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Magnetic properties of the finite-length biatomic chains in the
framework of the single domain-wall approximation
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A simple analytical method for the investigation of the magnetic properties of the finite-length biatomic chains
proposed in the framework of the Heisenberg model with uniaxial magnetic anisotropy. The method allows
to estimate the reversal time of magnetization of ferromagnetic and antiferromagnetic biatomic chains. Three
cases have been considered: the spontaneous remagnetization, the remagnetization under the interaction with
a scanning tunneling microscope, and the remagnetization under the external magnetic field. The applicability
limits of the method have been discussed. Within its limits of applicability the method produces the results
which are in a perfect agreement with those obtained with the use of the kinetic Monte Carlo simulations. As
the examples, two physical systems have been considered: biatomic Fe chains on Cu2N/Cu(001) surface and
biatomic Co chains on Pt(997) surface. The presented method is incomparably less time-consuming than the
commonly used kinetic Monte Carlo simulations, especially in the cases of low temperatures or long chains.
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I. INTRODUCTION

The investigations of the magnetic properties of the atomic
chains are of general interest due to its possible applications
in spintronics [1], quantum communications [2–4], quantum
computing [5], and other fields [6] of research. In particu-
lar, atomic chains can be used for the creation of the next
generation mass storage devices [7–9]. For application of the
atomic chains as bits of information, their reversal time of
magnetization needs to be sufficiently long. The possibility
of engineering of such memory elements [10] appeared after
the discovery of the giant magnetic anisotropy energy (MAE)
of Co atoms on the Pt(997) surface [11,12] using x-ray mag-
netic circular dichroism and scanning tunneling microscope
(STM) [13–15]. Ferromagnetic Co chains can grow on the
step edges of Pt(997) surface at low concentrations of Co
atoms. The analogous effect was observed for Fe/Cu(111)
system [16,17]. The critical temperature TC and the reversal
time of magnetization τ of the atomic chains increase with
their length. According to the estimation [12] the atomic
chain consisting of 400 Co atoms can be a stable bit of
information at room temperature. In order to increase the
information recording density, it is possible to use biatomic
ferromagnetic chains [18,19]. However, an increase of the
chain width usually leads to the significant decrease of MAE
[19–21]. These observations are in a good agreement with a
well-known effect of decreasing of the average MAE of atoms
in atomic clusters with an increase of their size [22–24].

Another interesting opportunity is use of finite-sized an-
tiferromagnetic chains as bits of information [25–28]. The
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interaction between antiferromagnetic chains is much weaker
than between ferromagnetic ones. Therefore, the use of anti-
ferromagnetic chains can lead to a significant increase in the
information recording density. The possibility of creating and
remagnetization of such chains using STM was demonstrated
for Fe atomic chains on Cu2N/Cu(001) surface [29,30]. A
systematical study of atomic chains composed of the transi-
tion metals on Cu2N/Cu(001) surface has shown that they can
be either ferromagnetic or antiferromagnetic [31–35]. Very
similar results are obtained for the analogous atomic chains
on Cu2O/Cu(001) surface [36]. Biatomic antiferromagnetic
chains are known to be significantly more stable than the
single-atomic chains [30]. A special attention should be paid
to the investigations of the remagnetization of the atomic
chains with the STM tip. It has been shown that the switch-
ing of magnetization at high STM voltages is mediated by
domain-wall formation and propagation [37].

A lot of theoretical investigations have been devoted
to ferromagnetic and antiferromagnetic finite-sized chains.
Among them it is necessary to underline the studies devoted
to the influence of quantum tunneling on the reversal time
of magnetization [37–39]. Quantum tunneling is the main
switching mechanism at extremely low temperatures below
the mK range for a system consisting of six Fe atoms [38].
However, we can neglect the quantum nature of the atomic
magnetic moments at higher temperatures. In this case the
magnetic properties of atomic chains can be described in the
framework of the classical Heisenberg Hamiltonian and its
generalizations.

The parameters of the Heisenberg Hamiltonian can be
calculated from the first principles by the means of den-
sity functional theory [18,36,40] or Korringa-Kohn-Rostoker-
Green’s function method [15,41]. Further investigation of the
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magnetic properties of atomic chains can be performed with
either the solution of the Landau–Lifshitz-Gilbert equation
[40,42] or the kinetic Monte Carlo (kMC) simulations [43].
The kMC method allows to calculate the critical temperature,
the reversal time of magnetization, and the coercive field of
ferromagnetic chains [44–48]. The process of dynamical mag-
netization of rectangular lattices composed of tiny magnets
with strong perpendicular uniaxial anisotropy also studied
[49]. It was shown that the kMC method can be successfully
applied for the investigation of antiferromagnetic chains as
well [50,51].

However, the kMC method is a statistical method and
the process of obtaining of the averaged values with small
errors always needs a lot of simulations. Commonly used
kMC simulations can be very time-consuming, especially in
the cases of low temperatures or long chains. Thus, it would
be useful to find a simple analytical method to estimate the
reversal time of magnetization, which would be in a good
agreement with the results of the kMC simulations in a wide
range of parameters. Such method in the single domain-wall
approximation was developed earlier for the single-atomic
chains [52,53]. It was shown that the single domain-wall
approximation is justified in a wide range of parameters of the
Heisenberg Hamiltonian and a wide range of temperatures.
The proposed method allows to estimate the reversal time
of magnetization of ferromagnetic chains in the cases of a
spontaneous remagnetization and the remagnetization under
the external magnetic field [52]. The reversal time of magne-
tization of antiferromagnetic chains under the interaction with
the STM tip also can be correctly estimated [53].

In this article, the previously developed formalism [52,53]
is generalized to the case of biatomic chains [54]. Two lim-
iting cases will be considered: a weak and a strong coupling
between the atomic chains. It will be shown that these two
approximations cover a wide range of parameters and can
be used in a lot of practically interesting situations. The
estimation formulas for the reversal time of magnetization of
biatomic chains will be derived in the three following cases
of remagnetization: (i) spontaneous, (ii) under the interaction
with STM tip, and (iii) under the external magnetic field. It
will be shown that the proposed method allows to calculate
the magnetization curves and the coercive fields of biatomic
ferromagnetic chains. The obtained analytical results will be
compared with the results obtained with the use of the kMC
simulations.

The paper is organized as follows. In Sec. II, the theoret-
ical model is briefly discussed. In Sec. III A, the estimation
formulas for the reversal time of magnetization in the case
of spontaneous remagnetization of both ferromagnetic and
antiferromagnetic biatomic chains are derived. Interaction of
biatomic chains with STM is discussed in Sec. III B. Re-
magnetization of ferromagnetic biatomic chains under the
external magnetic field is investigated in Sec. III C. In order to
demonstrate the ability of the method to estimate the reversal
time of magnetization some numerical results are compared
with the results of the kMC simulations in Sec. III D. The
conclusions are presented in Sec. IV. For the reader’s con-
venience, the main results from Refs. [52,53] are summarized
in Appendix A. The estimation of thickness of a domain wall
is presented in Appendix B.

II. THEORETICAL MODEL

In order to estimate the reversal time of magnetization
we assume that we can neglect quantum tunneling at the
temperatures T > TQT and consider the magnetic moments of
atoms as classical vectors. Temperature TQT has an order of
mK for the chains under consideration [38]. Following the
paper of Li and Liu [43] we consider the case of uniaxial
magnetic anisotropy. Thus, the Heisenberg Hamiltonian can
be written in the following form

H = −
∑
i> j

Ji j (si · s j ) − K
∑

i

(si · e)2 − μ
∑

i

(si · B), (1)

where si and e are the unit vectors of the magnetic moments
of atoms and the easy axis of magnetization, respectively, μ

is the absolute value of magnetic moments, K is MAE, Ji j =
J (δi, j+1 + δi, j−1) is the exchange energy, and δi j is Kronecker
δ. For ferromagnetic chains J > 0 and for antiferromagnetic
chains J < 0. The external magnetic field B is assumed to be
applied along the easy axis of magnetization e. We assume
that all of the magnetic moments are directed either parallel
or antiparallel to the easy axis of magnetization (si · e) = ±1.
We can say that the magnetic moment is directed “up” if
(si · e) = 1 and “down” if (si · e) = −1.

