debye frequency. In bulk, the BCS gap equation is then
directly � = 2ωce−1/(N0λ), with N0 being the DOS per spin at
the Fermi level.

For a uniform system, expanding G in Eq. (3) to lowest or-
der in φ results in εRPA(q)q2φ(q) = δρ(q), where εRPA(q) =
ε0 − e2

q2 �(q; �) is the self-consistent static dielectric function
of a clean superconductor [43,44]. In this model, the static
fields are screened, and external charge density affects the
electronic DOS but not the Coulomb effect [45] on λ. The
latter is due to considering the mean field with the decoupling
assumed; corrections appear from fluctuations of φ (see, e.g.,
Ref. [46] for explicit calculations) or on the mean-field level
with different decoupling [47].

Aiming to describe the effects on a qualitative level, we
now consider a simplified model, similar to those used in
several previous studies on the quantum size effect in su-
perconducting thin films [1,3]. A confining potential U (r)
is taken to be an infinite quantum well at |x| < L/2, which

FIG. 1. (a) Schematic of superconducting quantum well of thick-
ness L with infinite size in other directions, supporting several
populated subbands, with electric fields E± imposed on the surfaces.
(b) Charge density (6) in a superconductor is determined by the
density of states and an occupation factor broadened by the super-
conducting interaction.

supports some number of populated 2D electronic subbands
(see Fig. 1). In a static problem without currents, the electric
field is perpendicular to the metal surface, and the problem is
inhomogeneous only in the x direction. Moreover, we take as
a variational ansatz �, which is spatially constant [2] inside
the well; the resulting energies will then be upper bounds to
the exact solutions. In Appendix C we relax these assumptions
and observe they retain the main physics.

With these assumptions, the problem is elementary and
mostly given by known results [2,48] and can be solved
without further approximations. First,

G = −
∫ ∞

−∞
dξ AN (r, r′, ξ )

(
u2

iω−ε
+ v2

iω+ε
uv

iω−ε
− uv

iω+ε

uv
iω−ε

− uv
iω+ε

v2

iω−ε
+ u2

iω+ε

)
,

(5)

where AN is the normal-state spectral function (per
spin), u, v = [ 1

2 (1 ± ξ

ε
)]1/2, and ε =

√
ξ 2 + �2. Due to

the spatial symmetry, the problem reduces to one di-
mension. The normal-state DOS per volume is ν(ξ ) =
2
V

∫
d3r AN (r, r, ξ ) = ∑∞

n=1
m
πL θ (ξ − ξn) where ξn are the 2D

subband edges and V is the film volume. The subbands and
the potential φ are obtained from the Schrödinger-Poisson
problem, Eq. (3), with

ne[φ] =
∞∑

n=1

2m|ψn|2γ (ξn), (6)

[
− 1

2m
∂2

x − μ − eφ(x)

]
ψn = ξnψn, ψn

(
±L

2

)
= 0, (7)

where ψn(x) are the transverse wave functions of the 2D
subbands. Here, γ describes the contribution to the charge
from each subband:

n(ξ ) = f0(ξ ) + T
∑

|ω|<ωc

ξ�2

(ω2 + ξ 2 + �2)(ω2 + ξ 2)
, (8)

γ (ξ ) =
∫ ∞

ξ

dξ ′

2π
n(ξ ′) T →0= ωc

4π2
ln

ω2
c + ξ 2 + �2

ω2
c + ξ 2

+ 1

4π

[
ε

2

π
arctan

ωc

ε
+ |ξ |

(
1− 2

π
arctan

ωc

|ξ |
)

− ξ

]
,

(9)

224506-2



SUPERCONDUCTING SIZE EFFECT IN THIN FILMS … PHYSICAL REVIEW B 100, 224506 (2019)

where n(ξ ) → u2 f0(ε) + v2[1 − f0(ε)] for ωc → ∞ [49], f0

is the Fermi function, and ε =
√

ξ 2 + �2. The occupation fac-
tor n is broadened by the interactions in a window � around
the Fermi level, with the deviation from the Fermi function
starting to decay more rapidly beyond the interaction range at
|ξ | � ωc. Variations in the DOS within this window contribute
to the charge response of the amplitude of superconductivity
(see Fig. 1) [31,32,50].

