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Monte Carlo study of the critical properties of noncollinear Heisenberg magnets:
O(3) × O(2) universality class
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The critical properties of the antiferromagnetic Heisenberg model on the three-dimensional stacked-triangular
lattice are studied by means of a large-scale Monte Carlo simulation in order to get insight into the controversial
issue of the criticality of the noncollinear magnets with the O(3) × O(2) symmetry. The maximum size studied
is 3843, considerably larger than the sizes studied by the previous numerical works on the model. Availability of
such large-size data enables us to examine the detailed critical properties including the effect of corrections to
the leading scaling. Strong numerical evidence of the continuous nature of the transition is obtained. Our data
indicate the existence of significant corrections to the leading scaling. Careful analysis by taking account of the
possible corrections yields critical exponents estimates, α = 0.44(3), β = 0.26(2), γ = 1.03(5), ν = 0.52(1),
η = 0.02(5), and the chirality exponents, βκ = 0.40(3) and γκ = 0.77(6), supporting the existence of the O(3)
chiral [or O(3) × O(2)] universality class governed by a “chiral” fixed point. We also obtain an indication
that the underlying fixed point is of the focus type, characterized by the complex-valued correction-to-scaling
exponent, ω = 0.1+0.4

−0.05 + i 0.7+0.1
−0.4. The focus-like nature of the chiral fixed point accompanied by the spiral-like

renormalization-group (RG) flow is likely to be the origin of the apparently complicated critical behavior. The
results are compared and discussed in conjunction with the results of other numerical simulations, several distinct
types of RG calculations including the higher-order perturbative massive and massless RG calculations and the
nonperturbative functional RG calculation, and the conformal-bootstrap program.
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I. INTRODUCTION

The concept of universality has been a cornerstone of
modern theory of phase transition and critical phenomena.
According to the universality hypothesis, critical properties
associated with continuous phase transitions possess universal
features independent of microscopic details of each system
and can be classified into a small number of universality
classes. Each universality is specified by the symmetry of the
order parameter, the spatial dimensionality, and the range of
interaction.

Magnetic systems have offered a framework for the study
of the critical phenomena and the universality class for years.
In bulk magnets, the universality class is usually labeled by the
number of spin components n, i.e., n = 1 (Ising), n = 2 (XY ),
and n = 3 (Heisenberg) depending on whether the interaction
is easy-axis type, easy-plane-type, or isotropic, respectively.

In the middle 1980s, one of the present authors (H.K.)
suggested on the basis of a symmetry argument, Monte Carlo
(MC) simulations, and renormalization-group (RG) analysis
that certain frustrated magnets with the noncollinear spin or-
der might exhibit a phase transition belonging to a new univer-
sality class, the O(n) “chiral” universality class, different from
the well-known O(n) universality class [1–6]. We begin with
a summary of these earlier works. Concerning a symmetry,
the order-parameter space V isomorphic to the set of ordered
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state of the frustrated noncollinear n-component magnets is
O(n)/O(n − 2) [1,2,6], instead of O(n)/O(n − 1) = Sn−1 (Sn

the n-dimensional sphere) of the collinear order in standard
unfrustrated n-component magnets. The associated Landau-
Ginzburg-Wilson (LGW) Hamiltonian can be written in terms
of two n-component vector fields, in contrast to a single n-
component field in the standard n-component φ4 model, with
the associated symmetry O(n) × O(2), in contrast to O(n) of
the standard φ4 model [3,6]. Then the O(n) chiral universality
class is sometimes called the O(n) × O(2) universality class.
This symmetry was further extended to O(n) × O(m) [4,6].
Renormalization-group (RG) analysis based on the LGW
Hamiltonian including both the ε = 4 − d and 1/n expansions
was performed, to yield a new “chiral” fixed point (FP) for
larger n [3,4]. More precisely, the second-order ε expansion
yielded the stability region of the chiral FP to be n � nc(ε) =
21.8 − 23.4ε + O(ε2). Whether the physically relevant case
of d = 3 and n = 2, 3 is included in this region or not has
been not so clear, however. Concerning the Monte Calro (MC)
study of microscopic spin models, the MC simulations of
Refs. [1,2,5] studied the classical vector (n = 2 or 3) anti-
ferromagnet on the three-dimensional (3D) stacked-triangular
lattice, observing a continuous transition. In the Heisenberg
(n = 3) case, the exponents were estimated to be α = 0.24(8),
β = 0.30(2), γ = 1.17(7), ν = 0.59(2), and η = 0.02(18)
[5], where α, β, γ , ν, η are the specific-heat, the order-
parameter, the ordering-susceptibility, the correlation length,
and the critical-point-decay exponents, respectively. The chi-
ral exponents were also estimated to be βκ = 0.55(4) and
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γκ = 0.72(8) [5] where βκ and γκ are the chirality and the
chiral-susceptibility exponents, respectively. A series of these
earlier theoretical works by one of the present authors was
reviewed in Ref. [6]

Since then, many both theoretical and experimental ac-
tivities have been made on the noncollinear criticality of
frustrated magnets. Some support the existence of a new
universality class, while some others suggest the absence of
a new universality class claiming the noncollinear transition
being first order.

Concerning MC and related numerical simulations, earlier
MC simulations on the stacked-triangular AF Heisenberg
model, the same model as studied in Refs. [1,2,5], yielded
a continuous transition and characterized the exponents as
more or less similar to the ones reported in Ref. [5], including
the works by Bhattacharya et al. [7], Mailhot et al. [8],
and Loison et al. [9], though the lattice sizes studied were
rather small L � 32 − 48. By contrast, Itakura performed the
MCRG study of the LGW model on the lattice and concluded
that the transition was of first order for both cases of n = 2
and n = 3 [10]. Ngo and Diep applied the Wang-Landau
method to the AF Heisenberg model on the stacked-triangular
lattice, exactly the same model as studied in Refs. [1,2,5], and
concluded that the transition was actually first order based on
the observation of the double peaks in the energy distribution
at Tc [11]. They argued that the system size studied in the
previous simulations was too small to unambiguously identify
the first-order transition. Hence, the numerical situation on the
phase transition of the AF Heisenberg model on the stacked-
triangular lattice has remained unclear.

The situation of the RG analysis has also remained unclear.
The two-loop analysis of Ref. [3] was extended to three-
loop order by Antonenko and Sokolov [12]. By applying the
Padé-Borel analysis, these authors concluded that the chiral
FP did not exist for the physically relevant cases of n = 2
and 3 in three dimensions, and the transition was first order.
The three-loop ε-expansion calculation found the chiral fixed
point stabilized at n � nc = 21.8 − 23.4ε + 7.1ε2 + O(ε3)
[13]. Subsequently, higher-order perturbative RG calculations
in fixed d = 3 dimensions combined with the resummation
technique were performed by Pelissetto, Vicari, Calabrese,
and collaborators based on the two distinct RG schemes,
i.e., the six-loop calculation with the massive zero momen-
tum (MZM) scheme [14–16] and the five-loop calculation
with the massless minimal subtraction (MS) scheme [17].
In contrast to the lower-order three-loop calculation [12,13],
both schemes lead to the stable chiral FP associated with
a continuous transition at d = 3 for both n = 2 and 3. An
interesting observation here is that the chiral FP was of the
peculiar “focus-type” FP with a complex-valued correction-
to-scaling exponent, where the RG flow exhibits a spiral-like
flow into the chiral FP [16,17]. The estimated exponents differ
somewhat between the two RG schemes, i.e., α = 0.35(9),
β = 0.30(2), γ = 1.06(5), ν = 0.55(3), η = 0.073(94) [14],
βκ = 0.38(10), and γκ = 0.89(10) [15] in the massive MZM
scheme, and α = 0.11(15), β = 0.34(3), γ = 1.20(8), ν =
0.63(5), η = 0.08(3), βκ = 0.54(17), and γκ = 0.81(23) in
the massless MS scheme [17].