The flipping of the ith magnetic moment can occur in two
different ways [55]. If 2K > |hi| [where hi = ∑

j Ji j (si · s j ) +
μ(si · B)], then the rate of a single magnetic moment flip is
determined as [43]

ν(hi ) = ν0 exp

[
− (2K + hi )

2

4KkBT

]
, (2)

where kB is the Boltzmann constant, T is the temperature, and
ν0 is the frequency prefactor. If 2K � |hi|, then there is no
energy barrier between the states (si · e) = ±1. The rate of a
single magnetic moment flip can be calculated [56], as

ν(hi ) = ν0
exp(−2hi/kBT )

1 + exp(−2hi/kBT )
. (3)

Below we will use the function ν(hi ), which defined by
Eqs. (2) and (3) [57]. The frequency prefactor ν0 = 109 Hz
[11] is chosen for the numerical estimates.

The main ideas of the proposed method are demonstrated
further on the example of a ferromagnetic chain consisting
of 10 atoms. Let us assume that all magnetic moments are
directed up in the initial moment of time (Fig. 1) and the
process of chain remagnetization is associated with the forma-
tion and propagation of a single domain wall. If J/2KN2 �
1, then the thickness of the domain wall can be neglected
(see Appendix B). Dashed lines in Fig. 1 show the possible
positions i = 0, . . . , 10 of the domain wall. Solid lines show
its current position: (a) i = 0, (b) i = 5, (c) i = 9. The domain
wall leaves initial state i = 0, moves randomly along the
chain, and comes to final state i = 10. The reversal time
of magnetization τ of the atomic chain is defined as the
average time of the random walk of the domain wall. If the
parameters of the Hamiltonian (1) are the same for all of the
atoms and B = 0, then the random walk of the domain wall is
characterized by only three rates: (i) the rate of formation of
the domain wall ν1 [Fig. 1(a)], (ii) the rate of the domain wall
disappearance ν2 [Fig. 1(c)], and (iii) the rate of motion of the
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FIG. 1. A schematic view of the atomic chain consisting of N =
10 magnetic moments. Dashed lines show the possible positions i =
0, . . . , 10 of the domain wall. Solid lines show its current position.
The following processes are shown: (a) formation of the domain wall
with the rate of ν1, (b) motion of the domain wall with the rate of ν3,
and (c) the domain wall disappearance with the rate of ν2. Red arrows
show the flipping magnetic moments.

domain wall along the chain ν3 [Fig. 1(b)]. The rate ν1,2,3 can
be easily calculated using Eqs. (2) and (3). We assume that
two domain walls are not able to exist simultaneously if the
temperature is lower than Tmax < TC . Thus, our model is valid
in the temperature range of TQT < T < Tmax.

To calculate the average time of the random walk of the
domain wall the mean rate method is employed [58,59]. At
the first step the rates νi→ j of all of the possible transitions
of the domain wall should be calculated and the transition
probability matrix should be found [60]

Ti j = τ 1
j ν j→i, (4)

where τ 1
j = (

∑
k ν j→k )−1 is the mean residence time in the

state j each time it is occupied, indexes i and j run over initial
and all of transient states of the domain wall, index k runs over
all possible states (including final states) of the domain wall.
The probability Pi to find the domain wall in the state i can be
calculated from the following system of linear equations:

N−1∑
j=0

(δi j − Ti j )Pj = Pinit
i , (5)

where Pinit
i = δ0i is the probability to find the domain wall in

the state i at the initial moment of time. The average time of
the random walk of the domain wall can be obtained as

τtot =
N−1∑
i=0

τ 1
i Pi. (6)

If the remagnetization of the chain can begin from any of
its ends with the same probability, then its reversal time of
magnetization τ is equal to τtot/2.

III. RESULTS AND DISCUSSIONS

Following the experimental study [30] we consider bi-
atomic chains of two types: type A and type B (see Fig. 2).
We assume that the exchange energy J characterizes the
interactions between the nearest atoms in the same atomic

FIG. 2. Two types of the biatomic chains under consideration:
(a) type A and (b) type B. Exchange energies J and J ′ characterize
the coupling between the neighboring atoms.

chain, and J ′ characterizes the interactions between atoms
of the neighboring atomic chains. For simplicity, the inter-
actions between other pairs of atoms are neglected. Rates
ν(hi ) which will be used below can be calculated by
means of Eqs. (2) and (3). The following rates will be
necessary: ν1 = ν(|J| + |J ′|), ν ′

1 = ν(|J| − |J ′|), ν ′′
1 = ν(|J|),

ν2 = ν(−|J| + |J ′|), ν ′
2 = ν(−|J| − |J ′|), ν ′′

2 = ν(−|J|), ν3 =
ν(|J ′|), ν ′

3 = ν(−|J ′|), ν ′′
3 = ν(0) if B = 0, and ν1± = ν(J +

J ′ ± μB), ν ′
1± = ν(J − J ′ ± μB), ν ′′

1± = ν(J ± μB), ν2± =
ν(−J + J ′ ± μB), ν ′

2± = ν(−J − J ′ ± μB), ν ′′
2± = ν(−J ±

μB), ν3± = ν(J ′ ± μB), ν ′
3± = ν(−J ′ ± μB), ν ′′

3± = ν(±μB)
if B �= 0. Below, we derive equations for estimation of the
reversal time of magnetization of biatomic chains in two
limiting cases: (i) a weak coupling between the atomic chains
(|J ′| � |J|) and (ii) a strong coupling between the chains
(|J ′| � |J|). The parameters of the Heisenberg Hamiltonian
are assumed to be the same for all of the atoms. Edge effects
can be taken into account as well as in the case of single-
atomic chains (see Ref. [53] and Eqs. (A6) and (A7) in
Appendix A).

A. Spontaneous remagnetization

First the case of spontaneous remagnetization of biatomic
chains in the absence of external fields (no interaction with the
STM tip, no external magnetic field) will be investigated. How
it can be seen further, all of the equations for the reversal times
of magnetization include the absolute values of the exchange
energies |J| and |J ′|. Thus, all of the results obtained in this
section are valid for both ferromagnetic and antiferromagnetic
chains.

1. Weak-coupling approximation

Let us consider weakly interacting atomic chains (|J ′| �
|J|). This case is directly related to the experimental study
[30], because the ratio between the exchange energies of the
Fe atoms on Cu2N/Cu(001) surface is J/J ′ ≈ 40. We assume
that the atomic chains flip one by one (see Fig. 3). So the
atomic chain is flipping at the current moment under the
effective magnetic field which is created by another chain.
The initial state, two transient states, and the final state of a
biatomic chain are denoted as 0, 1, 2, and 3, respectively. Then

ν0→1 = ν0→2 = ν3→1 = ν3→2 = ν+, (7)

ν1→0 = ν2→0 = ν1→3 = ν2→3 = ν−, (8)

ν0→3 = ν3→0 = 0. (9)
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FIG. 3. A schematic view of remagnetization of a biatomic chain
in a weak-coupling approximation: 0 is the initial state, 1 and 2 are
the transient states, and 3 is the final state. Red arrows represent
flipping magnetic moments.

The nonzero elements of the transition probability matrix
calculated by Eq. (4) are equal to T0i = 1/2, Ti0 = 1/2, where
i = 1, 2. After solving the system of Eqs. (5) with Pinit =
{1, 0, 0} we find the reversal time of magnetization in the
weak-coupling approximation

τweak = τ+ + τ−, (10)

where τ+ = 1/ν+ and τ− = 1/ν−.
The reversal times of magnetization τ+ and τ− are different

for biatomic chains of type A and type B. For the chains
of type A, all of the atoms of the second atomic chain are
in the effective magnetic field B = |J ′|/μ created by the
atoms of the first atomic chain at the transition 0 → 1 (see
Fig. 3). Therefore, the reversal time of magnetization of the
second atomic chains can be estimated by Eq. (A5) in which
the following replacements are made: ν ′′

1+ → ν1, ν ′′
1− → ν ′

1,
ν ′′

2+ → ν2, ν ′′
2− → ν ′

2, ν ′′
3+ → ν3, ν ′′

3− → ν ′
3, i.e.,

τ+ = τB

( |J ′|
μ

)
. (11)

All of the atoms of the first atomic chain are under the
effective magnetic field B = −|J ′|/μ created by the atoms of
the second atomic chain at the transition 1 → 3. Thus,

τ− = τB

(
−|J ′|

μ

)
. (12)

Replacing |J ′| → −|J ′| is equivalent to replacing of νi → ν ′
i ,

ν ′
i → νi in Eq. (11), where i = 1, 2, 3.