To be specific, we assume an external charge density
outside the sample (e.g., capacitor plates with constant charge
density) such that the amplitudes of the electric fields at
the surfaces are fixed, −∂xφ(± L

2 ) = E±. Numerically, the
nonlinear Poisson problem can be solved iteratively [51] for
a fixed value of �.

The condensation energy fns(�) = (F [�,φ∗[�]] −
F [0, φ∗[0]])/V per volume for fixed � now depends only on
the density of states [2,48]. Via direct calculation,

fns(�) = 1

V

∫ �

0
d�

d

d�
F [�,φ∗], (10)

where we note that d
d�

F [�,φ∗] = ∂�F [�,φ∗] at the saddle
point φ∗. Further [2],

fns(�) = �2

λ
−

∫ �

0
d�

∑
|ω|<ωc

∫ ∞

−∞
dξ

ν(ξ )T �

ω2 + ξ 2 + �2
(11)

≡ �2

λ
− m

2πL

∫ �

0
d��

∞∑
n=1

g

(
ξn

�

)
, (12)

g(y) = T

�

∑
|ω|<ωc

∫ ∞

y
dx

2

x2 + 1 + (ω/�)2
. (13)

Here, g(y) → ∫ ∞
y dx 1√

1+x2
2
π

arctan ωc/�√
1+x2 for T = 0, and fur-

ther, g(y) → arsinh(ωc/�) − arsinh (y) for ωc 	 �, T = 0.
For T = 0 and ωc → ∞,

fns(�) ≈ �2

λ
− m�2

4πL

∑
ξn<ωc

[η(ωc/�) − η(ξn/�)], (14)

where η(y) = arsinh y + (
√

y2 + 1 − |y|)y. The self-
consistent value �∗ is attained at a solution of f ′

ns(�∗) = 0.
Separating out an electrostatic contribution by subtracting

the result for some reference potential φ0,

δ fns ≡ fns(�; φ∗) − fns(�; φ0) (15)

= − m

2πL

∫ �

0
d��

∞∑
n=1

[
g

(
ξn

�

)
− g

(
ξ (0)

n

�

)]
(16)

� 2m

L

∞∑
n=1

δγ (ξn)δξn, T = 0, ωc → ∞, (17)

where δγ (ξ ) ≡ γ (ξ,�) − γ (ξ,� = 0) from Eq. (9) and
δξn ≡ ξn − ξ (0)

n . The result (16) includes both gating [1,17,18]
and any nonlinear effects (e.g., energy associated with quan-
tum capacitance) in strong electric fields. Note that the above
electrostatic energy contribution depends on the electric fields
only via ξn = ξn[φ], an exact statement in the model here.

It is also possible to express the electrostatic energy di-
rectly in terms of the self-consistent electric field at small

field strengths. Consider an expansion of the electronic energy
around a reference electric potential, considering small φ1 =
φ − φ0 and ρ1 = ρ − ρ0:

−T Tr ln G−1 + T Tr ln G−1|φ=φ0

=
∫

d3r (−e)ne[�,φ0](r)φ1(r)

+ 1

2

∫
d3r d3r′ e2�[�,φ0](r, r′)φ1(r)φ1(r′) + · · · ,

(18)

where ne is the electron density and � is the density response
function. Solving the resulting saddle-point equation for φ1

and substituting the solution into F gives, after integration by
parts,

f [�] = f [�,φ0] + 1

V

∫
d3r

(
ρ1φ0 + 1

2
ρ1φ1,∗

)
(19)

= f [�,φ0]+
∑
±

∓ε0E±
L

[
φ0 + 1

2
φ1,∗

]
x=± L

2

+ C, (20)

ρ1 = −ε0∇2φ1,∗ −
∫

d3r′ e2�[�,φ0](r, r′)φ1,∗(r′), (21)

where C is independent of �. In this order of expansion
in small φ1, the additional electrostatic field energy in (19)
coincides with the standard expression. The linear term ∼ρ1φ0

describes a gate effect on superconductivity, which in this
approach we see is related to the � dependence of the equi-
librium potential φ0. Using Eq. (21), the quadratic part can
be expressed as ∼φ1ε

RPAφ1. It corresponds to a (quantum)
capacitance modulation [22,23] by superconductivity. The
result (19) can be directly used for computing δ fns(�) (if
δφ ≡ φ[�] − φ[0] is known) and is equivalent to (16) in the
small-field limit. However, due to the � dependence of φ0

it is not necessarily very practical to compute, as solving
the nonlinear Poisson problem is still required. However, the
above expressions can be used as a consistency check.