In sharp contrast, on the basis of a series of nonperturbative
functional RG calculations, Delamotte, Tisser, Mouhana, and

collaborators claimed that the O(n) × O(2) model did not
possess any new fixed point and the transition of noncollinear
magnets should be first order [18–22]. While this RG scheme
is nonperturbative, it contains some approximation or trunca-
tion whose validity is not totally clear. Hence, the RG situation
has remained quite controversial. Since both the higher-order
perturbative approach and the nonperturbative approach give
consistent results in the standard cases of the O(n) Heisenberg
model, the cause of the observed sharp discrepancy between
the two RG methods remains to be understood.

More recently, still another theoretical approach, the con-
formal bootstrap program, was applied to this problem by
Nakayama and Ohtsuki [23]. The method imposes the “exact”
bound to the scaling dimensions of operators. A kinklike
singular behavior is sometimes realized in the bounds, which
is employed to give quite accurate estimates of critical expo-
nents. In the n = 3 case, the program leads to a continuous
transition in d = 3, with the exponents estimates α = 0.10(6),
β = 0.34(1), γ = 1.22(4), ν = 0.63(2), η = 0.078(6), βκ =
0.56(7), and γκ = 0.77(10) [23]. The obtained values turned
out to be rather close to the estimates of the high-order
perturbative massless RG [17]. Since the conformal boot-
strap approach is completely independent of and different
from the RG approaches, this result seems to strengthen the
existence of the O(3) × O(2) universality class. Meanwhile,
the conformal-bootstrap program assumes the absence of the
focus point suggested from the higher-order perturbative RG
[16,17], and the situation still remains not totally clear.

Under such circumstances, in order to get further insights
into the issue, we wish to perform in the present paper a
large-scale MC simulation on the AF Heisenberg model on
the 3D stacked-triangular lattice. The model is the same one
as studied previously in Refs. [1,5,7–9,11], but here we go
to lattices considerably larger than those studied before, i.e.,
up to N = L3 = 3843. By so doing, we wish to perform
more precise analysis of the critical properties than before.
Indeed, we give a rather precise estimate of the transition
temperature Tc = 0.957270 ± 0.000004, and find strong nu-
merical evidence that the transition is continuous. We also find
significant corrections to the leading scaling. By carefully ex-
amining the correction-to-scaling effects, we get the estimates
of critical exponents, α = 0.44(3), β = 0.26(2), γ = 1.03(5),
ν = 0.52(1), η = 0.02(5), and the chirality exponents, βκ =
0.40(3) and γκ = 0.77(6), Quite interestingly, we find some
indication of the focus-type FP, i.e., the complex-valued
correction-to-scaling exponent ω = 0.1+0.4

−0.05 + i 0.7+0.1
−0.4.

The rest of the present paper is organized as follows. In
Sec. II we introduce the model and the numerical method
employed. Computed physical quantities in our MC simula-
tions are defined and some of their properties are explained
in Sec. III. In Sec. IV we show the MC data of representa-
tive physical quantities in the transition region. Section V is
devoted to the precise determination of the transition temper-
ature Tc, and the order of the transition is examined in Sec. VI.
Section VII consists of thee subsections and is devoted to the
estimates of various critical exponents. The analysis without
the correction term is first given in Sec. VII A. The analysis
invoking one and two real correction-to-scaling exponents is
made in Sec. VII B, while that invoking a complex correction-
to-scaling exponent is made in Sec. VII C. Finally, Sec. VIII
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is devoted to summary and discussion. In the Appendix, we
derive the general expression of the exponent describing the
size dependence of the energy Binder ratio at a continuous
transition.

II. THE MODEL AND THE METHOD

Our model is the classical Heisenberg model on the 3D
stacked-triangular or simple-hexagonal lattice with the anti-
ferromagnetic (AF) nearest-neighbor (NN) interaction, whose
Hamiltonian is given by

H = J
∑
〈i j〉

Si · S j, (1)

where Si = (Sx
i , Sy

i , Sz
i ) (|Si| = 1) is the three-component unit

vector at the ith site, J > 0 is the NN AF coupling, and the
summation 〈i j〉 is taken over all NN pairs on the stacked-
triangular lattice including both intra- and interplane bonds.
Following the earlier numerical works [1,5,7–9], we assume
for simplicity that the intra- and interplane interactions are
of the same magnitude J . In the present paper, we take the
energy (the temperature) unit of J = 1. The lattice consists of
N = L3 sites, and periodic boundary conditions applied in all
directions.

Thermodynamic properties of the model are investigated
by means of MC simulations based on the standard heat-bath
method combined with the over-relaxation method. One MC
step per spin (MCS) consists of one heat-bath sweep followed
by 10 successive over-relaxation sweeps.

The lattice sizes studied are L = 12, 18, 24, 30, 36,

48, 54, 60, 72, 96, 108, 120, 144, 192, 240, 288, and 384.
The largest lattice size studied L = 384 is significantly greater
than those previously studied on the same model, i.e., L � 60
by MC [1,5,7–9] and L � 150 by the Wang-Landau method
[11].

Equilibration is checked by monitoring the MC-time de-
pendence of physical quantities; see also Sec. III below. Typi-
cally, after discarding initial 106 MCS for equilibration, subse-
quent 2.5 × 106 MCS are used to compute thermal averages
of physical quantities. At each temperature and lattice size,
12 independent runs are made with using different spin initial
condition and different random-number sequences. Error bars
are estimated from the distribution of the data over these 12
independent runs.

Since our interest in the present paper concerns with the
critical properties, we focus on the thermodynamic properties
in the temperature range close to the transition temperature
Tc. Long MC runs are made at a specific temperature or at
several specific temperatures close to Tc, and thermodynamic
properties at nearby temperatures are obtained by use of
the histogram technique [24]. We restrict the range of the
temperature shift from the original temperature at which the
data are taken to the temperature where the shifted energy
distribution has a considerable overlap with the original dis-
tribution. More precisely, let e be the energy per spin and
P(e) be the energy distribution. When the original energy
distribution P(e) takes values greater than the half of its peak
value in the energy range between eL and eR, we limit the
shifted temperature so that the peak position of the shifted
P(e) lies in the range [eL, eR]. Most of the data are taken at

T = 0.95727, our best estimate of the transition temperature
Tc to be determined below, whereas some data are taken at
other nearby temperatures for the consistency check.