In the case of the biatomic chain of type B, one of the edge
atoms of each atomic chains does not interact with atoms of
another chain. In the other words, one of the ends of each
atomic chain is “free.” Let us consider the transition 0 → 1.
In this case remagnetization depends on the type of the end
at which it starts from. If the remagnetization begins at “free”
end, then the reversal time of magnetization can be estimated
by Eq. (A5) after the replacements ν ′′

1+ → ν ′′
1 , ν ′′

2− → ν ′′
2 and

multiplying by a factor of 2:

τ1+ = 2τB

( |J ′|
μ

; ν ′′
1+ → ν ′′

1 , ν ′′
2− → ν ′′

2

)
. (13)

If remagnetization of the second atomic chain begins at
another end, then the reversal time of magnetization is the

following:

τ2+ = 2τB

( |J ′|
μ

; ν ′′
1− → ν ′′

1 , ν ′′
2+ → ν ′′

2

)
. (14)

Then the average reversal time of magnetization of the second
chain is equal to

τ+ =
(

1

τ1+
+ 1

τ2+

)−1

. (15)

The similar result is obtained for the transition 1 → 3:

τ− =
(

1

τ1−
+ 1

τ2−

)−1

, (16)

where

τ1− = 2τB

(
−|J ′|

μ
; ν ′′

1+ → ν ′′
1 , ν ′′

2− → ν ′′
2

)
, (17)

τ2− = 2τB

(
−|J ′|

μ
; ν ′′

1− → ν ′′
1 , ν ′′

2+ → ν ′′
2

)
. (18)

Finally, we find the reversal time of magnetization τweak

of the biatomic chains in a weak-coupling approximation by
substituting either (11) and (12) for the chains of type A, or
(15) and (16) for the chains of type B to Eq. (10). Note that
when |J ′| → 0 the value of τweak tends to 2τ1, where τ1 is the
reversal time of magnetization of a single-atomic chain in the
absence of external fields and calculated by Eq. (A1).

2. Strong-coupling approximation

In the case of a strong coupling between the atomic chains
(|J ′| � |J|) the length of the domain wall should be minimal.
So, the domain wall must be perpendicular to the biatomic
chain. First we consider the case of the biatomic chain of
type A. The positions of the domain wall corresponding to the
local minima of the energy are shown in Fig. 4. To estimate
the reversal time of magnetization of a biatomic chain, it is
necessary to calculate the rates ν̃1, ν̃2, ν̃3, and ν̃ ′

3 of formation,
disappearance, and motion of the domain wall, respectively.

Let us calculate the rate of motion of the domain wall ν̃3.
Figure 5 shows that the domain wall can transit from the initial
state 0 to one of the two equivalent final states I or II through
the transient states 1, 2, 3, and 4. The nonzero transition rates
are equal to

ν0→i = ν3, (19)

νi→0 = ν1→I = ν2→II = ν3→I = ν4→II = ν ′
3, (20)

where i = 1, 2, 3, 4. The nonzero elements of the transition
probability matrix calculated by Eq. (4) are equal to T0i =
1/2, Ti0 = 1/4. After solving the system of Eqs. (5) with
Pinit = {1, 0, 0, 0, 0} we find

ν̃3 = τ 1
1 P1ν1→I + τ 1

3 P3ν3→I

τtot
= ν3ν

′
3

ν ′
3 + 2ν3

. (21)

To calculate the rate of formation of the domain wall ν̃1

similar procedure is used. Figure 6 shows that the domain wall
can transit from the initial state 0 to the final state 3 through
the transient states 1 or 2. The nonzero transition rates are
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FIG. 4. A schematic view of a biatomic chain of type A consist-
ing of 2N = 20 magnetic moments. Dashed lines show the stable
positions of the domain wall in a strong-coupling approximation.
Solid lines show current positions of the domain wall. The following
processes are shown: (a) formation of the domain wall with the rate
of ν̃1, (b) motion of the domain wall with the rate of ν̃3, and (c) the
domain wall disappearance with the rate of ν̃2 and motion of the
domain wall near the end of the chain with the rate of ν̃ ′

3. Red arrows
represent the flipping magnetic moments.

FIG. 5. A schematic view of the domain wall motion in a strong-
coupling approximation: 0 is the initial state; 1, 2, 3, and 4 are the
transient states; I and II are the final states. Red arrows represent the
flipping magnetic moments.

FIG. 6. A schematic view of formation of the domain wall in the
chain of type A in a strong-coupling approximation: 0 is the initial
state, 1 and 2 are the transient states, and 3 is the final state. Red
arrows show the flipping magnetic moments.

equal to

ν0→i = ν1, νi→3 = ν ′
1, νi→0 = ν ′

2, (22)

where i = 1, 2. The nonzero elements of the transition proba-
bility matrix are equal to T0i = ν ′

2/(ν ′
1 + ν ′

2), Ti0 = 1/2. After
solving the system of Eqs. (5) with Pinit = {1, 0, 0} we find

ν̃1 = τ 1
1 P1ν1→3 + τ 1

2 P2ν2→3

τtot
= 2ν1ν

′
1

ν1 + ν ′
1 + ν ′

2

. (23)

Finally, let us calculate the rate of the domain wall disap-
pearance ν̃2 and the rate ν̃ ′

3. The domain wall can transit from
the initial state 0 to one of two nonequivalent final states I or
II through the transient states 1, 2, 3, and 4 (see Fig. 7). The
nonzero transition rates are equal to

ν0→1 = ν0→3 = ν3, ν0→2 = ν0→4 = ν2, (24)

ν1→0 = ν3→0 = ν1→I = ν3→I = ν ′
3, (25)

ν2→0 = ν4→0 = ν ′
1, ν2→II = ν4→II = ν ′

2. (26)

The nonzero elements of the transition probability matrix are
equal to T01 = T03 = 1/2, T02 = T04 = ν ′

1/(ν ′
1 + ν ′

2), T10 =
T30 = a/2, and T20 = T40 = (1 − a)/2, where a = ν3/(ν2 +
ν3). After solving the system of Eqs. (5) with Pinit =
{1, 0, 0, 0, 0} we find

ν̃2 = τ 1
2 P2ν2→II + τ 1

4 P4ν4→II

τtot

= 2ν2ν
′
2ν

′
3

ν3(ν ′
1 + ν ′

2) + ν ′
3(2ν2 + ν ′

1 + ν ′
2)

, (27)

ν̃ ′
3 = τ 1

1 P1ν1→I + τ 1
3 P3ν3→I

τtot

= ν3ν
′
3(ν ′

1 + ν ′
2)

ν3(ν ′
1 + ν ′

2) + ν ′
3(2ν2 + ν ′

1 + ν ′
2)

. (28)

Now the problem of remagnetization of a biatomic chain is
reduced to the problem of remagnetization of a single-atomic
chain. In order to estimate the reversal time of magnetization
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FIG. 7. A schematic view of the domain wall disappearance and
motion of the domain wall near the end of a chain of type A in a
strong-coupling approximation: 0 is the initial state; 1, 2, 3, and 4 are
the transient states; and I and II are the final states, respectively. Red
arrows represent the flipping magnetic moments.

τ strong, Eq. (A7) should be used with the following replace-
ments: ν ′′

1 → ν̃1, ν ′′
2 → ν̃2, ν2, ν

′′
3 → ν̃3, ν ′

1 → ν̃ ′
3. Then

τ strong = 1

2ã

{
ã

2ν̃3

(
N − 3 + 2

ν̃3

ν̃ ′
3

)[
N − 2(1 − 2ã)

1 − ã

]

+ 1

ν̃1
[N (1 − ã) − 2(1 − 2ã)]

}
, (29)

where ã = ν̃ ′
3/(ν̃2 + ν̃ ′

3). This equation has the same structure
as Eq. (A1).

