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We consider the insulating spin-orbit coupled Bose atoms confined within one-dimensional optical lattices and
explore their ground-state magnetic phase transitions. Under strong interactions, the charge degrees of atoms are
frozen and the system can be described by an anisotropic XXZ Heisenberg chain with Dzyaloshinskii-Moriya
interaction and transverse field. We apply the matrix product state method to obtain the ground states, and analyze
spiral correlation functions, spin-spin correlation functions, and first energy gap. Under weakly transverse fields,
the ground state is a ferromagnetic phase if the interspin s-wave interaction strength is stronger than that of the
intraspin ones, otherwise, it is a paramagnetic phase, an antiferromagnetic phase, or a gapless spiral phase with
algebraic decaying spin correlations. When the transverse field is strengthened, the gapless spiral phase is broken
and a new spiral phase with long-range spin-spin correlations emerges.
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I. INTRODUCTION

Ultracold spinor atoms in an optical lattice provide an
excellent platform for simulating magnetic phase transitions
in quantum Heisenberg models. In the Mott regime, the
fluctuation of charge degree of spinor atoms is suppressed.
The low-energy physics can be captured by an effective spin
superexchange model [1–3], where the spin-spin coupling
can be tuned via spin-dependent s-wave scattering and lattice
depth. In recent years, there was a lot of interest in creating
synthetic gauge fields and spin-orbital coupling (SOC) [4–7].
In optical lattice systems, SOC is engineered via dressing
an optical lattice with periodic Raman potentials [8–10], or
synthesizing a ladderlike system subject to gauge fields by
Raman-assisted tunneling [11–14] and optical clock transition
[15–17]. In the ladderlike system, the ladder legs are labeled
by either the internal spin states or the real-space lattices,
which can be mapped to effective spin [18]. In these setups,
the SOC induces either nearest-neighbor or on-site spin-flip.

In addition to the realistic atom-atom interaction, the
SOC plays a key role in magnetic phase transitions. It
may modify the anisotropic couplings and lead to the so-
called Dzyaloshinskii-Moriya (DM) exchange interaction
[19,20], which induces exotic magnetic phases. In two-
dimensional (2D) systems, the coexistence of DM interaction
and anisotropic couplings gives rise to spiral phases, vortex
crystal structure, and novel Skymion, apart from the normal
ferromagnetic and antiferromagnetic phases [21–25]. Classi-
cal phase diagrams have been obtained by Monte Carlo sim-
ulations [22,24], steepest descent minimization method [23],
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and variational mean-field approach [25]. In one-dimensional
(1D) systems, the effective model reduces into an anisotropic
Heisenberg chain with a one-component DM interaction. The
novel phase structures in 2D systems are simplified to a
gapless spiral phase on the plane perpendicular to the DM
vector, which belongs to the gapless Luttinger liquid (LL)
phase [26–28]. The various phases and phase diagrams in 1D
systems are widely studied using density matrix renormaliza-
tion group method [26–30].

Most previous works concentrated on nearest-neighbor
spin-flip induced by SOC, where the effective models do
not contain any external fields, in particular, on-site spin-flip
fields. An XXZ model with DM interaction and transverse
field has been realized in a 1D fermionic ladderlike optical lat-
tice with synthetic magnetic flux [31]. The external field pro-
vides a new flexible freedom to tune the phase diagram. How-
ever, owing to the absence of asymmetric s-wave scattering,
this model can be mapped to an isotropic antiferromagnetic
XXX spin chain in a spiral field, thus there are only two phases
in this model: a gapless LL phase and a fully polarized phase.
One can alternately load spinor (two-component) bosons into
such a lattice, where the spin-dependent s-wave scattering
can cause anisotropic spin-spin couplings. Furthermore, since
both fermionic [13,15–17] and bosonic [12] ladders subject
to gauge field have been realized in experiments, there is no
reason to leave the bosonic case unexplored.

In this article we study the quantum magnetic phase tran-
sitions of insulating spin-orbit coupled bosons in a 1D optical
lattice. Utilizing the SOC-dressed Hubbard model realized in
a recent experiment [12], we derive an effective spin model in
the strong repulsive interaction limit: an XXZ model with DM
interaction subject to external transverse field. The strength of
the anisotropy, DM interaction, and transverse field of the spin
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model can be tuned by the parameters of the optical lattice
and the SOC strength. By employing the variational matrix
product state (MPS) approach [32–34], we obtain the ground
states (GSs) and the energy gap between the GS and the first
excited state. Then, by calculating the spiral and spin-spin
correlation functions for the GS and the first energy gap, we
identify four different phases with ferromagnetic, paramag-
netic, antiferromagnetic, and spiral long-range correlations,
and give rich phase diagrams in different parameter regions. In
particular, in the weak transverse field limit, the spiral phase is
a LL with algebraically decaying spin-spin correlations. The
strengthened transverse field induces a new spiral phase with
long-range spin-spin correlations.

The article structure is as follows. In this section we intro-
duce the related background and our motivation. In Sec. II we
derive the effective Hamiltonian for our physical system. In
Sec. III we apply the MPS method to study the GS properties
and present the corresponding phase diagrams. In the last
section we summarize and discuss our results.