III. PHYSICAL QUANTITIES

In this section, we introduce various physical quantities
we compute by MC. The internal energy per spin ē is the
thermal average of the Hamiltonian normalized by the total
number of the spin, ē = 〈e〉 = 〈H〉/N , where 〈· · · 〉 denotes
the thermal average. As mentioned, all the energy and the
temperature have been normalized by J . The specific heat per
spin c, measured in units of kB, is calculated from the energy
fluctuation. The energy Binder ratio [25], ge is defined by

ge = 〈e4〉
〈e2〉2

. (2)

The model is known to exhibit the AF long-range order
(LRO) in the ordered state, taking the 120◦ spin structure.
We define the corresponding AF order parameter mAF via an
appropriate spin Fourier component S(Q),

mAF = 〈|S(Q)|〉, S(Q) = 1

N

∑
i

Sie
iQ·ri , (3)

where Q = ( 4π
3 , 0, π ) is the wave vector representing the 120◦

structure (the lattice constant is taken as the length unit here),
and the summation over i is taken over all spins on the lattice.
Its temperature derivative dmAF

dT can be computed from

dmAF

dT
= N

T 2
(〈e × mAF〉 − 〈e〉〈mAF〉). (4)

We also define the associated AF susceptibility χAF by

χAF = N

T
〈|S(Q)|2〉. (5)

The spin Binder ratio gs associated with the AF order is
defined by

gs = 4 − 3

〈
m4

AF

〉
〈
m2

AF

〉2 , (6)

where we have used, in appropriately normalizing gs, the fact
that the number of independent components of the AF order
parameter is six, i.e., three (the number of spin components)
times two (the number of independent Fourier modes, Q and
−Q). Its temperature derivative dgs

dT can be computed from

dgs

dT
= 3N

T 2

(
2
〈
m4

AF

〉〈
em2

AF

〉
〈
m2

AF

〉3 −
〈
em4

AF

〉 + 〈e〉〈m4
AF

〉
〈
m2

AF

〉2
)

. (7)

The finite-size spin-correlation lengths are defined both for the
intraplane (‖) and interplane (⊥) correlations by

ξ ‖
s = 1

2 sin(π/L)

√
|m(Q)|2

|m(Q + δQ‖)|2 − 1, (8)

ξ⊥
s = 1

2 sin(π/L)

√
|m(Q)|2

|m(Q + δQ⊥)|2 − 1, (9)

where δQ‖ = ( 2π
L , 0, 0) and δQ⊥ = (0, 0, 2π

L ) are the pos-
sible minimum nonzero wave vectors along the intra- and
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intertriangular-layer directions, respectively. Although a com-
mon criticality is expected for ξ ‖

s and ξ⊥
s , we compute

both quantities below. The dimensionless quantity called the
correlation-length ratio, ξ ‖

s /L or ξ⊥
s /L, plays an important role

in the study of critical properties.
The local vector chirality κ� may be defined for three spins

on an elementary upward triangle � on the triangular layer by

κ� = 3

2
√

2

∑
〈i j〉∈�

Si × S j, (10)

where the summation is taken over three NN bonds on each
upward triangle in a clockwise direction. The total chirality κ

is then defined by

κ = 〈|κ|〉, (11)

κ = 1

N

∑
�

κ�, (12)

where the summation is taken over all N upward trian-
gles on the lattice. Its temperature derivative dκ

dT can be
computed from

dκ

dT
= N

T 2
(〈eκ〉 − 〈e〉〈κ〉). (13)

The associated chiral susceptibility is defined by

χκ = N

T
〈κ2〉. (14)

The chiral Binder ratio gκ is defined by

gκ = 1

2

(
5 − 3

〈κ4〉
〈κ2〉2

)
, (15)

where in normalizing gκ we have used the fact that the number
of independent components of the vector chirality is three. Its
temperature derivative dgκ

dT can be computed from

dgκ

dT
= 3N

2T 2

(
2〈κ4〉〈eκ2〉

〈κ2〉3
− 〈eκ4〉 + 〈e〉〈κ4〉

〈κ2〉2

)
. (16)

The finite-size chiral-correlation lengths are defined for both
the intraplane and interplane correlations by

ξ ‖
κ = 1

2 sin(π/L)

√
|κ(Q)|2

|κ(Q + δQ‖)|2 − 1, (17)

ξ⊥
κ = 1

2 sin(π/L)

√
|κ(Q)|2

|κ(Q + δQ⊥)|2 − 1, (18)

where κ(Q) is the Fourier transform of κ�,

κ(Q) = 1

N

∑
�

κ�eiQ·r� , (19)

r� being the position vector of the elementary triangle �. In
order to be sure that MC simulations yield physical quan-
tities in thermal equilibrium, the check of thermalization is
important, especially for larger systems. In order to examine
the thermalization, we monitor the MC-time dependence of
various physical quantities to check that they reach stationary
values. In Figs. 1(a)–1(d) we show the MC-time tMC depen-
dence of (a) the energy per spin, (b) the specific heat per spin,
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FIG. 1. The MC-time dependence of (a) the energy per spin ē,
(b) the specific heat per spin c, (c) the intraplane spin correlation-
length ratio ξ ‖

s , and (d) the intraplane chiral correlation-length ratio
ξ ‖
κ . The lattice size is L = 384. The temperature T is set to the

transition temperature T = 0.95727.

(c) the intraplane spin correlation-length ratio, and (d) the
intraplane chiral correlation-length ratio on the logarithmic
scale for our largest size L = 384 taken at the transition tem-
perature (to be determined below) T = 0.95727. The short-
time averaging of these observables is made over 104 MCS
at every 104 MCS, and these short-time averaged values are
plotted versus the elapsed MC time. As can be seen from
the figures, all the quantities reach stationary values when
tMC exceeds ∼106 MCS. As mentioned, we discard first 106

MCS for thermalization and use subsequently 2.5 × 106 MCS
to compute physical quantities. Measurements of physical
quantities are made at every MCS.

IV. THE MONTE CARLO DATA

In this section, we present our MC data of the computed
physical quantities in the transition region. The temperature
(T ) and size dependence of the energy is shown in Fig. 2(a).
While there develops a steep inflection-point anomaly for
larger sizes, there is no appreciable discontinuity nor hystere-
sis indicative of a first-order transition. The temperature and
size dependence of the specific heat are shown in Fig. 2(b).
There occurs a quite sharp divergent-like anomaly at T �
0.957 signaling the occurrence of a thermodynamic phase
transition. The size dependence of the peak height is shown in
the inset. The peak height grows markedly with L, consistent
with the previous works [1,5].

The temperature and size dependence of the order param-
eter mAF are shown in Fig. 3(a). With decreasing T across
Tc, mAF exhibits a sharp rise signaling the onset of the
AF LRO. No sign of hysteresis or discontinuity indicative
of a first-order transition is observed again. In Fig. 3(b)
we show the temperature and size dependence of the intra-
plane spin correlation-length ratio ξ ‖

s /L. As L is increased
toward the thermodynamic limit L → ∞, the correlation-
length ratio ξ/L should vanish from above at temperatures
higher than Tc, approach unity from below at temperatures
lower than Tc, and approach a nontrivial finite value just
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FIG. 2. The temperature and size dependence of (a) the energy ē
and (b) the specific heat c, around the transition temperature Tc. The
inset of (b) exhibits the size dependence of the specific-heat-peak
height.

at T = Tc. Such a behavior in the L → ∞ limit entails
that, for larger L, ξ/L for different L cross with each other
with the crossing temperature converging to the bulk Tc.
As expected, there occurs a crossing point between differ-
ent size data in Fig. 3(b), indicative of a magnetic phase
transition.

Similar plots are also given in Figs. 4(a) and 4(b) for the
chirality κ and the associated intraplane chiral correlation-
length ratio ξ ‖

κ /L. At almost the same temperature as that of
the spin, the chirality also exhibits a sharp rise, and the chiral
correlation-length ratio exhibits a crossing behavior. This ob-
servation strongly suggests that the spin and the chirality order
at a common temperature, as was indicated by the previous
works [1,5].

The behaviors of some other quantities, including the en-
ergy Binder ration ge (Fig. S1), the T derivative of the AF
order parameter dmAF/dT [Fig. S2(a)], the interplane spin
correlation-length ξ⊥

s /L [Fig. S2(b)], the spin Binder ratio gs

[Fig. S3(a)], the T derivative of the spin Binder ratio dgs/dT
[Fig. S3(b)], and their chiral counterparts [Figs. S4(a) and
S4(b) and S5(a) and S5(b)] are given in the Supplemental
Material [26]. The behaviors of all these computed quantities
consistently suggest the occurrence of a single magnetic phase
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FIG. 3. The temperature and size dependence of (a) the AF order
parameter mAF and (b) the intraplane spin correlation-length ratio
ξ ‖

s /L, around the transition temperature Tc. The inset of (b) is a
magnified view of the transition region.

transition. The transition appears to be continuous, but we
shall further examine this point later in Sec. VI.