Now we consider a spontaneous remagnetization of a
biatomic chain of type B. Figure 8 shows the positions of
the domain wall corresponding to the local minima of energy.
The rate ν̃3 of the domain wall motion obviously does not
depend on the type of a biatomic chain. The value of ν̃3 is
determined by Eq. (21). The calculation of the rates ν̃1, ν̃2,
and ν̃ ′

3 is similar to the case A. Here, only the final equations
are presented:

ν̃1 = ν ′′
1

[
ν ′

1ν3

ν ′
1 + ν ′

3

+ ν1ν
′
3

ν ′
2 + ν ′

3

]

×
[
ν1+ν ′′

1 +ν ′′
2 +ν3 + ν3(ν ′′

1 − ν ′
3)

ν ′
1 + ν ′

3

+ ν1(ν ′′
1 − ν ′

2)

ν ′
2 + ν ′

3

]−1

,

(30)

ν̃2 = ν ′′
2 ν ′

3
ν ′

2ν3(ν ′
1 + ν ′

3) + ν2ν
′
3(ν ′

2 + ν ′
3)

(ν3 + ν ′
3)F1 + ν ′

3F2
, (31)

ν̃ ′
3 = ν3ν

′
3F1

(ν3 + ν ′
3)F1 + ν ′

3F2
, (32)

FIG. 8. A schematic view of the biatomic chain of type B con-
sisting of 2N = 20 magnetic moments. Dashed lines show the stable
positions of the domain wall in a strong-coupling approximation.
Solid lines show its current position. The following processes are
shown: (a) Formation of the domain wall with the rate of ν̃1,
(b) motion of the domain wall with the rate of ν̃3, and (c) the domain
wall disappearance with the rate of ν̃2 and motion of the domain wall
near the end of the chain with the rate of ν̃ ′

3. Red arrows represent the
flipping magnetic moments.

where

F1 = (ν1 + ν ′′
2 + ν3)(ν ′

1 + ν ′
3)(ν ′

2 + ν ′
3)

− ν3ν
′
3(ν ′

2 + ν ′
3) − ν1ν

′
2(ν ′

1 + ν ′
3), (33)

F2 = (ν1 + ν ′′
2 + ν3)[ν3(ν ′

1 + ν ′
3) + ν2(ν ′

2 + ν ′
3)]

+ (ν ′
2 − ν ′

3)
(
ν2

3 − ν1ν2
) + ν ′

2ν3(ν ′
1 + ν ′

3)

+ ν2ν
′
3(ν ′

2 + ν ′
3). (34)

To estimate the reversal time of magnetization τ strong we need
to substitute the rates (30), (31), and (32) to Eq. (29) and to
replacement N by N − 1.

B. Interaction with STM

As shown in Ref. [37], the remagnetization of antiferro-
magnetic chains occurs due to the formation of a domain
wall at high voltages between the surface and the STM tip.
This regime of remagnetization is considered in the current
section. It is assumed that the magnetic moment of the atom
located under the STM tip immediately flips and cannot return
to its initial state. Then the reversal time of magnetization of
a biatomic chain (τSTM) is also the reversal time of magne-
tization of all other atoms. The STM tip is assumed to be
located over the one of the edge atoms of a biatomic chain
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FIG. 9. A schematic view of the interaction between the STM
tip and biatomic chains of types A and B. Red arrows represent the
magnetic moment which flips as a result of this interaction.

[30]. The location of the STM tip and the magnetic moments
of the atoms at the initial moment of time are shown in Fig. 9.
A single domain-wall approximation and the assumption that
the domain wall is already formed at the initial moment of
time near the STM tip are applied. So in the framework of our
model the remagnetization of a biatomic chain always begins
from one end. Further solution of the problem is different in
the cases of a weak and a strong interaction between atomic
chains.

1. Weak-coupling approximation

In the case of a weak coupling between atomic chains it is
assumed that in the beginning only the first chain which inter-
acts with the STM tip is remagnetized. The remagnetization
of the second chain starts only when the remagnetization of
the first chain is finished. Therefore, the total reversal time of
magnetization is equal to the sum of the reversal times of the
magnetization of two atomic chains.

τweak
STM = τ STM

+ + τ−, (35)

where the value of τ− is calculated by Eq. (12) or (16), for
the chains of type A or B, respectively. The reversal time
of magnetization τ STM

+ does not depend on the type of the
chain (see Fig. 9). Its value can be determined by comparing
Eqs. (A1), (A2), (A3), and (A5), in which μB should be
replaced by |J ′|:

τ STM
+ = a−

ν ′
3(1 − a−)

+ (N − 2)(1 − a−) + (a− − α)SN−2

ν3(1 − α)(1 − a−)
, (36)

where α = (1 − b)/b, SN = (1 − αN )/(1 − α), a− =
ν ′

3/(ν2 + ν ′
3), and b = ν3/(ν3 + ν ′

3).

2. Strong-coupling approximation

In the case of a strong interaction between the chains, the
calculations similar to those presented in Sec. III A should
be performed. The rate of motion of the domain wall along
the chain ν̃3 is still determined by Eq. (21). The rates ν̃1,
ν̃2, and ν̃ ′

3 for the free end of a biatomic chain are also not

changed. The rates ν̃STM
1 , ν̃STM

2 , and ν̃ ′STM
3 for the end of

the biatomic chain interacting with the STM tip should be
calculated. Then Eq. (29) will be generalized to the case of
chains with nonequivalent ends.

The calculation of the rates is completely analogous to the
one presented above. For chains of type A:

ν̃STM
1 = ν ′

1, (37)

ν̃STM
2 = ν2ν

′
3

ν3 + ν ′
3

, (38)

ν̃ ′STM
3 = ν3ν

′
3

ν3 + ν ′
3

. (39)

For the chains of type B:

ν̃STM
1 = ν ′

1ν3(ν ′
2 + ν ′

3) + ν1ν
′
3(ν ′

1 + ν ′
3)

(ν ′
1 + ν ′

3)(ν ′
2 + ν ′

3) + ν3(ν ′
2 + ν ′

3) + ν1(ν ′
1 + ν ′

3)
,

(40)

ν̃STM
2 = ν ′

3

F3
[ν ′

2ν3(ν ′
1 + ν ′

3) + ν2ν
′
3(ν ′

2 + ν ′
3)], (41)

ν̃ ′STM
3 = ν3ν

′
3

F3
(ν ′

1 + ν ′
3)(ν ′

2 + ν ′
3), (42)

F3 = (ν ′
1 + ν ′

3)(ν ′
2 + ν ′

3)(ν3 + ν ′
3)

+ ν3ν
′
3(ν ′

1 + ν ′
3) + ν2ν

′
3(ν ′

2 + ν ′
3). (43)

Now the problem is reduced to the problem of finding of
the reversal time of magnetization of a single-atomic chain.
However, we cannot use Eq. (29) because the rates of the
magnetic moment flipping are different at the different ends
of a biatomic chain (ν̃1 �= ν̃STM

1 , ν̃2 �= ν̃STM
2 , ν̃ ′

3 �= ν̃ ′STM
3 ). The

derivation of equation for the reversal time of magnetization
of a single-atomic chain is similar to our previous calculations
[52,53]. Below we discuss only the basic steps of the deriva-
tion. If the chain consists of N atoms, then the domain wall can
occupy N + 1 positions, as it is shown in Fig. 1. The transition
rates are equal to

ν0→1 = ν̃STM
1 , ν1→2 = ν̃ ′STM

3 , νN−1→N = ν̃2, (44)

ν2→3 = · · · = νN−2→N−1

= ν2→1 = · · · = νN−2→N−3 = ν̃3, (45)

ν1→0 = ν̃STM
2 , νN−1→N−2 = ν̃ ′

3, νN→N−1 = ν̃1. (46)

The transition probability matrix is found according to Eq. (4):

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − aSTM 0 . . . 0 0 0

1 0 1/2 . . . 0 0 0

0 aSTM 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 1/2 0

0 0 0 . . . 1/2 0 a

0 0 0 . . . 0 1/2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (47)

where a = ν̃ ′
3/(ν̃2 + ν̃ ′

3), aSTM = ν̃ ′STM
3 /(ν̃STM

2 + ν̃ ′STM
3 ). Af-

ter solving the system of Eqs. (5) with Pinit
i = δ0i, the reversal
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time of magnetization is found by Eq. (6)

τ
strong
STM =

(
N − 3

2ν̃3
+ 1

ν̃ ′STM
3

)[
N − 2(1 − 2a)

1 − a

]

+ a

1 − a

(
1

ν̃ ′STM
3

− 1

ν̃ ′
3

)
+ 1

aSTMν̃STM
1

·

×
[

N (1−aSTM) − 2(1−2aSTM) + a − aSTM

1 − a

]
.