As noted above, we consider charge density ρ = ρ1 + ρ0,
where ρ1 outside the sample fixes the electric field at the
surface. Finally, we need to specify the background (“ion”)
charge density ρ0. The electric potential due to ρ0 together
with U gives the pseudopotential for the electron system [52].
For simplicity, unless otherwise mentioned, below we assume
ρ0 = ene[� = 0, φ = 0, μ], which results in φ0 = 0 being the
solution in the normal state and μ becoming the parameter
that fixes the charge density in the normal state. This is, of
course, a crude toy model of the surface electron behavior,
even within Hartree-type models [28], but (see Appendix C)
modifies mainly the precise positions of the subbands and not
the main qualitative features of the effect of the screening of
external charges on superconductivity.

A. Size effect in the electric field

In the same way as the variation in thickness [1,2], gating
by a surface electric field can, in principle, make a single
subband edge ξn cross the Fermi level, which results in a jump
in superconducting properties. Such a response can be larger
than in bulk material and is not captured by surface doping
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models often used for the electric field effect [17,18], where
the local DOS ν(x, ξ ) is assumed to be modified in a surface
layer with a thickness of a screening length λT F according
to bulk relations. In addition, the field screening is not exactly
Thomas-Fermi type, but this causes less relevant changes than
the difference in the DOS.

The order of magnitude of δ fns can be estimated in
a Thomas-Fermi approximation. Taking φ(L/2 + x′) � −
EλT F ex′/λT F for x′ < 0, λT F =

√
ε0/(e2νF ),

δξn � 〈n|(−e)φ|n〉 = λ2
T F

L
eE+q(2λT F kn), (22)

where kn = πn/L and q(z) = z2/(1 + z2). From Eq. (17),
keeping only the smallest |ξn| < ωc,

δ fns � | fns,3D| 2eEa0√
ξ 2

n + �2 + |ξn|
π2

4(kF L)2
q(2λT F kn), (23)

where fns,3D = − 1
4

mkF
π2 �2 is the bulk three-dimensional (3D)

condensation energy and a0 = 4πε0/(me2) is the Bohr radius.
The above result is valid in the leading order in �, as φ is
assumed to be independent of it. The factor q(2λT F kn) in
reality depends on details of the screening, and below we
consider it as a constant of the order of magnitude 1.

Including the next-order eigenvalue perturbation δξ (2)
n in

(16) and considering terms of order E2 give the second-order
correction,

δ f (2)
ns � m

L

∞∑
k,n=1

δγ (ξn) − δγ (ξk )

ξn − ξk
|〈k|(−e)φ|n〉|2, (24)

where n = k means the limit ξk → ξn. This energy con-
tribution is associated with the change �[�, 0] − �[0, 0]
[compare Eqs. (18) and (A4)] in the static Lindhard func-
tion [43]. However, it is of the same order in � as the
change �[0, φ0[�]] − �[0, 0] due to the �-dependent shift
in the self-consistent equilibrium potential, which we have
neglected in Eq. (24). As a consequence, Eq. (24) is not
the only contribution to the E2 term, and solving the self-
consistent electrostatic problem is, in general, required [53].
Conversely, calculation of the effect of superconductivity on
the dielectric function requires taking the self-consistency of
� = �∗[φ] into account [44].

The overlap factor q above depends on how accurate the
Thomas-Fermi screening assumption is close to the surface.
For the simple problem here, we can solve the Poisson equa-
tion numerically. Such a solution is illustrated in Fig. 2(a)
for λT F � L. Since λT F ∼ kF , screening is not fully expo-
nential, but the electric potential exhibits 1/kF oscillations.
The correction δφ = φ(�) − φ(� = 0) to the equilibrium
electrostatic potential from superconductivity is small in the
high-charge-density regime considered here. The chemical
potential is chosen to be close to a subband edge in Fig. 2(a).