V. DETERMINATION OF Tc

In this section, on the basis of our numerical data for sizes
as large as L = 384, we wish to estimate the transition temper-
ature Tc as accurately as possible. Some physical quantities
we compute exhibit a peak as a function of the temperature
around Tc, which converges in the thermodynamic limit to
the bulk Tc and can be used in locating Tc. These quantities
include the specific heat c, the energy Binder ratio ge, the
T derivative of the AF order parameter dmAF/dT , the T
derivative of the spin Binder ratio dgs/dT , the T derivative
of the chirality dκ/dT , and the T derivative of the chiral
Binder ratio dgκ/dT . In Fig. 5 we plot the peak temperature
Tpeak (L) of these quantities versus the inverse lattice size 1/L.
As can be seen from the figure, many of Tpeak (L) exhibit a
monotonic size dependence, monotonically decreasing with
increasing L tending to a bulk transition temperature Tc from
above, whereas some others exhibit a nonmonotonic size de-
pendence: They first increase up to certain length scale Lcross,
then, for larger lattice sizes L � Lcross, they decrease tending
to Tc. The crossover length scale is pretty long, Lcross � 144,
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κ /L, around
the transition temperature Tc. The inset of (b) is a magnified view of
the transition region.

signaling the existence of a rather large correction to the
leading scaling. The combined power-law fit of Tpeak (L) for
all the quantities at L > Lcross � 144 yields our first estimate
of the bulk transition temperature, Tc � 0.95726–0.95729.

In order to get a more precise estimate of Tc, we employ
the spin correlation-length ratios, ξ ‖

s /L and ξ⊥
s /L. As these

quantities are dimensionless, their size dependence is insensi-
tive to the correlation-length exponent ν, depending only on
the correction-to-scaling exponent ω. As mentioned above, in
the thermodynamic limit L → ∞, the correlation-length ratio
ξ/L goes to zero at T > Tc and to infinity at T < Tc. Just at
T = Tc, it goes to a finite value (ξ/L)∗ as

ξL ≈ (ξ/L)∗(1 + aL−ω ), (20)

where a is a nonuniversal constant. In Figs. 6(a) and 6(b),
we plot the (a) intraplane and (b) interplane spin correlation-
length ratios as a function of 1/L for several temperatures
in the transition region and try to fit the data by the finite-
size-scaling form given in Eq. (20). Overall, as can be seen
from Fig. 6, ξs/L tends to increase as the system size L
is increased, whereas a closer look of the data reveals a
systematic changeover occurring. At the lower temperature
T = 0.957260, both correlation-length ratios ξ ‖

s and ξ⊥
s
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FIG. 5. The peak temperatures Tpeak of the specific heat c, the
energy Binder ratio ge, the T derivative of the AF order parameter
dmAF/dT , the T derivative of the spin Binder ratio dgs/dT , the T
derivative of the chirality dκ/dT , and the T derivative of the chiral
Binder ratio dgκ/dT are plotted versus the inverse lattice size 1/L.
The fit is based on the finite-size scaling form Eq. (33) with Tc =
0.95727, ν = 0.52, ωR = 0.1, and ωI = 0.7. See Sec. VII for further
details of the fit.

exhibit a sharp increase toward 1/L → 0, yielding the fit-
ted correction-to-scaling exponent ω close to zero, say, ω �
0.0032. This indicates that the temperature T = 0.957260 is
actually lower than Tc. By contrast, at the higher temperature
T = 0.957280, some of the correlation-length ratios begin to
decrease for the largest size, indicating that the temperature
T = 0.957280 is actually located above Tc. From such a
changeover seen in Figs. 6(a) and 6(b), we estimate Tc =
0.957270 ± 0.000004. The estimated Tc is consistent with the
earlier MC estimates on the same model within the quoted
error bars, i.e., Tc = 0.958(4) [5], Tc = 0.9576(2) [7], and
Tc = 0.9577(2) [8], but orders of magnitudes more precise.

In determining Tc, one sometimes employs the crossing
temperatures Tcross of the dimensionless quantities, e.g., the
correlation-length ratio and the Binder ratio, of two different
sizes, L and sL (s > 1). In systems exhibiting a finite-T
transition, these dimensionless quantities of two different
sizes often cross at a size-dependent temperature Tcross, which
converges to the bulk Tc in the infinite-size limit. We also
perform here such an analysis to estimate Tc. Some of the
details of the analysis are given in the Supplemental Material
[26]. In fact, in the presence of the nontrivial and significant
correction to scaling as in the present case, the extrapolation of
Tcross, which is defined for the two different sizes and is more
susceptible to the correction-to-scaling, might behave worse
than that of Tpeak defined for the single size. Nevertheless,
we find that the extrapolated Tc is basically consistent with
the one obtained from Tpeak and the correlation-length ratio
as quoted above: See the Supplemental Material for further
details [26].

VI. THE ORDER OF THE TRANSITION

In this section, we wish to examine the order of the
magnetic transition of the model, which has remained
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versus the inverse lattice size 1/L at several temperature around
Tc = 0.957270. The fit is based on Eq. (20) with using the data of
L = 240, 288, and 384.

controversial for years. In Fig. 7 we show the energy dis-
tribution P(e) of the model around Tc = 0.95727 for larger
lattices of L = 144, 288, and 384, to examine whether P(e)
exhibits a single-peak characteristic of a continuous transition
or double peaks characteristic of a first-order transition. [Of
course, the occurrence of the double-peak structure in P(e)
for finite L does not necessarily mean a first-order transition.
One needs to check carefully that such a double-peak structure
persists in the L → ∞ limit.] As can be seen from Fig. 7, P(e)
exhibits a single peak for all sizes and at any temperature.
Any sign of the double-peak structure signaling a first-order
transition is not detected for all the sizes and temperatures
studied, even including the ones not explicitly shown in
Fig. 7. Hence, we conclude that the transition of the model
is continuous. In Ref. [11], by observing the double peaks
in the energy distribution for L = 120 and 150 by means of
the Wang-Landau method [27], Ngo and Diep concluded that
the transition of the model was actually first order, arguing
that the system sizes studied in the previous MC simulations
on the same model were too small. However, our largest size
L = 384 is considerably larger than the largest size studied in
Ref. [11], L = 150. Yet, we do not observe any sign of the
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FIG. 7. The energy distribution P(e) around the transition tem-
perature T = Tc = 0.95727 for the sizes L = 384, 288, and 144.

double-peak structure reported in Ref. [11]. We confirm that
even for L = 144 and T = 0.957240 (quite close to L = 150
and T = 0.957242 studied in Ref. [11]) the distribution is
definitely single-peaked as shown in Fig. 7, contrary to the
report of Ref. [11]. Note that our energy resolution [the width
of the bin of P(e)], 2.5 × 10−5 for L = 144 and 1.5 × 10−6

for L = 288, 384, is much better than the latent heat reported
in Ref. [11], 0.0025, so that we cannot miss the double-peak
structure at the level reported in Ref. [11] if it really exists.