II. STRONGLY INTERACTING SPIN-ORBIT COUPLED
BOSE ATOMS IN 1D OPTICAL LATTICES

Recent experiments have realized spin-orbit coupled
bosons in a 1D optical lattice by coupling the three internal
states (pseudospins) with Raman-assisted transition [12]. It is
a virtual three-leg ladder pierced by magnetic flux φ, where
the internal states of the bosons provide the extra dimension.
It can be reduced to a two-leg ladder if the second-order
Zeeman shift is large enough that the upper internal level can
be removed [35]. Moreover, such a bosonic ladder may also
be realized by coupling metastable states of Bose atoms by
an optical clock transition, which has been utilized to realize
a fermionic ladder in a gauge field [15–17]. Here we choose
the Landau gauge, where the phase is accumulated by intraleg
hopping and a net flux of φ is created through each plaquette.
The single-particle Hamiltonian of this system is written as

Ĥt = − t
∑

j

(
ei φ

2 â†
j,↑â j+1,↑ + e−i φ

2 â†
j,↓â j+1,↓ + H.c.

)

− �

2

∑
j

(â†
j,↑â j,↓ + H.c.), (1)

where â†
j,σ (σ =↑,↓) creates a particle of internal state

(pseudospin) σ at site j. The first term is the spin-conserved
nearest-neighbor hopping with strength te±i φ

2 , where t can be
tuned by the depth of the optical lattice, and the magnetic flux
φ is related to the SOC momentum kSOC by φ = kSOCπ/kL,
where kL is the lattice momentum. The SOC momentum kSOC

is the momentum transfer of the Raman lasers and can be
tuned by choosing different wavelength and/or changing the
relative angle of them [11,12]. The second term describes the
on-site spin-flip with strength �

2 , with � being the Rabi fre-
quency of the Raman lasers. Multiple particles in this optical
lattice are described by the Hamiltonian Ĥ = Ĥt + ĤU , with
the interaction term

ĤU = 1

2

∑
j,σ

Uσσ n̂ jσ (n̂ jσ − 1) + U↑↓
∑

j

n̂ j↑n̂ j↓, (2)

where n̂ jσ = â†
jσ â jσ is the particle number operator. The on-

site interspin and intraspin interaction strengths are denoted as
U↑↓ and Uσσ , respectively, which can be tuned by Feshbach
resonance. In the following, we set repulsive interaction as
U↑↑ = U↓↓ = U > 0 and U↑↓ = λU > 0.

We are interested in the magnetic properties in the deep
Mott insulator regime at half-filling with strong interaction
U,U↑↓ � t,�. We employ the perturbation theory for the de-
generate quantum system to obtain the effective Hamiltonian
[36]. We treat the tunneling Hamiltonian Ĥt as a perturbation
to the on-site interaction ĤU . The GS of ĤU is a Mott
insulator with exactly one particle per site. It is many-fold
degenerate since the spin on every site is arbitrary. Ĥt cou-
ples the manifold ground states of ĤU via virtual processes.
Defining the spin operators S j = 1

2 â†
jασαβ â jβ , where σ are the

Pauli matrices, the effective Hamiltonian up to second order
reads as

Ĥeff = J
∑

j

[
cos φ

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

) + JzŜ
z
jS

z
j+1

+ D · (S j × S j+1)
] − �

∑
j

Ŝx
j , (3)

where J = − 4t2

λU , Jz = 2λ − 1, and the DM vector D =
(0, 0, sin φ) (see Appendix A for details of the derivation).
The effective Hamiltonian is an anisotropic XXZ Heisen-
berg model with DM interaction and transverse field. The
Heisenberg coupling and DM interaction proportional to J
are induced by flux dependent nearest-neighbor hopping; The
transverse field proportional to � is induced by the on-site
spin-flip.

In the following, we study the ground states of Hamilto-
nian (3). We restrict our discussion in the regime φ ∈ [0, π ],
since it is accessible in the experiments, and Eq. (3) satisfies
	̂Ĥeff (φ, λ,�)	̂† = Ĥeff (−φ, λ,�), with 	̂ = ∏

j 2Ŝx
j in the

theoretical perspective. Besides, we scale the energy by 4t2

U

and define �′ = �/ 4t2

U .

III. MAGNETIC PHASE TRANSITIONS

The Hamiltonian (3) for arbitrary parameters (φ, λ,�′)
cannot be analytically solved. We apply the MPS method to
determine the GS under open boundary condition [32–34],
calculate the expectation value of observables and the first
energy gap, and then give the corresponding phase diagrams.
We show results for a chain with length L = 195, unless
otherwise specified. The details of our calculation procedure
can be found in Appendix B.

For a given GS |ψ0〉, one can calculate the spiral correlation
functions

Cα
j,l = 〈ψ0|[S j × S j+1]α[Sl × Sl+1]α|ψ0〉, (4)

and spin-spin correlation functions

Sα
j,l = 〈ψ0|Ŝα

j Ŝα
l |ψ0〉, (5)
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FIG. 1. (a) The long-range correlations versus λ for �′ = 10−3 and different values of φ. Mx and Mz are plotted for φ = 0 (solid blue line
marked by squares and black line by dots, respectively); Cz is plotted for φ = π/2 (dashed green line marked by circles); and Ny is plotted
for φ = π (dotted red line marked by pluses). (b) Finite-size scaling of the first energy gap � for the z-FM phase (dashed line with dots) at
(φ, λ,�′) = (0, 1.25, 10−3) and the x-PM phase (solid line with squares) at (φ, λ, �′) = (0, 0.75, 10−3). The dots and squares are calculated
with system size L = 45, 75, 105, 135, 165, 195, and 295. The solid and dashed lines are the fittings. (c) The spin-spin correlation function Sy

jl

(red pluses) versus | j − l| for the LL-SP phase, at the parameter point (φ, λ,�′) = (0.5π, 0.75, 10−3). The envelop of Sy
jl is well fitted by the

function ALL(| j − l|) = 0.33/| j − l|0.56 (black line). Inset in (c): The spin structure factor Qy(k) versus k.