(48)

Note that there is no factor 1/2 in Eq. (48) because it is
assumed that the remagnetization always begins under the
STM tip. This assumption is true if τ

strong
STM � τ strong. We

should replace N by N − 1 in Eq. (48) for a biatomic chain
of type B.

C. Ferromagnetic chains in the external magnetic field

In this section, we consider the remagnetization of bi-
atomic chains under the external magnetic field B applied
along the easy axis of magnetization e. We focus on the most
physically important case of the ferromagnetic chains (J, J ′ >

0). As it can be seen from Refs. [18,19], a strong-coupling
approximation (J ≈ J ′) is more applicable for ferromagnetic
chains. Here we consider only this approximation [61].

Following Ref. [52], we assume that the magnetic moments
of all of the atoms are directed up at the initial moment of
time, and B = Be, where B run positive and negative values.
Instead of eight rates ν1, ν ′

1, ν ′′
1 , ν2, ν ′

2, ν ′′
2 , ν3, ν ′

3 used above,
the following 16 rates will be necessary: ν1±, ν ′

1±, ν ′′
1±, ν2±,

ν ′
2±, ν ′′

2±, ν3±, ν ′
3±. Note that if the domain wall is in the

position i = 0 (see Fig. 1) at the initial moment of time, and
all of the magnetic moments are directed up, then the index
“+” corresponds to the motion of the domain wall to the right
(i → i + 1), and the index “−” corresponds to the motion of
the domain wall to the left i → i − 1.

First in a strong-coupling approximation the rates ν̃1±, ν̃2±,
ν̃3±, and ν̃ ′

3± should be calculated. The rates ν̃3± which do
not depend on the type of a biatomic chain will be calculated
further. The domain wall can transit from the initial state 0 to
the final states I or II through the transient states 1, 2, 3, and
4 (see Fig. 5). However, now the rates of the motion of the
domain wall to the right and to the left are different from each
other. Instead of Eqs. (19) and (20) we find

ν0→1 = ν0→3 = ν3+, ν0→2 = ν0→4 = ν3−, (49)

ν2→0 = ν4→0 = ν1→I = ν3→I = ν ′
3+, (50)

ν1→0 = ν3→0 = ν2→II = ν4→II = ν ′
3−. (51)

The nonzero elements of the transition probability matrix
calculated by Eq. (4) are equal to T01 = T03 = 1 − b′, T02 =
T04 = b′, T10 = T30 = b/2, T20 = T40 = (1 − b)/2, where b =
ν3+/(ν3+ + ν3−) and b′ = ν ′

3+/(ν ′
3+ + ν ′

3−). After solving the

system of Eqs. (5) with Pinit = {1, 0, 0, 0, 0}, we find

ν̃3+ = τ 1
1 P1ν1→I + τ 1

3 P3ν3→I

τtot

= 2ν3+ν ′
3+

(ν ′
3+ + ν ′

3−) + 2(ν3+ + ν3−)
, (52)

ν̃3− = τ 1
2 P2ν2→II + τ 1

4 P4ν4→II

τtot

= 2ν3−ν ′
3−

(ν ′
3+ + ν ′

3−) + 2(ν3+ + ν3−)
. (53)

We note the following. First, if B is replaced by −B, then
Eq. (52) turns to (53). Second, if B → 0, then Eqs. (52) and
(53) tend to (21).

The rates ν̃1±, ν̃2±, and ν̃ ′
3± can be calculated in the same

way. For a biatomic chain of type A we find

ν̃1± = 2ν1±ν ′
1±

ν1± + ν ′
1± + ν ′

2∓
, (54)

ν̃2±

= 2ν2±ν ′
2±(ν ′

3± + ν ′
3∓)

2ν3∓(ν ′
1∓ + ν ′

2±) + (ν ′
3± + ν ′

3∓)(2ν2± + ν ′
1∓ + ν ′

2±)
,

(55)

ν̃ ′
3±

= 2ν3±ν ′
3±(ν ′

1± + ν ′
2∓)

2ν3±(ν ′
1± + ν ′

2∓) + (ν ′
3± + ν ′

3∓)(2ν2∓ + ν ′
1± + ν ′

2∓)
.

(56)

For the biatomic chain of type B we find

ν̃1± = ν ′′
1±

[
ν ′

1±ν3±
ν ′

1± + ν ′
3∓

+ ν1±ν ′
3±

ν ′
2∓ + ν ′

3±

][
ν1± + ν ′′

1±+ν ′′
2∓+ν3±

+ ν3±(ν ′′
1± − ν ′

3∓)

ν ′
1± + ν ′

3∓
+ ν1±(ν ′′

1± − ν ′
2∓)

ν ′
2∓ + ν ′

3±

]−1

, (57)

ν̃2± = ν ′′
2±(ν ′

3± + ν ′
3∓)

× ν ′
2±ν3±(ν ′

1∓ + ν ′
3±) + ν2±ν ′

3±(ν ′
2± + ν ′

3∓)

(2ν3∓ + ν ′
3± + ν ′

3∓)F1∓ + (ν ′
3± + ν ′

3∓)F2∓
, (58)

ν̃ ′
3± = 2ν3±ν ′

3±F1±
(2ν3± + ν ′

3± + ν ′
3∓)F1± + (ν ′

3± + ν ′
3∓)F2±

, (59)

where

F1± = (ν1± + ν ′′
2∓ + ν3±)(ν ′

1± + ν ′
3∓)(ν ′

2∓ + ν ′
3±)

− ν3±ν ′
3∓(ν ′

2∓ + ν ′
3±) − ν1±ν ′

2∓(ν ′
1± + ν ′

3∓), (60)

F2± = (ν ′
2∓ − ν ′

3∓)(ν3±ν3∓ − ν1±ν2∓)

+ (ν1± + ν ′′
2∓ + ν3±)[ν3∓(ν ′

1± + ν ′
3∓)

+ ν2∓(ν ′
2∓ + ν ′

3±)]

+ ν ′
2∓ν3∓(ν ′

1± + ν ′
3∓) + ν2∓ν ′

3∓(ν ′
2∓ + ν ′

3±). (61)

Using the found rates, we calculate the reversal time of
magnetization of a biatomic ferromagnetic chain under the
external magnetic field. Now the problem is reduced to the
estimation of the reversal time of magnetization of the single-
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atomic chain shown in Fig. 1. The transition rates are the
following:

ν0→1 = ν̃1+, ν1→2 = ν̃ ′
3+, νN−1→N = ν̃2+, (62)

ν2→3 = · · · = νN−2→N−1 = ν̃3+, (63)

ν1→0 = ν̃2−, νN−1→N−2 = ν̃ ′
3−, νN→N−1 = ν̃1−, (64)

ν2→1 = · · · = νN−2→N−3 = ν̃3−. (65)

According to Eq. (4) we find the transition probability matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − a′
+ 0 . . . 0 0 0

1 0 1 − b . . . 0 0 0
0 a′

+ 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 1 − b 0
0 0 0 . . . b 0 a′

−
0 0 0 . . . 0 b 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (66)

where a′
+ = ν̃ ′

3+/(ν̃2− + ν̃ ′
3+), a′

− = ν̃ ′
3−/(ν̃2+ + ν̃ ′

3−), and
b = ν̃3+/(ν̃3− + ν̃3+). After solving the system of Eqs. (5)
with Pinit

i = δ0i, we find the reversal time of the magnetization
by Eq. (6)

τ
strong
B (B)= 1

2(1−a′−)

{
a′

−
ν̃ ′

3−
+ (N−2)(1−a′

−)+(a′
−−α)SN−2

ν̃3+(1 − α)

+ SN−2 − (a′
− + αa′

+)SN−3 + αa′
+a′

−SN−4

ν̃1+a′+

+
(

1

ν̃ ′
3+

− 1

ν̃3+

)
(1 − α)[1 − (a′

− − α)SN−3]

}
,

(67)

where α = (1 − b)/b, SN = (1 − αN )/(1 − α). Equation (67)
is valid for biatomic chains of type A. It is necessary replace
N by N − 1 for chains of type B. Equation (67) has the same
structure as Eq. (A5) and tends to Eq. (29) in the limit of
B → 0.