The corresponding dependence of δ fns on the electric field
magnitude is shown in Fig. 2(b), where different approxi-
mations are compared with the exact result, Eq. (16) (solid
line), together with the corresponding result from Eq. (23)
(dotted line). The electrostatic energy expression (20) is also
shown (dashed line) and coincides with the exact result in
the small-field regime. Generally, the electric field effect is

FIG. 2. (a) Self-consistent electric potential φ and its mod-
ulation δφ = φ(�) − φ(� = 0) for E− = 0, E+ = 3.8 V/nm,
L = 10 nm, μ = ξ

(0)
18 + 0.5/(mL2) = 1.22 eV, � = 760 μeV, ωc =

34 meV, T = 0. (b) Change δ fns in the condensation energy at
fixed �, in units of the 3D bulk condensation energy fns,3D =
− 1

4 ν3D(μ)|�|2. Results from Eq. (16) (solid line), the small-field
expression (20) (dashed line), and Eq. (23) with q(z) = 1 (dotted
line) are shown.

appreciable only for E+L � μ. In the estimate from Eq. (23),
we here set q(z) = 1 to account for the expectation that likely,
for the true screening length λT F kF � 1. The second-order
correction (24) is negligible for these parameters, being higher
order in λ2

T F eE/(Lωc), and the nonlinearity visible in the
result originates from g(ξ ).

The linear gating effect can be suppressed with a charge-
neutral field configuration E+ = E− = E , which corresponds
to an experiment using floating gate electrodes (i.e., placing
the system inside a plate capacitor). The result from the
Poisson equation for this case is shown in Fig. 3, together with
the result for δ fns. Imposing the field on both sides produces
a larger δφ. However, as the linear contribution to the free
energy cancels, the modulation δ fns arises from the next-order
effect and is an order of magnitude smaller than with the gate
effect. Although the energy can still be expressed via Eq. (20),
the eigenvalue perturbation result (24) does not agree as well,
as expected.

Whether electrostatic effects are significant depends on
how large the modulation δ fns is compared to fns. The

FIG. 3. Same as Fig. 2, but for the symmetric field configuration
E+ = E−. The dotted line indicates Eq. (24).
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FIG. 4. Electrostatic condensation energy increase δ fns vs μ for
E+ = 0.76 V/nm; other parameters are as in Fig. 2. The dashed line
indicates Eq. (23), taking q(z) = 1.

dependence of their ratio on the chemical potential, and hence
charge density, is shown in Fig. 4, at a relatively large external
field. The magnitude of δ fns depends strongly on whether the
chemical potential is located near a band bottom, where the
effect is amplified (see Fig. 1), which produces the oscillations
visible in Fig. 4. When μ is close to a subband bottom, the
magnitude appears to be captured well by Eq. (23) (dashed
line). When the chemical potential is not close to a band
bottom, depending on the ratio between the subband spacing
and the cutoff ωc, the electric field effect can vary by order
of magnitude. Note that as long as |ξn| � ωc for some n, the
result is dominated by the smallest ξ , and the cutoff ωc < ∞
is of limited importance. The sum (16) is convergent also
for ωc → ∞. However, these results are based on the simple
weak-coupling model for superconductivity, and the precise
shape of the modulation may be sensitive to details of the
interaction. Regardless, from the above results one can see that
the relative magnitude at resonance scales as ∝ �/μ and not
as (�/μ)2 as one would expect for the amplitude response in
the 3D bulk [43,44]. Away from the subband edge resonances,
δ fns ∝ (�/μ)2.

The self-consistent value of �∗, f ′
ns(�∗) = 0, is shown

in Fig. 5(a) as a function of the film thickness, showing
the well-known quantum size effect [1,2]. The corresponding
dependence on the chemical potential is shown in Fig. 5(b) for
several values of the external electric field. In Fig. 5(b), it is

FIG. 5. Self-consistent �∗(T = 0) vs (a) L and (b) μ, with g =
N0,3Dλ = 0.14 fixed and other parameters as in Fig. 2. Here, �0 =
2ωce−1/g.

obvious that the electrostatic field simply gates the system:
the size effect physics is dominated by the ξn closest to
the chemical potential, so that the gate-induced shift δξn is
identical to a chemical potential shift −δμ.