where α = x, y, and z. The structure factors associated with
Sα

jl read as

Qα (k) = 1

L

∑
jl

eik( j−l )Sα
j,l , (6)

where L is the system size, and k is the momentum. In order
to distinguish different phases, we introduce the long-range
spiral correlations

Cα = 1

d + 1

r0+d∑
r=r0

〈
Cα

j, j+r

〉
j, (7)

the long-range ferromagnetic correlations

Mα = 1

d + 1

r0+d∑
r=r0

〈
Sα

j, j+r

〉
j, (8)

the long-range Néel correlations

Nα = 1

d + 1

r0+d∑
r=r0

(−1)r
〈
Sα

j, j+r

〉
j
, (9)

where 〈·〉 j means averaging over j, and r0 is chosen as a large
distance (in particular, we take r0 = 100 and d = 49), and the
first energy gap

� = E1 − E0, (10)

where E1 and E0 are the energy of the first excited state
and the GS, respectively. Therefore, one can divide the GS
into four different phases: (I) the α-FM phase with nonzero
Mα and closed first energy gap; (II) the α-PM phase with
nonzero Mα and finite first energy gap; (III) the α-AFM
phase with nonzero Nα; and the spiral phase with nonzero
Cα . Interestingly, we find that there are two kinds of spiral
phases in our system: (IV) the LL-SP phase with algebraically
decaying spin-spin correlation functions, and (V) the xy-SP
phase with finite long-range spin-spin correlations.

Under weak external fields (�′ 	 1), when λ > 1, the GS
will be a z-FM phase in (I); when λ < 1, the GS will be a
x-PM phase in (II) for φ ≈ 0, a y-AFM phase in (III) for
φ ≈ π , and a LL-SP phase in (IV) otherwise. In Fig. 1(a)
we plot Mx and Mz (for φ = 0), Cz and Mz (for φ = 0.5π ),

and Ny and Mz (for φ = π ), as functions of λ. We note that
the curves for Mz at φ = 0.5π and π overlap with that at
φ = 0, so we do not show them further. We observe all the
related long-range correlations abruptly change at the critical
point λ = 1. The ferromagnetic phase and the paramagnetic
phase are distinguished by the first energy gap �, which
vanishes for the ferromagnetic phase and retains finite for the
paramagnetic phase in the thermodynamic limit, see Fig. 1(b).
By extrapolating � to infinite system size, � = 0 for the
z-FM phase at parameter point (φ, λ,�′) = (0, 1.25, 10−3)
and � = 0.024 − 0.103/L − 11.7/L2 for the x-PM phase at
parameter point (φ, λ,�′) = (0, 0.75, 10−3).

The phase transitions under weak external fields can be
intuitively interpreted via transforming the Hamiltonian (3) to
an XXZ Heisenberg model in a spiral field,

Ĥ ′
eff = −1

λ

∑
j

[
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + (2λ − 1)Ŝz

j Ŝ
z
j+1

]

−�′ ∑
j

[
cos(φ j)Ŝx

j − sin(φ j)Ŝy
j

]
, (11)

which relates to Ĥeff through the unitary transformation Ĥ ′
eff =

Û ĤeffÛ † with Û = ∏
j eiφ jŜz

j . When �′ = 0, it is a standard
ferromagnetic XXZ model, whose GS has been solved exactly
by the Bethe ansatz [37]. As a result, when λ > 1, the GS
is in the z-FM phase. When λ < 1, it is in the gapless LL,
with algebraically decaying spin-spin correlation functions.
Regarding the original Hamiltonian, the flux φ makes the
phases more complicated. When λ > 1, the ground state is
in the z-FM phase regardless of any φ. When λ < 1, the
gapless LL phase transforms to a gapless ferromagnet on
the x̂ŷ plane for φ = 0, a gapless antiferromagnet on the x̂ŷ
plane for φ = π , and a gapless spiral phase for 0 < φ < π .
If the external field is slightly turned on, the gapless ferro-
magnet will be polarized in the x̂ direction, and the GS is
in the gapped x-PM phase; the gapless antiferromagnet will
favor long-range antiferromagnetic order along the ŷ direction
[38], and the GS is in the twofold degenerate y-AFM phase;
however, the gapless spiral phase is not explicitly influenced
by the weak external field, still featuring the nature of the LL
phase. We calculate the spin-spin correlation functions for the
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LL-SP phase, and find that, as expected, Sx
jl and Sy

jl show the
same particular behavior. That is, they oscillate as functions
of | j − l| at a period of nearly 2π/φ sites, and the envelopes
decay algebraically. This behavior is well fitted by

f LL(| j − l|) = ALL(| j − l|) cos(2π | j − l|/φ), (12)

where the envelope satisfies

ALL(| j − l|) = a/| j − l|p. (13)

The fitting parameters a and p are dependent on φ, λ, and �′.
In Fig. 1(c) we plot Sy

jl and the structure factor Qy(k) for the
LL-SP phase at a representative parameter point (φ, λ,�′) =
(0.5π, 0.75, 10−3). The structure factor Qy(k) shows a clear
peak at k = 0.5π , corresponding to an oscillation period
of four sites. The envelope is well fitted by ALL(| j − l|) =
0.33/| j − l|0.56. We note that this LL-SP phase is also found
in the SOC-induced nearest-neighbor spin-flip model and
fermionic ladder in gauge field [26–28].