Equation (67) can be used to study the magnetodynamic
properties of biatomic chains at the temperatures below Tmax.
If the magnetic field B is a function of time B = B(t ), then
the rates of remagnetization of biatomic chains ν↑→↓(t ) =
1/τ

strong
B [B(t )] and ν↓→↑(t ) = 1/τ

strong
B [−B(t )] are also func-

tions of time. The probability to find a biatomic chain in the
state where the magnetic moments of all of the atoms are
directed up can be found from the master equation

dP↑
dt

= P↓ν↓→↑ − P↑ν↑→↓, (68)

where P↑ + P↓ = 1 [62]. If the magnetization of a biatomic
chain is measured in arbitrary units M ∈ [−1, 1], then M =
P↑ − P↓. And we find from the master equation (68) the
following equation for the magnetization of a biatomic chain:

dM(t )

dt
= A(t )M(t ) + B(t ), (69)

where A = −ν↑→↓ − ν↓→↑ and B = ν↓→↑ − ν↑→↓. Equa-
tion (69) together with the initial condition M(0) = M0 is the
Cauchy problem, which can be easily solved numerically.

D. Numerical estimates

In order to demonstrate the applicability of our method,
let us consider the numerical estimates for two physical
systems. The first system is the antiferromagnetic Fe chains
on Cu2N/Cu(001) surface. According to the experimental
study [30], the exchange energies of Fe atoms are J = 1.3 ±
0.1 meV and J ′ = 0.03 ± 0.02 meV. In three-atomic chain
MAE varies from 2.1 ± 0.1 meV for the edge atoms to
3.6 ± 0.1 meV for the central atom [29]. For the numeri-
cal estimates the following parameters of the Hamiltonian
J = 1.3 meV, J ′ = 0.03 meV, K = 3 meV are chosen. Short
chains consisting of 2N = 20 atoms are considered. Note that
with this choice of parameters J/J ′ ≈ 43 and J/(NJ ′) ≈ 4.3.
Thus, a weak-coupling approximation should work well. The
critical temperature TC for a single-atomic chain is estimated
by the means of the kMC method [43]. We found that TC

decreases monotonically with increasing of the chain length
from 10 ± 1 K at N = 10 to 6 ± 1 K at N = 100. Obviously,
the critical temperature of a biatomic chain is higher than TC of
a single-atomic chain. The most of numerical estimations will
be performed at the temperature T = 4 K. The Fe biatomic
chains are definitely in the antiferromagnetic state at this
temperature. By varying the parameters of the Hamiltonian
(1), the applicability limits of the method will be found.

Figure 10 shows the dependencies of the reversal time of
magnetization in the cases of spontaneous remagnetization
τ and remagnetization under the interaction with the STM
tip τSTM. Solid and dashed lines correspond to a weak and
a strong approximation, respectively. The points show the
results of the kMC simulations [63]. The upper and the
lower plots correspond to the biatomic chains of types A
and B, respectively. The estimates of τweak and τweak

STM are
in excellent agreement with the results of the kMC simu-
lation at low exchange energies J ′ � J . A weak-coupling
approximation works well up to the value of J ′ ≈ J/N =
0.13 meV. A strong-coupling approximation works well at
J ′ ≈ J . Figure 10 shows that a strong-coupling approximation
remains valid as J ′ decreases down to the value of J/ ln N =
0.56 meV. Both of the approximations are not very accurate in
the intermediate range of J/N � J ′ � J/ ln N . However, the
function min [τweak

(STM), τ
strong
(STM)] can be used as the upper limit

of the reversal time of magnetization τ(STM). Note that the
reversal time of magnetization in the case of spontaneous
remagnetization is a monotonically increasing function of J ′
and it is slightly different for the chains of types A and B.
At the same time, the reversal time of magnetization τSTM

is a nonmonotonic function. The functions τSTM(J ′) differ
significantly from each other, especially at large J ′. In the
case of a biatomic chain of type B, the dependence τSTM(J ′)
has one local minimum. In the case of a biatomic chain of
type A, it has two local minima and one local maximum.
It is important to note that the function min [τweak

(STM), τ
strong
(STM)]

qualitatively describes the behavior of the function τ(STM)(J ′)
at all values of J ′ [64].

The dependence of the reversal times of the magnetization
τ and τSTM on the MAE in the range of K ∈ [1, 10] meV is
shown in Fig. 11. The upper plot corresponds to the case of a
weak coupling between the atomic chains J = 1.3 meV and
J ′ = 0.03 meV, and the lower plot corresponds to the case
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FIG. 10. Dependencies of the reversal time of magnetization on
the exchange energy J ′ ∈ [0.01, 1.5] meV. The other parameters of
the Heisenberg Hamiltonian are the following: J = 1.3 meV, K =
3 meV, T = 4 K, and 2N = 20. The reversal times of magnetization
averaged over 10 000 kMC simulations are shown with points. Solid
(dashed) lines correspond to the approximation of a weak (strong)
coupling between the chains.

of a strong coupling J = J ′ = 1.3 meV. These dependencies
have a very simple form ln τ(STM) ∼ K . The reversal times of
magnetization of biatomic chains of different types are similar
in the case of a weak coupling between atomic chains. But the
reversal times of magnetization τSTM differ by three orders of
magnitude in the case of a strong coupling between atomic
chains. As it can be seen from Fig. 11, the reversal times
of magnetization calculated by analytical formulas perfectly
agree with the results of the kMC simulations. Note that the
conditions of applicability of the single-domain approxima-
tion K (2N ) − 2(J + J ′) � kBT (for the chain of type A) and
K (2N ) − 2 max(J, J ′) � kBT (for the chain of type B) are
satisfied at K � 1 meV.

The dependencies of the reversal times of magnetization
τ and τSTM on the length of a biatomic chain N are shown
in Fig. 12. The total number of atoms in a biatomic chain is
2N . The upper and the lower plots correspond to the biatomic
chains of types A and B, respectively. The results obtained in
the framework of a weak-coupling approximation agree well
with the results of the kMC simulations at N < J/J ′ ≈ 43.
With a further increase of N , a weak-coupling approxima-

FIG. 11. Dependencies of the reversal time of magnetization on
the MAE K ∈ [1, 10] meV. The other parameters of the Heisenberg
Hamiltonian are the following: J = 1.3 meV, J ′ = 0.03 meV (upper
plot), J ′ = 1.3 meV (lower plot), T = 4 K, and 2N = 20. The rever-
sal times of magnetization averaged over 10 000 kMC simulations
are shown with points. Solid and dashed lines correspond to the
approximation of a weak (upper plot) and a strong (lower plot)
coupling between the chains.

tion leads to a high overestimation of the reversal times of
magnetization. Indeed, τweak

(STM) ∼ eN when N > J/J ′, while the
kMC simulations lead to a linear relationship τ(STM) ∼ N .
A strong-coupling approximation also does not work in this
range of the parameters because the condition J ′ ln N � J is
obviously not satisfied. However, τ

strong
(STM) ∼ N ∼ τ(STM). Thus,

the estimation τ
strong
(STM) can be used as the upper limit on the

value of τ(STM). For example, the estimate of τ
strong
STM is in a good

agreement with the results of the kMC simulations already at
N ≈ 100 in the case of a biatomic chain of type A.

Let us consider a hypothetical biatomic chain with a strong
coupling between atomic chains J = J ′ = 1.3 meV. The de-
pendencies of the reversal times of magnetization τ and τSTM

on the length of the chain N are presented in Fig. 13. The
dependencies τ(STM)(N ) are close to the linear [τ(STM) ∼ N]
for N ∼ 100. The times τ are almost the same for biatomic
chains of types A and B. At the same time, the values of
τSTM in the case of chains of type A are several orders lower
than those in the case of chains of type B. This is due to
the fact that the atom interacting with the STM tip is more
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FIG. 12. Dependencies of the reversal time of magnetization on
the number of atoms in each of the atomic chains N ∈ [5, 100]. The
total number of atoms in a biatomic chain is 2N . The other parame-
ters of the Heisenberg Hamiltonian are the following: J = 1.3 meV,
J ′ = 0.03 meV, K = 3 meV, and T = 4 K. The reversal times of
magnetization averaged over 10 000 kMC simulations are shown
with points. Solid (dashed) lines correspond to the approximation
of a weak (strong) coupling between chains.

strongly coupled with a chain in the case A than in the case
B. The reversal times of magnetization calculated in a strong-
coupling approximation are in excellent agreement with the
results of the kMC simulations.