The above discussion can be compared to a surface dop-
ing model, where the DOS is assumed to change in a sur-
face layer of thickness λT F , and the system is considered
a superconducting bilayer in the Cooper limit. In such a
model, δFns/Fns ∼ − λT F

L δ 1
νF λ

∼ δνF λT F

λν2
F L

. The general form of
Eq. (23) can then be recovered by including (ad hoc) the
main features of the multiband DOS in δνF . This can be
done by writing δνF

νF
= π

kF L ∂ξnθ�(ξn)λT F eE , where θ�(ξ ) is a
broadened unit step function with width �. For the problem
here, although the actual form of δν(x, E ) is different, this
simpler model captures the main effects. Surface doping mod-
els have, indeed, been successful in understanding previous
experimental results [29].

B. Superfluid weight

The effect of the electrostatic field on the phase fluctuations
can be studied via the superfluid weight Ds

i j [54], which
describes the free-energy cost of superflow �(r) ∝ e2iA·r:

F [�∗, φ∗, A] = F [�∗, φ∗, 0] + h̄2V
2

Ds
i jAiA j + · · · . (25)

The “vector potential” A describing the superflow can be
introduced in Eq. (2) by replacement k̂ �→ k̂ + A. The calcu-
lation of Ds is standard for multiband BCS superconductor.
Since the current operators in the y and z directions do
not couple different bands here, the result for i, j ∈ {y, z} is
Ds

i j = δi j
∑

n ns(ξn)/(mL), where ns(ξn) is the BCS superfluid
density [54]:

ns(ξ ) = 2m
∫ ∞

ξ

dξ ′

2π
[n(ξ ′) + (ξ ′ − ξ ) f ′

0(ε′)], (26)

where n(ξ ) is given by Eq. (8) and ε′ =
√

(ξ ′)2 + �2. As is
well known, ns(ξ ) → ne(ξ ) = 2mγ (ξ ) at T = 0. The electro-
static modulation of the superfluid stiffness is then similar to
that of the charge density, i.e., small in the metallic regime. A
similar conclusion then applies to the phase stiffness and quite
likely also to the phase-slip energy barrier [55]. These results,
however, apply in the clean limit.

III. DISCUSSION AND CONCLUSIONS

We discussed an elementary BCS/Hartree-Bogoliubov
mean-field model for the size effect under self-consistent
electrostatic fields in superconducting thin films and studied it
based on numerically exact solutions. As the size modulation
in superconducting properties decays relatively slowly with
increasing charge density, it increases the response to applied
electric fields, effectively changing the small parameter from
(�/μ)2 to �/μ for fine-tuned values of μ, including in films
thick compared to the screening length.

The mean-field approach likely is not useful for describing
atomically thin or strongly disordered and resistive samples,
where fluctuation effects matter. Phase-plasmon fluctuation
effects in principle can be included in the approach above in
a standard way by expanding in Re �, Im �, and V = −iφ
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around the mean-field solution. A priori, in view of some
existing results [42,46,56], however, it is not clear why such
corrections would depend strongly on the external electric
field.

Large electrostatic size effects in thin-film systems are
expected to be visible mainly in relatively low charge den-
sities, e.g., semiconducting materials. As noted in previous
works [29], it appears likely this is a main effect in high-
Tc superconductors. The modulation of screening by super-
conductivity will also appear in proximity systems, e.g., in
semiconductor-superconductor hybrids recently considered as
Majorana fermion platforms [27,57–61]. In such nonmetallic
systems with a larger ratio �/μ, change in the electric field
configuration across the superconducting transition could be
more easily observable.