Another evidence of the continuous nature of the transition
comes from the energy Binder ratio ge, which exhibits a single
peak as a function of the temperature around T = Tc as shown
in Fig. S1. In the thermodynamic limit, ge at T = Tc should
take a value equal to unity if the transition is continuous, while
it should take a value greater than unity if the transition is
of first order [25]. Thus, in Fig. 8(a) we plot ge − 1 at the
transition temperature T = Tc = 0.95727 versus the inverse
lattice size 1/L. For a first-order transition, ge − 1 should
exhibit a size scaling of the form ge − 1 = δg + 1

L3 + · · · with
δg > 0. As can be seen from the figure, ge − 1 becomes quite
small for our largest lattice size L = 384. We perform a simple
power-law fit of the data to the form ge = g∞

e + cL−θ in the
L range of Lmin � L � Lmax = 384, and the resulting g∞

e and
θ are given in the inset of Fig. 8(a) as a function of Lmin. The
extrapolated value of g∞

e is already as small as 10−7 for larger
Lmin and tends to decrease further on increasing Lmin. As can
be seen from the inset, the effective exponent θ describing
the L dependence of ge − 1 tends to decrease from three,
further deviating from the value of the first-order transition.
In Fig. 8(b) we replot the same data as of Fig. 8(a) versus
1/L3. As can be seen from the figure, the data for larger L
(smaller 1/L3) exhibit a decrease stronger than 1/L3 toward
zero, deviating from the finite-size scaling form expected for a
first-order transition. Together with the single-peaked energy
distribution, the observed behaviors provide a strong support
of the continuous nature of the transition.

VII. ANALYSIS OF THE CRITICAL PROPERTIES

After establishing the continuous nature of the transition,
we now wish to investigate its critical properties, i.e.,
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determine various critical exponents on the basis of our
precise estimate of the transition temperature, Tc =
0.957270 ± 0.000004. Since similar analysis in Sec. IV
has already indicated that there exists a large correction to the
leading scaling, care has to be taken.

A. Analysis without the correction

In this subsection, we wish to examine the critical behavior
of the model by employing the leading term only, without
explicitly invoking the correction term. The exponent arising
from such an analysis would only be an effective exponent,
rather than the true asymptotic exponent. Still, the analysis
would be informative giving some information about the
correction.

In Fig. 9 we show the size dependence of the specific heat c
and of the energy Binder ratio ge at T = Tc = 0.95727 on the
double-logarithmic plot. The expected leading-scaling forms
for α > 0 should be

c ∼ Lα/ν = L
2
ν
−3, (21)

ge − 1 ∼ = L−(3−α/ν) = L−2(3−1/ν), α > 0, (22)
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FIG. 9. The specific heat c and the energy Binder ratio ge at T =
Tc = 0.95727 are plotted versus the system size L on the double-
logarithmic scale.

where we have employed the hyperscaling relation α = 2 −
dν = 2 − 3ν. As we could not find in the literature the ex-
pression of the relevant exponent θ for the energy Binder ratio
ge − 1 ≈ L−θ , we show its derivation in the Appendix. We
have θ = 3 − α/ν = 2(3 − 1/ν). (The corresponding expres-
sion for general dimension d is given in the Appendix.)

The asymptotic size dependence of c and of ge is described
by the exponent ν. As can be seen from Fig. 9, the data exhibit
continuously varying slopes versus L and cannot be fitted
by a single straight line. For c, the slope changes from 0.34
describing the smaller-size data of 12 � L � 144, to 0.95 de-
scribing the larger-size data of 288 � L � 384, while, for ge,
it changes from −2.66 to −2.05. Thus, the effective exponent
varies considerably depending on the size L, indicating the
existence of the large correction to the leading scaling.

Similar behaviors of continuously varying effective expo-
nents are observed, though to less extent, in other quantities
as well, including the AF order parameter mAF, the AF sus-
ceptibility χAF, the chirality κ , and the chiral susceptibility
χκ . The asymptotic behaviors of mAF and χAF are described
by the order-parameter exponent β, the ordering susceptibility
exponent γ , and the critical-point-decay exponent η as

mAF ∼ L− β

ν = L− 1+η

2 , (23)

χAF ∼ L
γ

ν = L2−η, (24)

while those of κ and χκ are described by the chirality exponent
βκ/ν as

κ ∼ L− βκ
ν , (25)

χκ ∼ Lγκ/ν = L(d−2 βκ
ν

) = L3−2 βκ
ν (26)

In order to extract more quantitative information about the
effective exponents, we fit the data by the above scaling forms
in the size range of Lmin � L � Lmax ≡ 384 and extract the
effective exponent as a function of Lmin (the maximum size
is fixed to Lmax = 384). In order to estimate the effective
exponents, we employ the combined fit of c and ge − 1 for
ν, that of mAF and χAF for 2β

ν
− 1 = η, and that of κ and
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χκ for 2βκ

ν
− 1. The results are shown in Fig. 10(a) for ν, in

Fig. 10(b) for 2β

ν
− 1 = η, and in the inset of Fig. 10(b) for

2βκ

ν
− 1. As can be seen from Fig. 10(a), the exponent ν tends

to get smaller as Lmin increases. By contrast, the exponents
2β

ν
− 1 = η and 2βκ

ν
− 1 show a nonmonotonic behavior as

a function of Lmin. With increasing Lmin, they decrease for
smaller Lmin but exhibit a turnover and increase for larger
Lmin. Concerning η, it changes from small positive numbers to
near zero or even small negative numbers for smaller Lmin and
exhibits a turnover toward small positive numbers at larger
Lmin. In any case, the observed significant size dependence of
the effective exponents on the system size Lmin warrants the
inclusion of appropriate correction terms into the finite-size
scaling analysis, which we try in the following subsections.

B. Analysis with real correction exponents

First, we try to include a single correction term with the
correction-to-leading-scaling exponent ω in the from of a
simple multiplicative factor (1 + aL−ω ). In fact, however,
we find that the inclusion of a single correction term does
not much improve the fit. This inadequacy might be seen

from the nonmonotonic behavior of the effective exponents
shown in Fig. 10(b). Namely, the correction term of the form
(1 + aL−ω ) can describe only the monotonic change of the
effective exponent, but not the nonmonotonic one. To describe
the nonmonotonic behavior, one needs at least two corrections
terms, i.e., the one with distinct exponents, ω1 and ω2.

In this and following subsections, we perform the finite-
size-scaling analysis by including two correction terms with
the two correction-to-leading-scaling exponents [26]. The
standard way might be to assume two positive exponents,
0 < ω1 < ω2. Namely, for the physical quantity X at T = Tc,
we assume the size-scaling form

X ≈ Lx(1 + a1L−ω1 + a2L−ω2 ), (27)

where x is an appropriate critical exponent, a1 and a2 being
nonuniversal coefficients.

Higher-order perturbative RG analysis suggested that the
appropriate FP might be of the “focus” type with a complex-
valued correction-to-scaling exponent ω = ωR + iωI (ωR >

0) [16,17]. Thus, we shall also examine in the next sub-
section the correction term described by a single complex
correction-to-scaling exponent, which of course contains two
real exponents ωR and ωI . In this subsection, we first examine
the standard correction terms containing two real exponents
ω1 and ω2 as described by the scaling form Eq. (27) above.

As Eq. (27) has many fitting parameters, it turns out that the
fitting usually leads to many local minima with comparable
χ2 values. Hence, one needs to be careful not to miss the
true minima with the optimal χ2 value. We begin our analysis
with the correlation-length ratios. Since these quantities are
dimensionless, the exponent x does not appear in the scaling
form Eq. (27) so that one can concentrate on the correction-to-
scaling exponents. In Fig. S6(a) we show all the local minima
obtained by our fitting of the correlation-length ratios in the ω1

versus the ω2 plane for the case of Lmin = 60, where the color
of the data points represents the associated χ2 value [26]. We
perform the combined fit for ξ ‖

s /L, ξ⊥
s /L, ξ ‖

κ /L and ξ⊥
κ /L

for various values of Lmin. As can be seen from Fig. S6(a),
there indeed exist many local minima in the fit. The best fit is
obtained at ω1 � 0.40 and ω2 � 0.45, and the resulting fitting
curves of each ξ ‖,⊥

s /L and ξ ‖,⊥
κ /L are shown in Fig. S6(b).