In the following we systematically analyze how the GSs
depend on the parameters and give their corresponding phase
diagrams. As the system has three independent parameters
(φ, λ,�′), we will concentrate on discussing the phase dia-
grams in the (λ,�′) plane for different values of φ.

A. φ = 0 or π

We first set the flux to be zero or maximum, i.e., φ =
0 or φ = π . In these two limits, the DM interaction is
absent, and only the anisotropic Heisenberg coupling and
the external field exist. The Hamiltonian is reduced to a(n)
(anti)ferromagnetic XXZ model in transverse field,

Ĥeff = ∓1

λ

∑
j

[
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 ± (2λ − 1)Ŝz

jS
z
j+1

]

−�′ ∑
j

Ŝx
j , (14)

where ferromagnetic coupling corresponds to φ = 0 and an-
tiferromagnetic coupling corresponds to φ = π . The phase
diagrams of these two models are presented in Figs. 2(a) and
2(b), respectively. We see that due to the absence of DM
interaction, the spiral phase is absent, and only (I) the z-FM
phase, (II) the x-PM phase, and (III) the y-AFM phase appear.
In the following we simply explain the phase transitions
between the different phases.

We first consider the ferromagnetic case, i.e., φ = 0. When
λ > 1, the coupling in the ẑ direction dominates over that on
the x̂ŷ plane. The GS is mainly determined by the competition
between the coupling in the ẑ direction and the transverse
field. There is an Ising phase transition as �′ increases [39]:
when �′ is smaller than a threshold �′

c, the GS exhibits
long-range ferromagnetic correlation along the ẑ direction,
so is in the z-FM phase; when �′ increases beyond �′

c, the
z-ferromagnetic correlation vanish completely and the spins
are polarized in the x̂ direction, thus the GS is in the x-PM
phase. The phase boundary between the z-FM and the x-PM
phase is determined by Mz, which is nonzero in the z-FM
phase and zero in the x-PM phase. In the inset of Fig. 2(a) we
plot the long-range correlations Mz and Mx as functions of �′
at (φ, λ) = (0, 1.25). We observe a phase transition point at

FIG. 2. The GS phase diagrams for (a) φ = 0 and (b) φ = π .
There are three typical phases with long-range correlations: (I) the
z-FM phase, (II) the x-PM phase, and (III) the y-AFM phase. The
solid red line in (b) corresponds to a gapless antiferromagnet. The
solid blue lines are the phase boundaries. Insets: The long-range
correlations as functions of �′, along (a) λ = 1.25 and (b) λ = 0.75,
respectively.

�′
c ≈ 0.25, where Mz drops to zero suddenly as �′ increases.

In fact, the z-FM–x-PM phase transition is not unique for
φ = 0, but also applies for an arbitrary value of φ when λ > 1.
To avoid repetition we will not refer to it in the following
discussions until Sec. III C, where the dependence of this
transition on φ will be discussed. When λ < 1, nonzero �′
breaks the degeneracy of the ferromagnet and polarizes the GS
along the x̂ direction immediately, as discussed in the weak
external field limit. Thus the GS is always in the x-PM phase.
We summarize the above analysis in the phase diagram for
φ = 0, see Fig. 2(a).

We then consider the antiferromagnetic case, i.e., φ = π .
When λ = 1, via rotating every second spin around the ẑ axis
by an angle π , the Hamiltonian can be transformed into an
isotropic ferromagnetic Heisenberg chain in staggered field,
that is Ĥ ′

eff = −∑
j
�S j · �S j+1 − �′ ∑

j (−1) j Ŝx
j . The GS re-

mains a gapless LL phase up to some critical point �′
c, beyond

which it is a fully polarized antiferromagnetic phase [40,41].
They respectively translate to a gapless antiferromagnet and
the x-PM phase for our original model. When λ < 1, the GS is
in the twofold degenerate y-AFM phase under weak external
fields. In the large external field limit the GS will be in the
x-PM phase. There is a finite critical point separating the
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y-AFM phase and the x-PM phase. We determine the critical
point between the y-AFM and the x-PM phase by the behavior
of Ny, which is nonzero in the y-AFM phase and zero in the
x-PM phase. In the inset of Fig. 2(b) we plot Ny and Mx

as functions of �′ at (φ, λ) = (π, 0.75). We observe that a
clear phase transition occurs at �′

c ≈ 1.5, between the y-AFM
phase and the x-PM phase. Our numerical phase diagram for
φ = π is shown in Fig. 2(b), which is consistent with the
result obtained by mean-field approach if taking care of the
definition of parameters [41,42].

B. φ = π/2

We then set the flux as φ = π/2, at which the anisotropy
is absent, and the DM interaction and external field are
preserved. The Hamiltonian is reduced to

Ĥeff = −1

λ

∑
j

[
(2λ − 1)Ŝz

j Ŝ
z
j+1 + (

Ŝx
j Ŝ

y
j+1 − Ŝy

j Ŝ
x
j+1

)]

−�′ ∑
j

Ŝx
j . (15)

The phase diagram for φ = π/2 is shown in Fig. 3, in
which (III) the y-AFM phase is absent, and the two kinds
of spiral phases, (IV) the LL-SP phase and (V) the xy-SP
phase, emerge. The phase transition between the xy-SP phase
and the x-PM phase is characterized by the long-range spiral
correlation Cz, which is finite in the xy-SP phase and zero in
the x-PM phase. To show this phase transition, we plot Cz and
Mx as functions of �′ along λ = 0.75 in the inset of Fig. 3. We
see that a clear phase transition occurs at �′

c ≈ 0.85, at which
Cz starts to vanish as �′ increases.