With regard to the large modification of superconducting
critical current by electric fields reported in Refs. [15], it
then appears somewhat less likely that these results can be
understood with electrostatic effects of the type discussed
above. At metallic densities �/μ ∼ 10−4, electrostatic effects
in the model here, even at a sharp DOS feature, likely can
give only |δ fns/ fns,3D| � 10−2, which is too small to cause
large measurable effects. It appears unlikely this is easily
rectified by lifting some of the approximations we made. This
is simply a manifestation of the “Anderson theorem” [48]:
the amplitude of conventional superconductivity is insensitive
to time-reversal-symmetric perturbations, and suppressing it
requires perturbations that are large compared to μ, which
are usually not achievable in the metallic regime below the
electrical breakdown field. Also, as the linear gate effect
generally should dominate nonlinearities, whether supercon-
ductivity is suppressed or enhanced depends on the sign of the
electric field, quite unlike in Ref. [15]. Finally, the observation
in Sec. II B also poses some challenges to explanations via
fluctuation effects, which likely would require large modula-
tion of the stiffness without large changes in charge density.
Previously, reduction in the critical current by an applied field
was attributed to modification of vortex pinning [14,29]. In
Ref. [15] effects appear also in aluminum strips with lateral
size � ξ , making this explanation less favorable. In the clean-
limit model here, it also appears unlikely the phase slip rates
would be significantly affected.

In summary, we considered effects of electrostatic fields on
superconductivity self-consistently within a BCS model, con-
nected them to questions about electrostatic energy, and com-
mented on their relation to recent experiments. We obtained
results for the size and external electric field modulation of
superconductivity and contrast results with a surface doping
model. Expanding about this mean-field solution, considering
electric field effects on phase slips and phase fluctuations, is
possible. Experimentally, the effects are most visible in low-
charge-density systems, e.g., semiconductor hybrid structures.
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APPENDIX A: DENSITY RESPONSE
FUNCTION IN THIN FILMS

The static density response in a superconducting infinite
potential well can be found in a situation translationally
invariant vs y and z (i.e., response to a charge sheet). First,
we have

�(x, x′) = T
∑
ωn

tr G(x, x′)τ3G(x′, x)τ3 (A1)

= 2
∫ ∞

−∞
dξ1 dξ2 AN (r, r′; ξ1)AN (r, r′; ξ2)∗

×n(ξ1,�) − n(ξ2,�)

ξ1 − ξ2
, (A2)

where the trace and the Matsubara sum have been evalu-
ated and n(ξ ) = u2

ξ f0(εξ ) + v2
ξ [1 − f0(εξ )]. The normal-state

spectral function for a potential well is

AN (x, x′; ξ ) =
∞∑

p=1

2

L
sin

[
kp

(
x + L

2

)]

× sin

[
kp

(
x′ + L

2

)]
δ(ξ − Ep), (A3)

where kp = π p
L , Ep = k2

p

2m . Then we have,

�(x, x′) = 8m

L2

∞∑
pq=1

sin

[
kp

(
x + L

2

)]
sin

[
kp

(
x′ + L

2

)]

× sin

[
kq

(
x + L

2

)]
sin

[
kq

(
x′ + L

2

)]

× γ (Ep − μ,�) − γ (Eq − μ,�)

Ep − Eq
, (A4)

which can be evaluated. Here, the terms p = q imply the limit
Ep → Eq.

APPENDIX B: CONFINING POTENTIAL

In a more realistic model than in the main text, we would
set U = 0, and the electrons would be confined in the metal
film due to the attractive potential from the ionic charge
density ρ0 > 0. However, in such calculations the simplifying
assumption of a spatially constant � is not permissible, as
discussed below.
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The charge density in a uniform 3D metal for μ → −∞
(i.e., deep in the vacuum), with constant �, is

ρe(μ, T = 0,�) = (2m)3/2

2π2

∫ ∞

−μ

dξ
√

μ + ξn(ξ )

� (2m)3/2

16π

�2

√−μ
. (B1)

The corresponding Poisson equation in a Thomas-Fermi ap-
proximation becomes

∂2
x φ(x) � eε−1

0 ρe(μ − φ(x), T = 0,�) � a√
φ(x)

(B2)

⇒ φ(x) =
(3

√
ax

2

)4/3
, ρe(x) ∝ x−2/3. (B3)

From the solution, we find the electrostatic field fails to con-
fine the “superconducting” electrons, and an infinite amount
of total charge

∫ ∞
x0

dx ρe(x) leaks to the vacuum, which is
unphysical. In the exact solution, the mean field |�(r)| would
decrease simultaneously with the density, providing a stronger
electrostatic confinement. Although the details of this surface
effect appear sensitive to the external electric field, it appears
unlikely it is important for the stability of superconductivity
in the bulk.