If Lmin is varied, the resulting best values of ω1 and ω2 vary
somewhat. How these best values of ω1 and ω2 depend on the
adopted Lmin value is shown in Fig. S6(c). One can see from
this figure that the systematic drift of the optimal (ω1, ω2)
observed for smaller Lmin values tends to stop around Lmin �
60–72. Similar fits have also been made for other quantities,
where similar quality of the fitting results are found.

Although the fit with two real correction-to-scaling expo-
nents yields satisfactory fit as shown in Fig. S6(b) for the
correlation-length ratios and in Fig. S7 for the specific heat
and the energy Binder ratio, this type of fit has a problem:
namely, the coefficients of the correction terms a1 and a2

in Eq. (27) tend to be quite large and opposite in sign. In
fact, in the case of the correlation-length ratio shown in
Fig. S6(b), a1 = −23.9 and a2 = 24.7, leading to the correc-
tion terms comparable to or even greater than the leading term
of unity, and a subtle cancellation between these two large
correction terms takes account of the significant scaling cor-
rection. In fact, the same situation arises not only for the spin
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correlation-length ratio but also for other quantities. For
example, the fit of the specific heat yields even greater
correction-term coefficients of opposite sign, i.e., a1 = −78
and a2 = 95. We feel that such a correction is pathological, or
at least not natural, and are led to examine the second possible
form of the correction described by a complex ω.

C. Analysis with a complex correction exponent

In this subsection, we examine the correction with a
complex correction-to-scaling exponent ω = ωR + iωI , which
corresponds to the focus-type RG fixed point. In this case, the
finite-size scaling form at T = Tc is expected to take the form

X ≈ Lx[1 + aL−ωR cos(ωI ln L + φ)], (28)

where φ is a phase factor. Again, we begin our analysis with
the correlation-length ratios without the exponent x in its
scaling form of Eq. (28). As was the case in the previous
subsection, the fit based on Eq. (28) leads to many local
minima with comparable χ2 values, and care has to be taken
not to miss the true minima with the optimal χ2 value. Again,
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FIG. 12. The scaling plots of the specific heat and the energy
Binder ratio at the transition temperature T = Tc = 0.95727. The
scaling employed includes the correction term with a complex
correction-to-scaling exponent, Eq. (28), with Lmin = 60. The inset
represents the expected behavior of the fitted functional form of c at
Tc beyond the simulated lattice size.

we perform the combined fit for ξ ‖
s /L, ξ⊥

s /L, ξ ‖
κ /L and ξ⊥

κ /L
for various values of Lmin. In Fig. S8, we show all the local
minima obtained by fitting the data of the correlation-length
ratios ξ ‖,⊥

s /L and ξ ‖,⊥
κ /L in the ωR versus ωI plane for Lmin =

60, in which the color of data points represents the associated
χ2 value [26]. As can be seen from Fig. S8, there indeed
exist many local minima in the fit. The best fit is obtained
at ωR � 0.06 and ωI � 0.63, and the resulting fitting curves
of ξ ‖,⊥

s /L and ξ ‖,⊥
κ /L are shown in Fig. 11(a). In this optimal

plot, the coefficient of the correction term a of Eq. (28) has
turned out to be �0.3, being free from the pathology we
encountered in the case of the two real correction exponents.

If Lmin is varied, the resulting best values of ωR and ωI vary
somewhat. How these best values of ωR and ωI depend on the
adopted Lmin value is shown in Fig. 11(b). One can see from
this figure that the systematic drift of the optimal (ωR, ωI )
observed for smaller Lmin values tends to stop around Lmin �
60–72; see the dashed circle in the figure. Further increase
of Lmin beyond Lmin = 72 means less number of available
data points in the fit, leading to larger error bars. Hence, we
judge that the choice of Lmin = 60 or 72 would be optimal
for the exponent estimate. The χ2/DOF of the fit turns out
to be smallest for Lmin = 60 with χ2DOF = 1.33, but not
much different from that for Lmin = 72, χ2DOF = 1.44. If we
choose Lmin = 72, we get ωR � 0.10 and ωI � 0.68, rather
similar values to the ω value obtained for Lmin = 60. Based
on these observations, we set ωR = 0.1 and ωI = 0.7 in our
following analysis. Similar finite-size-scaling fit has also been
made for other quantities at T = Tc by using the ωR and ωI

values determined above, i.e., ωR = 0.1 and ωI = 0.7.
The exponent ν is determined from the combined fit of the

specific heat c and the energy Binder ratio ge. For Lmin =
60, we get ν = 0.52 ± 0.01, and the resulting scaling plots
are given in Fig. 12. The coefficient of the correction term
a of the specific heat comes to around �0.9, which seems
to be a reasonable value. If we choose Lmin = 72, we get
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ν = 0.51 ± 0.01, Overall, the fit turns out to reasonably re-
produce the nontrivial size dependence of the specific heat and
the energy Binder ratio.

Although our largest size L = 384 is already quite large,
the issue of how the asymptotic size dependence described
by Eq. (28) looks like in the still larger L region might
be interesting. Thus, in the inset of Fig. 12, we show the
asymptotic size dependence of the specific heat expected from
the best fit of our MC data to Eq. (28) up to the size L � 108.
Oscillatory behavior is visible there, though the size required
to clearly see such an oscillation is unrealistically large.

Putting reliable error bars on the estimates of ωR and ωI

is rather difficult, since many local minima shown in Fig. S8
give comparable χ2 values. Here we estimate the error bars
of ωR and ωI based on the criterion of either (1) the local
minimum no longer appearing in the fit or (2) the coefficient
of the correction term a for the specific heat exceeding five.
Then we get ωR = 0.1+0.4

−0.05 and ωI = 0.7+0.1
−0.4.

The scaling plots of mAF and χAF are shown in Fig. 13
for Lmin = 60, where the best value of the exponent η is
determined from the combined fit of these two quantities to
be η = 0.01 ± 0.03. If we choose Lmin = 72, we get η =
0.03 ± 0.06.

Similarly, the scaling plots of κ and χκ are shown in
Fig. 14 for Lmin = 60, where the best value of the exponent
βκ/ν is determined to be 2βκ/ν − 1 = 0.52 ± 0.04 from the
combined fit of these two quantities. If we choose Lmin = 72,
we get 2βκ/ν − 1 = 0.52 ± 0.08.

In Fig. 15 the Lmin dependence of the exponents ν, 2β/ν −
1 = η and 2βκ/ν − 1 is shown. As mentioned, on the basis of
our observation on the correction-to-scaling exponent ω, we
regard Lmin = 60 or 72 as optimal. Then ν is slightly greater
than 0.5, and η is slightly positive. As our final estimate of the
exponents, we take a mean of the estimates for Lmin = 60 and
72, and we get

ν = 0.52(1), η = 0.02(5), βκ/ν = 0.76(6), (29)

ω = 0.1+0.4
−0.05 + i 0.7+0.1

−0.4. (30)
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FIG. 14. The scaling plots of the chirality κ and the chiral
susceptibility χκ at the transition temperature T = Tc = 0.95727.
The scaling employed includes the correction term with a complex-
valued correction-to-scaling exponent, Eq. (28), with Lmin = 60.