Figure 14 shows temperature dependence of the reversal
times of magnetization τ and τSTM. The upper plot corre-
sponds to a biatomic chain with a weak coupling between
the atomic chains J/J ′ ≈ 43. The lower plot corresponds to
a hypothetical biatomic chain with a strong coupling J ′ = J .
We see that in the both cases the values of τ(STM) calculated by
analytical formulas are in excellent agreement with the results
of the kMC simulations. Here it is necessary to make two
important notes. First, let us discuss the value of the maximum
temperature Tmax till which a single-domain approximation
remains valid. The average time of formation of the domain
wall τ+ and the average time of random walk of the domain
wall τwalk can be estimated [52]. The temperature Tmax can be
found as a solution of the equation τ+ = τwalk. This equation
can be written in the form (A4). However, in the case of short
atomic chains N � 100 the simultaneous appearance of two or
more domain walls actually means transition to paramagnetic

FIG. 13. Dependencies of the reversal time of magnetization on
the number of atoms in each of the atomic chains N ∈ [5, 100].
The total number of atoms in the biatomic chain is 2N . The other
parameters of the Heisenberg Hamiltonian are the following: J =
J ′ = 1.3 meV, K = 3 meV, and T = 4 K. The reversal times of
the magnetization averaged over 10 000 kMC simulations are shown
with points. Solid and dashed lines correspond to the approximation
of a strong coupling between the chains.

phase. Thus, the proposed method for estimating of the rever-
sal time of magnetization of biatomic chains leads to adequate
results almost up to critical temperature Tmin ≈ TC . Second,
the calculation time needed for the kMC simulations grows
exponentially with the decrease of temperature. Therefore, the
calculation of the values of τSTM and τ at low temperatures by
the means of the kMC method is almost impossible. In this
case, the proposed method seems to be the only possible op-
portunity for estimating of the reversal time of magnetization.

The second system under the consideration is Co biatomic
chains on Pt (997) surface. According to Refs [11,19] the
exchange energies are J ≈ J ′ ≈ 7.5 meV, the MAE is K =
0.33 ± 0.04 meV for biatomic Co chain. The magnetic mo-
ment of Co atom μ is the sum of the spin magnetic moment
μS ≈ 2.08μB and the orbital magnetic moment μL ≈ 0.37μB,
where μB is the Bohr magneton. For the numerical estimates,
we choose the following parameters of the Hamiltonian: J =
J ′ = 7.5 meV, K = 0.34 meV, and μ = 2.4μB. In order to
prevent the simultaneous flipping of magnetic moments of the
atoms (the superparamagnetic regime) the following inequal-
ities must be satisfied: KN − 2J � kBT for a single-atomic
chain, K (2N ) − 2(J + J ′) � kBT for a biatomic chain of type
A, and K (2N ) − 2 max(J, J ′) � kBT for a biatomic chain of
type B. For single-atomic chains at the temperature range of
30–70 K, this condition is satisfied for chains longer than
70 atoms. Further, we consider biatomic chains consisting of
2N = 200 atoms, which are definitely ferromagnetic. We will
see later that the critical temperature of such biatomic chains
is approximately 70 K.

Equation (67) for the reversal time of magnetization of
a chain τ

strong
B under the external magnetic field will not

be discussed separately. Instead, we proceed to calculation
of magnetization curves M(B). We need to solve Eq. (69)
numerically. It is obvious that the obtained magnetization
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FIG. 14. Dependencies of the reversal time of magnetization on
temperature T ∈ [0, 10] K. The other parameters of the Heisenberg
Hamiltonian are the following: J = 1.3 meV, J ′ = 0.03 meV (upper
plot), J ′ = 1.3 meV (lower plot), K = 3 meV, and 2N = 20. The
reversal times of magnetization averaged over 10 000 kMC simula-
tions are shown with points. Solid and dashed lines correspond to
the approximation of a weak (upper plot) and strong a (lower plot)
coupling between chains.

curves will agree with the results of the kMC simulations only
if Eq. (67) gives a correct estimate of τB under any external
magnetic field B. Following Ref. [45] we start from a strong
field B0 = −5 T. The field strength increases by an increment
0.001 T gradually to 5 T. Then the field decreases back to B0,
so that a sweeping cycle is complete. We consider that the
magnitude of the sweeping rate of the external magnetic field
|dB/dt | is 130 T/s. The results of the kMC simulations are
averaged over 1000 cycles.

Figure 15 shows the magnetization curves of biatomic Co
chain of type A at three different temperatures: 40 K, 60 K,
and 80 K. If temperature increases from 40 K to 60 K, then
the coercive field BC of the chain drops almost to zero, but
the chain remains ferromagnetic. It is clearly seen from the
almost constant slope of the hysteresis loop obtained by the
means of the kMC method. If the temperature increases to
80 K, then the angle of the slope decreases significantly, which
corresponds to the transition of the chain to paramagnetic
state. Thus, we can roughly estimate the critical tempera-
ture of a biatomic chain as TC = 70 ± 10 K [65]. The solid

FIG. 15. Magnetization response to the external magnetic field
for a biatomic chain of type A consisting of 2N = 200 atoms at
three temperatures: 40 K, 60 K, and 80 K. The parameters of the
Heisenberg Hamiltonian are the following: J = J ′ = 7.5 meV, K =
0.34 meV, and μ = 2.4μB. Magnetization curves averaged over 1000
cycles of the kMC simulations are shown with points. Solid lines
correspond to the solutions of Eq. (69).

curves in Figure 15 show the magnetization curves obtained
by solving Eq. (69). We see that the agreement with the
results of the kMC simulations is very good at 40 K. But the
magnetization curve is slightly different from the results of
the kMC simulations at 60 K. In our opinion, such agreement
is quite satisfactory. The magnetization curves obtained in
the single-domain approximation become more narrow, but
do not change their slope with increasing temperature. A
single-domain approximation gives inadequate results if the
temperature approaches to the critical one.

Figure 16 shows the temperature dependence of the coer-
cive field of a biatomic chain at T � TC . The coercive field
of biatomic chains of types A and B slightly differ from each
other (the difference is less than 10%) because the chains are
quite long (2N = 200). A single-domain approximation leads
to the overestimation of the coercive fields: less than 5% at
the temperatures of T � 40 K, 16% at 50 K, 76% at 60 K,
more than twice at T � 65 K. If the agreement within 20%
is considered to be satisfactory, then we can conclude that a
single-domain approximation agrees well with the results of
the kMC simulations at T < Tmax ≈ 0.7TC . This conclusion is
in good agreement with the estimation of Tmax obtained using
Eq. (A4) [52].

Let us discuss the applicability limits of a strong-coupling
approximation. Figure 17 shows the dependence of the co-
ercive field on the exchange energy J ′. The condition of
applicability of a strong-coupling approximation remains the
same as in the case of B = 0 (J ′ � J/ ln N) because μB|B0| =
0.29 meV and μB|B0| � J, J ′. We see that the coercive field
obtained in the framework of a strong-coupling approximation
differs from the results of the kMC simulations by less than
5% at J ′ � 4.5 meV ≈ 2.5J ′/ ln N . If J ′ = 2 meV ≈ J ′/ ln N ,
then the results differ by about 20%. Thus, we can conclude
that a strong-coupling approximation can be used to obtain
qualitative results at J ′ � J/ ln N , as well as in the absence of
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FIG. 16. Temperature dependence of the coercive field BC for bi-
atomic chains of 2N = 200 atoms. The parameters of the Heisenberg
Hamiltonian are the following: J = J ′ = 7.5 meV, K = 0.34 meV,
μ = 2.4μB. Results of the kMC simulations averaged over 1000
cycles are shown with points. Solid and dashed lines correspond to
the solutions of Eq. (69) for the chains of types A and B, respectively.

an external magnetic field. Note that the estimation obtained
in a strong-coupling approximation is the upper limit of the
value of the coercive field at any J ′.