We expect the external field to break the LL-SP phase in
the vicinity of �′ = 0, and lead the GS to the xy-SP phase,
which is still of spiral correlation, but with finite spin-spin

FIG. 3. The GS phase diagrams for φ = π/2. There are four
different phases: (I) the z-FM phase, (II) the x-PM phase, (IV) the
LL-SP phase, and (V) the xy-SP phase. The solid blue lines are the
phase boundaries, and the dashed blue line separates the LL-SP phase
and the xy-SP phase. The red triangle at (λ, �′) = (0.75, 10−3), and
the red crosses at (0.75, 0.05) and (0.75, 0.5) denote the parameter
values at which we present the spin-spin correlation functions and
structure factors in Figs. 1(c) and 4, respectively. Inset: The long-
range correlations as functions of �′ along λ = 0.75.

correlations in the long range. We can gain some insights from
the analogous case at φ = 0 (π ), where a nonzero external
field lifts the degeneracy of the gapless ferromagnets (anti-
ferromagnets) and induces long-range paramagnetic (antifer-
romagnetic) spin-spin correlations, as discussed in the weak
external fields limit. We anticipate that this scenario applies
to other values of φ, and the external field also induces long-
range spin-spin correlations. Indeed, the spin-spin correlations
in the xy-SP phase do not vanish in the long range. In Fig. 4
we plot Sx

jl and Sy
jl versus | j − l| at relative small and large

values of �′. When �′ is weak, Sx
jl and Sy

jl exhibit nearly
the same behavior as functions of | j − l|. The correlations
on the even distance oscillate at a period of four sites, with
approximately logarithmic decaying envelopes; however, for
the odd distance, the envelopes increase in an approximately
linear way. This behavior is well described by the function

f SP
c (| j − l|) = ASP

e (| j − l|) cos(0.5π | j − l|)
+ ASP

o (| j − l|) sin(0.5π | j − l|), (16)

in which the envelopes ASP
e and ASP

o satisfy

ASP
e(o)(| j − l|) = ae(o) ln | j − l| + be(o)| j − l| + ce(o), (17)

where the fitting parameters ae and be are both negative, and
ao and bo are positive, implying that the spin-spin correlations
do not vanish in the long range. In Fig. 4(a) we plot Sy

jl and the
structure factor Qy(k) for the xy-SP phase at a representative
parameter point (λ,�′) = (0.75, 0.05). The structure factor
has a clear peak at k = 0.5π , indicating an oscillation period
of four sites. The envelope for the even distance is well fit-
ted by ASP

e (| j − l|) = −0.0163 ln | j − l| − 2.47 × 10−5| j −
l| + 0.1054, and that for the odd distance by ASP

o (| j − l|) =
0.0042 ln | j − l| + 5.95 × 10−5| j − l| − 0.0079. When �′ is
relative large, Sx

jl and Sy
jl oscillate in a cosine manner in the

long range:

f SP
x(y)(| j − l|) = ax(y) cos(qx(y)| j − l| + θx(y) ) + bx(y), (18)

where the wave vectors qx and qy correspond to the nonzero
peak locations of the corresponding structure factors Qx and
Qy, respectively, which deviate from φ and decrease with �′;
the constant bx is related to the height of Qx(0), which can
characterize the degree of polarization in the x̂ direction and
is mainly decided by the strength of �′; the constant by is
always zero, since there is no preferred polarization in the ŷ
direction; the amplitudes ax(y) and the initial phase θx(y) are all
dependent on the system parameters. For the particular pa-
rameter point (φ, λ,�′) = (π/2, 0.75, 0.5), qx(y) ≈ 0.467π ,
ax(y) ≈ 0.0382 (0.0326), θx(y) ≈ −0.0842 (0.0431), and bx ≈
0.00886, see Figs. 4(b) and 4(c). According to the behavior
of the spin-spin correlations in the long range, we can give an
estimation of the boundary separating the LL-SP phase and
the xy-SP phase, see the dashed blue line in Fig. 3.

To further show the difference between the LL-SP phase
and the xy-SP phase, we perform the finite-size scaling analy-
sis. For this purpose we calculate spin-spin correlations for
the LL-SP phase and the xy-SP phase for different system
sizes L. We find that the spin-spin correlations also fulfill the
rules Eq. (12), (16), or (18). For small �′ we can extract the
long-range spin-spin correlations Sα from the amplitudes of
Sα

jl at the end of the chain (in our calculations, we choose the

224420-5



LI ZHANG, YONGGUAN KE, AND CHAOHONG LEE PHYSICAL REVIEW B 100, 224420 (2019)

FIG. 4. The spin-spin correlation functions Sx
jl (blue squares) and Sy

jl (red pluses) versus | j − l| for the xy-SP phase at relatively (a) weak
strength and (b) and (c) strong strength of the external field. (a) Sy

jl versus | j − l| at (φ, λ, �′) = (0.5π, 0.75, 0.05). The envelope for the even
distance is well fitted by ASP

e (| j − l|) = −0.0163 ln | j − l| − 2.47 × 10−5| j − l| + 0.1054 (black solid line), and that for the odd distance
by ASP

o (| j − l|) = 0.0042 ln | j − l| + 5.95 × 10−5| j − l| − 0.0079 (black dashed line). (b) and (c) Sx
jl and Sy

jl versus | j − l|, respectively, at
(φ, λ,�′) = (0.5π, 0.75, 0.5). When | j − l| > 30, Sx

jl is well fitted by the function f SP
x (| j − l|) = 0.0382 cos(0.467π | j − l| − 0.0842) +