-0.1

 0

 0.1

 0.2

 0  24  48  72  96  120

ω = 0.1 + 0.7i
(b)

2 β
/ν

 -
 1

Lmin

 0.4

 0.5

 0.6

 0  24  48  72  96  120

2 β
κ/

ν 
- 

1

Lmin

 0.5

 0.52

 0.54

 0.56

 0  24  48  72  96  120

ω = 0.1 + 0.7i(a)

ν

Lmin

FIG. 15. The exponents (a) ν and (b) 2β/ν − 1 = η, obtained
by the scaling fit with the correction term with a complex-valued
correction-to-scaling exponent, are plotted versus Lmin, the minimum
lattice size used in the fit. The inset of (b) is the corresponding plot
for the chirality exponent 2βκ/ν − 1.
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With use of the scaling and hyperscaling relations, we get

α = 0.44(3), β = 0.26(2), γ = 1.03(5), (31)

βκ = 0.40(3), γκ = 0.77(6). (32)

One can see that the obtained exponents ν and η are close
to the mean-field tricritical values of ν = 0.5 and η = 0 gov-
erned by the Gaussian FP. By contrast, the chirality exponent
βκ/ν = 0.76(6) is far from the mean-field tricritical value of
unity, indicating that the criticality of the present model is not
of mean-field tricritical governed by the Gaussian FP. Thus,
the criticality as realized in the present model is not a trivial
one but is a highly nontrivial one, a chiral FP which is likely
to be the focus-type FP.

With use of the estimate ν � 0.52, the exponent describing
the size dependence of the energy Binder ratio ge, θ = 2(3 −
1
ν

), is estimated to be �2.15. In the inset of Fig. 8(a), we
estimate the effective θ from our ge data as a function of Lmin.
It turned out to decrease from about 2.65 to 2.4 as Lmin is
increased to 192. Then our present estimate of θ � 2.15 seems
consistent with the MC data shown in Fig. 8.

As a consistency check, we also try to fit the Tpeak (L) data
shown in Fig. 5 by the scaling form,

Tpeak = Tc + c′L1/ν[1 + a′L−ωR cos(ωI ln L + φ)], (33)

with Tc = 0, 95727, ν = 0.52, ω1 = 0.1, and ωI = 0.7 where
the nonuniversal constants c′, a′, and φ are tuned for each
Tpeak (L). The resulting best fit has been given in Fig. 5.

VIII. SUMMARY AND DISCUSSION

We investigated the critical properties of the AF Heisen-
berg model on the 3D stacked-triangular lattice by means
of a large-scale MC simulation in order to get insight into
the controversial issue of the criticality of the noncollinear
magnets with the O(3) × O(2) symmetry. The maximum size
studied is 3843 considerably larger than the sizes studied
by the previous numerical works on the model. Availability
of such large-size data enabled us to examine the detailed
critical properties, including the effect of corrections to the
leading scaling. The transition temperature was located rather
precisely as Tc = 0.957270 ± 0.000004. We have obtained
strong numerical evidence of the continuous nature of the
transition. The energy distribution always exhibits a single
peak characteristic of a continuous transition at any tem-
perature and for all sizes studied up to our largest size of
L = 384, in contrast to the previous report of the double-
peak structure for L = 150. In addition, on increasing L, the
energy Binder ratio exhibits a behavior further deviating from
the one expected for a first-order transition. Confirming the
continuous nature of the transition, its critical properties are
examined carefully on the basis of our extensive set of data.
The existence of significant corrections to the leading scaling
was indicated, and we performed a careful analysis by taking
account of the possible corrections. We then get the estimates
of critical exponents, α = 0.44(3), β = 0.26(2), γ = 1.03(5),
ν = 0.52(1), η = 0.02(5), and the chirality exponents, βκ =
0.40(3) and γκ = 0.77(6).

We also obtained an indication that the underlying FP
was of the focus type, i.e., we obtained the complex-valued

correction-to-scaling exponent, ω = 0.1+0.4
−0.05 + i 0.7+0.1

−0.4. The
focus-like nature of the chiral FP accompanied by the spiral-
like RG flow is likely to be the origin of the apparently
complicated critical behavior of the model we observed. Thus,
we find numerical evidence of the existence of the O(3)
chiral [or O(3) × O(2)] universality class governed by our
chiral FP.

The focus-like FP and the associated “oscillatory” criti-
cal behavior might provide further interesting possibility. As
shown in in Figs. 1 and 2 of Ref. [16], the RG flow around the
focus-like chiral FP could move, upon renormalization, from
the parameter region of a continuous transition into that of
a first-order transition, and then get back to the continuous-
transition region, eventually flowing into the chiral FP. If
one looks at the energy distribution on various length scales
under such circumstances, it would exhibit a single peak
characteristic of a continuous transition for smaller system
sizes, then exhibit double peaks characteristic of a first-order
transition for larger sizes, but eventually exhibit a single peak
characteristic of a continuous transition again for still larger
sizes. Although we did not observe any double-peak structure
for any lattice size in our present simulation on the stacked-
triangular AF Heisenberg model, it might be interesting to
point out that, for the stacked-triangular AF XY model, sev-
eral MC simulations reported that a single-peak structure of
the energy distribution observed for smaller lattices changed
into the double-peak one for larger lattices, arguing that the
transition should eventually be first-order [10,28,29]. In view
of the possible focus-like feature of the chiral FP, however,
the possibility of the observed double-peak structure finally
changing into the single-peak one should also be kept in
mind.

The exponents we obtained, especially ν (also related α,
β, and γ ), differ somewhat from the corresponding values
reported by the earlier MC simulations on the same model
for smaller sizes (L � 60), though the continuous nature of
the transition is common [1,5,7–9]. This deviation is likely to
be due to the large correction-to-scaling as described above,
since the exponents of these earlier reports came close to
the effective exponents we obtained for smaller lattices. For
example, the effective ν we obtained for Lmin � 60 came
around 0.58 � νeff � 0.60 as shown in Fig. 10(a), while the
estimate of Ref. [5] for L � 60 gave ν = 0.59(2).

Our present estimates of exponents come rather close to
those of the six-loop perturbative massive RG calculation
α = 0.35(9), β = 0.30(2), γ = 1.06(5), ν = 0.55(3), η =
0.073(94), βκ = 0.38(10), and γκ = 0.89(10), while they
differ somewhat from those of the five-loop massless RG
calculation α = 0.11(15), β = 0.34(3), γ = 1.20(8), ν =
0.63(5), η = 0.08(3), βκ = 0.54(17), and γκ = 0.81(23), and
those of the conformal-bootstrap calculation α = 0.10(5),
β = 0.34(1), γ = 1.22(3), ν = 0.63(2), η = 0.078(6), βκ =
0.56(2), and γκ = 0.77(3), though the continuous nature of
the transition is also in common.

In fact, our estimates of ν = 0.52(1) and η = 0.02(5) are
quite close to the mean-field tricritical value governed by the
Gaussian FP. Since the chirality exponents βκ = 0.40(3) and
γκ = 0.77(6) largely differ from the corresponding mean-field
tricritical values βκ = 1/2 and γκ = 1/2, which can be de-
rived from the chiral-crossover exponent φκ = 1 and α = 1/2
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at the Gaussian FP, the chiral FP cannot be the standard Gaus-
sian FP. Furthermore, the Gaussian FP is strongly unstable
with respect to the two quartic couplings of the O(3) × O(2)
LGW Hamiltonian, and practically is inaccessible. At present,
we do not know whether the closeness of the obtained expo-
nents ν = 0.52(1) and η = 0.02(5) to the mean-field tricitical
values is just accidental or has a deeper reason behind that.
Numerically, it is certain that the chiral FP is not the standard
Gaussian FP.