The MAE of Co atoms on Pt(997) surface varies from
0.13 meV/atom for a monolayer to 2.0 meV for a single
adatom [11]. We found that the coercive field of the biatomic
chain remains almost constant (1.14 T and 1.11 T for the
chains of types A and B, respectively) if the MAE varies
in this range. These results are in a good agreement with
the kMC simulations. Finally, the size effect in the range
of N ∈ [60, 200] atoms was investigated. We found that the
coercive field increases by about 2% with an increase in the

FIG. 17. Dependencies of the coercive field BC on the exchange
energy J ′ ∈ [1, 10] meV. The other parameters of the Heisenberg
Hamiltonian are the following: J = 7.5 meV, K = 0.34 meV, μ =
2.4μB, and 2N = 200. Results of the kMC simulations averaged over
1000 cycles are shown with points. Solid and dashed lines correspond
to the solutions of Eq. (69) for chains of types A and B, respectively.

length of a biatomic chain in this range. These results are also
in a good agreement with the results of the kMC simulations.

IV. CONCLUSION

We have considered the remagnetization of the biatomic
chains in the framework of the Heisenberg model with uni-
axial magnetic anisotropy and a single domain-wall approx-
imation. In a general case a calculation of the reversal time
of magnetization of biatomic chains is quite a difficult task.
Therefore, we considered two limiting cases: a weak and a
strong coupling between atomic chains. In the both cases,
the problem of remagnetization of biatomic chains is reduced
to the problem of remagnetization of single-atomic chains.
Equations for estimation the reversal times of magnetization
of biatomic chains in three different cases have been derived:
(i) the spontaneous remagnetization, (ii) the remagnetization
under the interaction with the STM tip, and (iii) the remag-
netization under the external magnetic field parallel to the
easy axis of magnetization. The first two cases relate to both
ferromagnetic and antiferromagnetic chains. The third case
relates to ferromagnetic chains. For these chains, we also
developed a method for calculation of magnetization curves
and the coercive field.

Let us summarize the applicability limits of the method.
The thickness of the domain wall can be neglected if
J/2KN2 � 1. A single domain-wall approximation is valid
in a wide range of temperatures from the very low quan-
tum tunneling temperature TQT to the maximal temperature
Tmax < TC . The numerical estimations show that in practically
important cases the maximal temperature Tmax is higher than
0.7TC . In order to eliminate the superparamagnetic regime, the
following conditions must be satisfied: K (2N ) − 2(J + J ′) �
kBT for chains of type A and K (2N ) − 2 max(J, J ′) � kBT
for chains of type B. The approximation of a weak coupling
between atomic chains is valid if J ′N � J , and a strong-
coupling approximation is valid if J ′ ln N � J . In the middle
range J ′ ln N � J � J ′N , both approximations do not give
quantitative agreement with the results of the kMC simulation.
However, the function min [τweak

(STM), τ
strong
(STM)] can be used in this

range both to estimate the upper value of τ(STM) and for a
qualitative explanation of the behavior of the τ(STM)(J ′) and
τ(STM)(N ) dependencies.

It is necessary to underline that the presented analytical
method is incomparably less time-consuming than the usual
kMC simulations, especially in the cases of low temperatures
or long chains. Therefore, the proposed method can be a
useful tool for analyzing of magnetic properties of a wide
class of biatomic chains.
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APPENDIX A: REMAGNETIZATION OF
SINGLE-ATOMIC CHAINS

Here we summarize the main results of the previous inves-
tigations [52,53]. We use the same notations of the rates as in
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the Sec. III. Note that these notations differ from the original
ones. If B = 0, then the reversal time of magnetization of
ferromagnetic or antiferromagnetic single-atomic chain can
be obtained as (see also Fig. 1)

τ = 1

2a

{
a

ν ′′
3

(
N − 1

2

)[
N − 2(1 − 2a)

1 − a

]

+ 1

ν ′′
1

[N (1 − a) − 2(1 − 2a)]

}
, (A1)

where a = ν ′′
3 /(ν ′′

2 + ν ′′
3 ).

If the first atom of the chain interacts with the STM tip,
then the reversal time of magnetization is equal to

τSTM = 1

ν ′′
3

(
N − 1

2

)[
N − 2(1 − 2a)

1 − a

]
. (A2)

The values of τ and τSTM are related as follows:

τ = 1

2

{
τSTM + 1

aν ′′
1

[N (1 − a) − 2(1 − 2a)]

}
. (A3)

The obtained equation is applicable under the conditions: (i)
KN − 2J � kBT and (ii) T < Tmax, where temperature Tmax

can be found from the equation

(ν ′′
1 + ν ′′

2 + ν ′′
3 )(ν ′′

2 + ν ′′
3 )

ν ′′
1 ν ′′

2

=
(

N

2
− 1

)2

. (A4)

If B �= 0, then the reversal time of magnetization of ferro-
magnetic chain (J > 0) is equal to

τB(B) = 1

2(1 − a−)

×
[

a−
ν ′′

3−
+ (N − 2)(1 − a−) + (a− − α)SN−2

ν ′′
3+(1 − α)

+ SN−2 − (a− + αa+)SN−3 + αa+a−SN−4

ν ′′
1+a+

]
, (A5)

where α = (1 − b)/b, SN = (1 − αN )/(1 − α), a+ =
ν ′′

3+/(ν ′′
2− + ν ′′

3+), a− = ν ′′
3−/(ν ′′

2+ + ν ′′
3−), and b =

ν ′′
3+/(ν ′′

3− + ν ′′
3+).

If the MAE K ′ and the exchange energy J ′ of the edge
atoms are different from K and J of all other atoms, then

τ ′
STM =

[
N − 5

2ν ′′
3

+ b

1 − b

(
1

ν ′
1

+ 1

ν2

)][
N − 2c

1 − a′

]
, (A6)

τ ′ = 1

2

{
τ ′

STM + 1

a′ν3

b

1 − b
[N (1 − a′) − 2c]

}
, (A7)

where a′ = ν ′
1/(ν ′

3 + ν ′
1), b = ν2/(ν2 + ν ′′

3 ), c = 3 − 1
b − 2a′.

APPENDIX B: ESTIMATION OF THE THICKNESS OF
A DOMAIN WALL

Let the atoms placed along the x axis, z axis is the easy axis
of magnetization, and θi = θ (xi ) is the angle between si and
the z axis. Then the components of si are (si )x = 0, (si)y =
si sin θi, (si )z = si cos θi. For simplicity we consider the case
of B = 0. Then the magnetic energy of infinite single-atomic
chain is the following:

E = −
∑
i> j

Ji j cos(θi − θ j ) − K
∑

i

cos2 θi. (B1)

To get a rough estimation of the thickness of the domain
wall, the index i should be replaced with a dimensionless
variable x̃ = xi/a, where a is the nearest-neighbor distance.
Then θi+1 ≈ θi + [dθ (x̃)/dx̃]. And we can present the energy
(B2) in the following form:

E [θ ] ≈ E0 +
∫ ∞

−∞

[
J

2

(
dθ

dx̃

)2

+ K sin2 θ

]
dx̃, (B2)

where E0 = const. Varying this functional we get the follow-
ing equation:

J

(
d2θ

dx̃2

)
− 2K sin θ cos θ = 0. (B3)

The solution of this equation with boundary conditions
θ (−∞) = π , θ (∞) = 0, (dθ/dx̃)(±∞) = 0 is well known
[67],

θ = arccos

[
tanh

(√
2K

J
x̃

)]
. (B4)

So the thickness of the domain wall is δN ∼ √
J/2K

atoms.
The thickness of the domain wall can be neglected if

δN � N . This inequality can be written as J/2KN2 � 1. Let
us check this inequality for the physical systems discussed in
Sec. III D. The first system is antiferromagnetic Fe chains on
Cu2N/Cu(001) surface. The parameters of the Hamiltonian
are J = 1.3 meV, K = 3 meV, and N = 10. Thus, J/2KN2 ≈
0.002 � 1. The second system is ferromagnetic Co chains
on Pt (997) surface. The parameters of the Hamiltonian are
J = 7.5 meV, K = 0.34 meV, and N = 100. Thus, J/2KN2 ≈
0.001 � 1. We see that in both cases the thickness of the
domain wall can be neglected.
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