0.00886 (black line), and Sy
jl is well fitted by the function f SP

y (| j − l|) = 0.0326 cos(0.467π | j − l| + 0.0431) (black line). Insets: The
corresponding spin structure factors Qx (k) and Qy(k) versus k.

amplitudes of the fifth oscillation from the bottom to avoid
boundary effects). For relatively large �′, since the spin-spin
correlations oscillate in a cosine manner with incommensurate
periods, we define Sα by the maximum value of Sα

jl (in
practice, for each L, we only consider | j − l| ∈ [L/5, 4L/5]
to avoid boundary effects). In Fig. 5 we show the finite-size
scaling of Sα for the LL-SP phase, at the representative
parameter point (φ, λ,�′) = (π/2, 0.75, 10−3), and the xy-
SP phase, at the representative parameter points (φ, λ,�′) =
(π/2, 0.75, 0.05) and (π/2, 0.75, 0.5). Through extracting
Sα for different L, it is clear that the long-range spin-spin
correlations vanish for the LL-SP phase, but retain finite for
the xy-SP phase.

C. φ dependence

Finally, we study how the phase transitions depend on the
values of φ. For this purpose we fix λ = 1.25 and 0.75, which
are chosen to be above and below 1, respectively.

When λ > 1, for any values of φ, the system undergoes
the z-FM–x-PM phase transition as �′ increases. The crit-
ical point will increase with φ monotonously, as reported

FIG. 5. The finite-size scaling of the long-range spin-spin
correlations Sα for the LL-SP phase at (φ, λ,�′) =
(0.5π, 0.75, 10−3) (yellow triangles), and the xy-SP phase at
(φ, λ,�′) = (0.5π, 0.75, 0.05) (green crosses) and (0.5π, 0.75, 0.5)
(red pluses and blue squares). The marks represent Sα calculated
with system size L = 55, 75, 95, 115, 135, 155, 175, 195, 255, and
295. The lines represent the fittings.

in Fig. 6(a). One can rewrite the Hamiltonian (3) as an
Ising model in transverse field plus an isotropic Heisenberg
exchange term and a DM interaction term,

Ĥeff = −
(

2 − 1 + cos φ

λ

)∑
j

Ŝz
j Ŝ

z
j+1 − �′ ∑

j

Ŝx
j

−1

λ

∑
j

[cos φS j · S j+1 + D · (S j × S j+1)]. (19)

FIG. 6. Flux dependent phase transitions for (a) λ = 1.25 and
(b) λ = 0.75. (I), (II), (III), (IV), and (V) represent the z-FM phase,
the x-PM phase, the y-AFM phase, the LL-SP phase, and the xy-
SP phase, respectively. Inset in (b): The long-range correlations as
functions of �′ along φ = 0.8π .
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Neglecting the last terms and treating the Hamiltonian as
an Ising model in the transverse field, which is valid for
λ > 1, one can see that the strength of the coupling in the ẑ
direction increases with φ monotonously, so will the critical
points.

When λ < 1, depending on φ, the system may undergo the
xy-SP–x-PM, the xy-SP–y-AFM–x-PM, or the y-AFM–x-PM
phase transitions as �′ increases, see Fig. 6(b). When 0 �
φ < 0.5π , the system always experiences the xy-SP–x-PM
phase transition, since the x-x and y-y Heisenberg couplings
are ferromagnetic, and only the spiral order and the polar-
ization in the x̂ direction may exist. When φ = π , the GS
undergoes the y-AFM–x-PM phase transition, as studied in
Sec. III A. The y-AFM phase exists in a finite range of �′. As
φ deviates from π , we expect the y-AFM phase to not vanish
immediately. On the other hand, the GS will be in a spiral
phase when �′ 	 1. Thus, there should be a phase transition
from the spiral phase to the y-AFM phase as �′ increases. In
the inset of Fig. 6(b) we plot the long-range correlations as
functions of �′ for φ = 0.8π . As expected, with increasing
�′, first the GS transits from the xy-SP phase to the y-AFM
phase at �′ ≈ 1, and then to the x-PM at �′ ≈ 1.36. We note
that the phase transition from xy-SP phase to the y-AFM phase
is continuous, and the critical point is determined by locating
the discontinuous point of the second order derivation of Cz.
Of course the y-AFM phase will vanish completely before
φ reaches 0.5π , since there will be no antiferromagnetic
order.

Let us shortly discuss the dependence of the various kinds
of critical points on φ. When φ decreases from π , the critical
values of the y-AFM–x-FM phase transition shifts to smaller
values of �′, since the strength of the antiferromagnetic
coupling on the x̂-ŷ plane decreases. At the same time, the
critical points between the spiral phase and the y-AFM phase
increases, due to the decreasing antiferromagnetic coupling
strength and the increasing DM interaction strength. When
φ increases from zero, the critical value of the xy-SP–x-PM
phase transition moves to larger values of �′, owing to the
increasing strength of the DM interaction.

IV. SUMMARY AND DISCUSSIONS

In summary, by employing the MPS method, we have
systematically studied the magnetic phase transitions of spin-
orbit coupled bosons in 1D optical lattices, which is actu-
ally a two-leg ladder with synthetic fluxes. The system can
be effectively described by an anisotropic XXZ Heisenberg
model with DM interaction and transverse field. Under weak
external fields, the GS is the z-FM phase if the ratio of
asymmetric interaction strength λ > 1, and the x-PM phase
(around zero flux), the y-AFM phase (around maximum flux),
and the LL-SP phase (otherwise) with algebraic decaying
spin-spin correlation functions, if λ < 1. When the transverse
field increases, the LL-SP phase will be broken into the xy-
SP phase with long-range spin-spin correlations. From the
fitting functions of the spin-spin correlation functions and the
finite-size scaling in the xy-SP phase, we demonstrate that the
spin-spin correlations do not vanish in the long range. From
the long-range correlations, we present rich phase diagrams
in the parameter spaces.