The possible focus-like feature of the chiral FP is consis-
tent with the suggestion from the higher-order perturbative
RG including both the MZM [16] and the MS [17] schemes.
By contrast, the conformal-bootstrap analysis assumes the
absence of the focus point [23], and there still remains a
problem. Our estimate of the complex-valued correction-to-
scaling exponent ω = 0.1+0.4

−0.05 + i 0.7+0.1
−0.4 is to be compared

with the corresponding estimates from the perturbative RG
calculations, i.e., ω = 1.00(20) + i 0.80(25) from the six-
loop MZM, and ω = 0.9(4) + i 0.7(3) from the five-loop
MS. Though the imaginary part agrees well with each other,
our estimate of the real part came smaller than the RG
estimates.

Our present result indicating a continuous transition is in
contrast to the functional RG result, which invariably suggests
a first-order transition [18–22]. The issue of why the non-
perturbative functional RG and the perturbative RG at d = 3
yield different answers has remained controversial and needs
to be understood. The present MC result basically supports the
perturbative d = 3 RG and the conformal bootstrap results,
the perturbative RG result based on the massive MZM scheme
in particular.

Our MC result sharply contradicts the report of a first-order
transition for the same model by Ref. [11] on the basis of
the Wang-Landau method. The energy distribution computed
in our present calculation always exhibited a single peak for
any size in the range 12 � L � 384, in sharp contrast to the
double peaks observed in Ref. [11] for the sizes L = 120 and
150. Hence, the possible spiral-like RG flow discussed above
cannot be invoked as a resolution of the observed discrepancy.
Our data other than the energy distribution do not exhibit any
sign of a first-order transition up to the size L = 384. We
do not know the reason why Ref. [11] observed a double-
peak structure in their data of the energy distribution but just
suspect there might be something wrong in the application of
the Wang-Landau method.

While we did not go into details about the experimental
connection in the present paper, experimental situations in the
last century were extensively reviewed in Ref. [6], and we
believe that most of its contents remain effective even now.
Overall, most of the experiments performed on the stacked-
triangular antiferromagnets reported a continuous transition
characterized by nonstandard exponents distinct from the
standard O(n) values.

Sometimes, a weak first-order transition was claimed based
on the experimental observation of the deviation from the
ideal power-law scaling relation in the temperature range
close to Tc, not on the direct observation of the nonzero latent
heat or on the clear discontinuity in physical quantities [6].
The deviation from the ideal power law, however, could arise
from various sources. The oscillatory critical behavior due

to the complex-valued correction-to-scaling exponent might
occur as perturbative RG computations at d = 3 as our present
calculation suggested. Furthermore, in real materials, non-
ideal sources might also come into play causing the deviation
from the ideal critical behavior, e.g., the inevitably existing
randomness like defects and impurities, the temperature in-
homogeneity in the sample, etc. Hence, in order to experi-
mentally establish the first-order nature of the transition, one
should probe a sharp discontinuity such as the nonzero latent
heat. In addition, even if the first-order transition would have
been established in a few materials, it does not automatically
guarantee that the chiral FP does not exist in nature, simply
because, even in the presence of the stable FP, certain systems
can still exhibit a first-order transition depending on the
microscopic details of the system, when the bare parameters
describing that system lie outside the domain of attraction of
the chiral FP.

Although our present analysis has given strong numer-
ical evidence of the continuous nature of the noncollinear
transition of frustrated Heisenberg magnets, it still does not
completely rule out the possibility of an extremely weak first-
order transition in the mathematical sense. However, such a
hypothetical first-order transition should be extremely weak,
visible only on the length scale considerably longer than
our present largest size of L = 384, which is already quite
long. If one translates the length scale into the (reduced)
temperature scale assuming the correlation-length relation
ξ = |(T − Tc)/Tc|−ν with our present estimate ν � 0.52, ξ ∼
L = 384 means |(T − Tc)/Tc| � 10−5, quite a small number
usually uncontrollable in experiments. Of course, the system
size available in real experiments could be longer than L =
384, but in reality such macroscopic samples suffer from the
randomness or inhomogeneity such as defects and impurities
which would modify or round the transition behavior at close
vicinity of Tc. Indeed, defects or impurities at every 384 sites
already means their density of order 10−8. In this sense, we
might already be reaching the limit of the experimentally ac-
cessible critical regime. Even if the transition might eventually
become very weakly first order beyond this length scale, it
may largely be a purely academic matter.

The physically important thing is that, as the anomalous
crical behavior has certainly been observed both experimen-
tally and numerically in a variety of frustrated noncollinear
magnets on the already quite long length scale L � 384, the
nature, and the origin of it should be explained and under-
stood. Setting aside a largely academic issue of whether the
transition being either continuous or extremely weakly first
order beyond the length scale L � 384, we definitely need
the physical understanding of the anomalous critical behavior
observed in many experiments and model simulations. The
picture emerging from our present calculation is that the tran-
sition is continuous characterized by the focus-like chiral FP.
While this picture seems well consistent with our present MC
data and with experiments, we do not know for sure whether
it is the only and most effective description of the anomalous
critical behavior observed experimentally and numerically on
the length scale of L � 384.

Some of open questions might be the following: (1) Does
the noncollinear criticality really exhibit the focus-like critical
behavior? (2) If it does, how does it reconcile with the
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conformal-bootstrap theory? (3) Why are the thermal and
magnetic exponents close to the mean-field-tricritical values
in spite of the chiral FP being not the standard Gaussian FP?
or (4) Why do various RG schemes which give mutually con-
sistent answers in the standard O(n) problem give mutually
different and sometimes even contradicting answers in the
O(n) × O(2) problem? These issues might still remain to be
challenging, and the issue of the noncollinear or O(n) × O(m)
criticality most probably contains rich physics in it, providing
an important key to making progress in the challenge.
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APPENDIX: DERIVATION OF THE EXPONENT
DESCRIBING THE SIZE DEPENDENCE OF

THE ENERGY BINDER RATIO ge

In this Appendix, we give the derivation of Eq. (22) de-
scribing the size dependence of the energy Binder ratio ge. In
terms of the energy per spin e, we introduce the quantities δn

(n = 2, 3, 4, . . . ) by

δn = 〈(e − 〈e〉)n〉
〈e〉n

. (A1)

The energy Binder ratio ge can be rewritten in terms of δn as

ge = 1 + 6δ2 + 4δ3 + δ4

(1 + δ2)2
. (A2)

Since 1 � δ2 � δ3 � δ4, one has
ge − 1 � 4δ2. (A3)

Now, δ2 can be written in terms of the internal energy per spin
ē and the specific heat per spin c as

δ2 = c

Nē2
. (A4)

At T = Tc, the leading size dependence of ē and c is expected
to be

ē = ē0 + const × L
α−1

ν + · · · , (A5)

c = c0 + const × L
α
ν + · · · , (A6)

where ē0 and c0 are nonsingular constants. Note that, since
α < 1 at the continuous transition, the regular term ē0 gives
the leading contribution to the L dependence of the energy
ē. In case of the specific heat c, the leading contribution
to the L dependence comes from the singular second term
L

α
ν if α > 0 as in the present case, while it comes from

the nonsingular constant term c0 if α < 0. Then the leading
contribution to the L dependence of δ2 and ge − 1 should be
given by

ge − 1 ≈ L−2(d− 1
ν

) = L−2(3− 1
ν

), α > 0, (A7)

ge − 1 ≈ L−d = L−3, α < 0. (A8)

In the present case, Eq. (A7) should hold since α > 0.
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