APPENDIX C: SPATIAL DEPENDENCE OF �

In the main text, we take the approximation �(r) = �0 for
the superconducting order parameter. In this section, we relax
this assumption.

Writing the problem in the wave function basis (7), we have

(G−1)pq = [−iω + (ξp + ξ⊥)τ3]δpq + �pqτ1, (C1)

�pq =
∫

dx ψp(x)ψq(x)�(x), (C2)

where ξ⊥ = k2
⊥

2m and k⊥ is the momentum component perpen-
dicular to x. The spatially inhomogeneous order parameter in-
duces effectively a mixing term �pq between different bands,
resulting in equations similar to a multiband superconductor.
Note that in the absence of supercurrent or external magnetic
field �pq = �qp. Both ξp and �pq depend on the electrostatic
potential φ. The self-consistency equation becomes [4,62]

�pq =
∑

rs

Vpq,rsFrs, (C3)

Frs =
∫ ∞

0

mdξ⊥
2π

T

2

∑
|ωn|<ωc

tr τ1Grs, (C4)

Vpq,rs =
∫ ∞

−∞
dx λ(x)ψp(x)ψq(x)ψr (x)ψs(x), (C5)

and the charge density is

ne(x) =
∞∑

pq=1

2mψp(x)ψq(x)γpq, γpq =
∫ ∞

0

dξ⊥
2π

npq,

(C6)

npq = f0(ξp + ξ⊥)δpq + T

2

∑
|ωn|<ωc

tr τ3[Gpq|�=0 − Gpq].

(C7)

FIG. 6. Same as Fig. 4, but computed self-consistently from
Eq. (C8) within the multiband approximation. To make a comparison
to Fig. 4, we set here ωc = 34 meV and λ(μ), such that �0 =
2ωce−1/[N0,3D (μ)λ(μ)] = 760 μeV. The absolute value |δ fns| is plotted,
with negative regions indicated with a different line style.

The condensation energy can be found via variation of the
coupling constant, λ �→ λχ , and

fns = −
∫ 1

0
dχ

∫
d3r

(�χ )2

Vλχ2
= − 1

L

∫ 1

0

dχ

χ

∑
rs

�χ
rsFχ

rs,

(C8)

where �χ , φχ , and Fχ are the values computed self-
consistently for fixed χ . The discussion in the main text
corresponds to taking �pq = �0δpq in the above. We again
define the electrostatic component δ fns = fns − fns|E+=E−=0

as the modulation due to the external field.
The problem retains a form similar to that in the main text

if subband off-diagonal matrix elements are dropped on the
right-hand sides of the above equations (Anderson approxi-
mation), taking G−1

pq ∝ δpq [62]. Then, γpq = δpqγ (ξp)|�=�pp

is given by Eq. (9), and Frs = δrs[m�/(4π )]g(ξr/�)|�=�rr

is given by Eq. (13). For uniform λ(x) = λ0 inside the
film, Vpp,qq � (1 + 1

2δpq) λ0
L , up to electric field corrections.

With such all-to-all coupling and a large number N 	 1 of
bands in the regime we are interested in, the self-consistent
problem remains qualitatively close to that discussed in the
main text. The electrostatic free-energy contribution within
this approximation is shown in Fig. 6. The result remains
quantitatively similar to Fig. 4 close to resonances and agrees
in order of magnitude away from them. The results also
show an additional change in the sign of the electrostatic

FIG. 7. Same as Fig. 6, but with U = 0 and only electro-
static confinement, assuming positive ion charge density ρ0 =
e(2mμ)3/2/(3π 2 h̄3) in the region |x| < L/2.
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energy contribution in the regime where the effect is smallest
and the physics is not dominated by a single band and is
more sensitive to details of the interaction. In these parameter
regions, the effect of a strong electric field is not only a simple
shift in the effective chemical potential.

This approximation also avoids the issue discussed in
Appendix B, and we can consider U = 0 and only elec-

trostatic confinement. The result is shown in Fig. 7.
It remains qualitatively similar to Figs. 4 and 6, but
with a small shift in the band bottom positions, as ex-
pected for a finite potential well; changes in the normal-
state screening factor q(2λT F kn) � δξnL/(λ2

T F eE+); and a
larger |δ fns| in the parameter regions between the band
bottoms.
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