Interesting extensions of our present study include the
magnetic phase transition of the strongly interacting bosons in
an artificial three-leg ladder within gauge field, whose single-
particle Hamiltonian is realized in [12]. The effective model
will be a spin-1 chain, the GS of which would be accessible by
the MPS algorithm. In another aspect, in a fermionic synthetic
ladder, when taking nuclear spins into consideration, the
interorbital spin-exchange interaction [43–45] would couple
individual ladders. Thus, model (1) can be generalized to
multiple two-leg ladders pierced by an artificial magnetic flux.
The impact of this interorbit coupling on the superfluid states
has been thoroughly studied in [46]. It induces exotic vortex
states on the nuclear-lattice plane, which competes with the
existing phases in the decoupled ladder, and leads a rich phase
diagram [46]. How this interorbit coupling influences the
quantum magnetism in the insulator remains an open question
for future research.
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APPENDIX A: DERIVATION OF THE
EFFECTIVE HAMILTONIAN

We show how to derive our effective Hamiltonian (3) by
employing second-order degenerate perturbation theory for
quantum system [36]. In the large interacting limit U,U↑↓ �
t,�, to obtain the low energy physics, we treat the hopping
and on-site spin-flip term Ĥt [Eq. (1)] as perturbation to
the on-site interaction term ĤU [Eq. (2)]. The effective spin
model only involves the ground-state subspace of ĤU . With
perturbations up to second order, the effective Hamiltonian
for the ground-state subspace is given by

Ĥeff = ĥ0 + ĥ1 + ĥ2 = E0P̂0 + P̂0Ĥt P̂0 + P̂0Ĥt ŜĤt P̂0, (A1)

where P̂0 is the projection operator onto the subspace U0

spanned by the GSs of ĤU , E0 is GS energy, and Ŝ is the
projection operator onto the orthogonal complement V0 of U0.

At half-filling, i.e., one boson per site, the GSs of the
unperturbed Hamiltonian ĤU are 2L-fold degenerate with
exactly one boson per site with arbitrary spin: |G�σ 〉 = |�σ 〉 ≡
|σ1 · · · σL〉 (σi =↑,↓), with energy E0 = 0. The excited states
| �E〉 involves multibosons occupying the same site with energy
E . The projection operator onto the subspace U0 reads as

P̂0 =
∑

�σ
|�σ 〉〈�σ |. (A2)
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The projection operator onto the orthogonal complement sub-
space V0 reads as

Ŝ =
∑

E

1

E0 − E
| �E〉〈 �E |. (A3)

The on-site spin-flip term only contributes to ĥ1 by coupling
two different GSs directly, and the nearest-neighbor hopping
term only contributes to ĥ2 by coupling two different GSs
through a second order virtual process. Thus, the first order
perturbation reads as

ĥ1 = −�

2

∑
�σ,�σ ′

∑
j

〈�σ |(â†
j,↑â j,↓ + h.c.)|�σ ′〉|�σ 〉〈�σ ′|

= −�

2

∑
j

I ⊗ · · · ⊗ (|↑〉〈↓| + |↓〉〈↑|) j ⊗ · · · ⊗ I, (A4)

where I is a 2 × 2 identity matrix. The second order perturba-
tion reads as

ĥ2 = −
∑
�σ ,�σ ′

∑
j, j′

∑
E

1

E
〈�σ |T̂j′ | �E〉〈 �E |T̂j |�σ ′〉|�σ 〉〈�σ ′|, (A5)

where T̂j = −t (ei φ

2 â†
j,↑â j+1,↑ + e−i φ

2 â†
j,↓â j+1,↓ + H.c.). Obvi-

ously for a particular GS |�σ ′〉 = |σ ′
1 · · · σ ′

L〉, there are
only two kinds of excited states that can be coupled to
it by T̂j : (i) | �E �σ ′

j+1〉 = |σ ′
1 · · · σ ′

j−1, 0, σ ′
jσ

′
j+1, σ

′
j+2 · · · σ ′

L〉,
with energy E �σ ′

j+1 = Uδσ ′
j ,σ

′
j+1

+ U↑,↓(1 − δσ ′
j ,σ

′
j+1

); (ii)

| �E �σ ′
j 〉 = |σ ′

1 · · · σ ′
j−1, σ

′
jσ

′
j+1, 0, σ ′

j+2 · · · σ ′
L〉, with energy

E �σ ′
j = Uδσ ′

j ,σ
′
j+1

+ U↑,↓(1 − δσ ′
j ,σ

′
j+1

). The coupling strength
reads as

〈 �E |T̂j |�σ ′〉 = −t
√

1 + δσ ′
j ,σ

′
j+1

(
e
−sgnσ ′

j

iφ
2 δ �E , �E �σ ′

j+1
+ e

sgnσ ′
j+1

iφ
2 δ �E , �E �σ ′

j

)
, (A6)

where sgn↑ = 1 and sgn↓ = −1. In turn,

〈�σ |
∑

j′
T̂j′

∣∣ �E �σ ′
j+1

〉 = −
√

2te
sgnσ ′

j

iφ
2 δσ ′

j ,σ
′
j+1

δ�σ ′,�σ − t
(
1 − δσ ′

j ,σ
′
j+1

)(
e

sgnσ ′
j

iφ
2 δ�σ ′,�σ + e

sgnσ ′
j+1

iφ
2 δ�σ ′

( j),�σ
)
,

(A7)
〈�σ |

∑
j′

T̂j′
∣∣ �E �σ ′

j

〉 = −
√

2te
−sgnσ ′

j

iφ
2 δσ ′

j ,σ
′
j+1

δ�σ ′,�σ − t
(
1 − δσ ′

j ,σ
′
j+1

)(
e
−sgnσ ′

j+1

iφ
2 δ�σ ′,�σ + e

−sgnσ ′
j

iφ
2 δ�σ ′

( j),�σ
)
,

where �σ ′
( j) = {σ ′

1 · · · σ ′
j−1, σ

′
j+1, σ

′
j, σ

′
j+2 · · · σ ′

L}, which is defined by exchanging the spin at site j and j + 1 of the vector �σ ′.
Inserting Eqs. (A6) and (A7) into Eq. (A5) we obtain

ĥ2 = t
∑
�σ ′, j

√
1 + δσ ′

j ,σ
′
j+1

⎡
⎣e

−sgnσ ′
j

iφ
2

E �σ ′
j+1

∑
�σ

〈�σ |
∑

j′
T̂j′

∣∣ �E �σ ′
j+1

〉|�σ 〉〈�σ ′| + e
sgnσ ′

j+1

iφ
2

E �σ ′
j

∑
�σ

〈�σ |
∑

j′
T̂j′

∣∣ �E �σ ′
j

〉|�σ 〉〈�σ ′|
⎤
⎦

= −t2
∑

j

[
4

U
I ⊗ · · · ⊗ (|↑↑〉〈↑↑| + |↓↓〉〈↓↓|) j, j+1 ⊗ · · · ⊗ I + 2

U↑↓
I ⊗ · · · ⊗ (|↑↓〉〈↑↓| + |↓↑〉〈↓↑|) j, j+1 ⊗ · · · ⊗ I

+ 2

U↑↓
I ⊗ · · · ⊗ (e−iφ|↓↑〉〈↑↓| + eiφ|↑↓〉〈↓↑|) j, j+1 ⊗ · · · ⊗ I

]
. (A8)

Focusing on the subspace U0, we introduce the notation S j =
1
2

∑
α,β â†

jασαβ â jβ , with σ being the Pauli matrices. Inserting
this notation into Eqs. (A4) and (A8) and ignoring the constant
energy ∝ − 2t2

U − t2

U↑↓
, we obtain the effective Hamiltonian (3).

We note that for fermions confined in such a 1D optical
lattice, the low-energy physics in the Mott insulator can
also be described by an effective spin model. For fermions,
the on-site interaction only contains interspin ones: Ĥ f

U =
U f

↑↓
∑

j n̂ j↑n̂ j↓. In the limit U f
↑↓ � t,� and at the filling of

one fermion per site, following the process of the derivation
of Eq. (3) and taking care of the commutation relations, we
can obtain the effective Hamiltonian:

Ĥ f
eff = 4t2

U f
↑↓

∑
j

[
cos φ

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

) + Ŝz
j Ŝ

z
j+1

+ sin φ
(
Ŝx

j Ŝ
y
j+1 − Ŝy

j Ŝ
x
j+1

)] − �
∑

j

Ŝx
j . (A9)

The magnetic phase transition in this model is a transition
from the gapless LL phase to the ferromagnetic phase [31].

APPENDIX B: DETAILS OF THE MPS

1. Schmidt decomposition

To express the states of the system as matrix product
form, we make use of the Schmidt decomposition (SD).
Any pure state on a composite system HA ⊗ HB is read
as |ψ〉 = ∑NA,NB

iA,iB
MiA,iB |iA〉|iB〉, where |iA〉 and |iB〉 are the

bases of subsystems A and B with dimension NA and NB,
respectively. The SD on |ψ〉 means it can be decomposed
as |ψ〉 = ∑χ

α=1 Sα|αA〉|αB〉, where {|αA〉} and {|αB〉} are the
eigenstates of the reduced density matrices ρ̂A and ρ̂B of
the subsystem A and B, respectively, and S2

α are their shared
eigenvalues, satisfying

∑χ

α=1 S2
α = 1, with χ = min(NA, NB).

The set of {Sα} are referred to as Schmidt coefficients, and
the number of nonzero Schmidt coefficients χs, which meets
1 � χs � χ , is referred to as Schmidt rank. To relate the
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SD with the coefficient matrix M, we expand {|αA〉} and
{|αB〉} in the original bases as |αA〉 = ∑

iA
UiA,α|iA〉 and |αB〉 =∑

iB
V †

α,iB
|iB〉, with matrices U and V satisfying U †U = I

and V †V = I , where I is the identity matrix of dimension
χ . Defining a diagonal matrix S with entries Sα , M can
be expanded as MiA,iB = ∑

α UiA,αSαV †
α,iB

, which is just the
singular value decomposition (SVD) of the M matrix.

The form of the SD and the hint of the SVD on coefficient
matrix M provide an optimal way to approximate the state
vector |ψ〉 with smaller spanned dimension. That is, if the
Schmidt coefficients Sα is arranged in a descending order:
S1 � S2 � · · · , and the Schmidt rank is truncated to some
smaller χ̃ < χs by discarding the states with a small-weighted
singular value, the state

|ψ̃〉 =
χ̃∑
α

Sα|αA〉|αB〉

=
NA,NB,χ̃∑
iA,iB,α

UiA,αSαV †
α,iB

|iA〉|iB〉 (B1)

is the closest rank-χ̃ approximation to |ψ〉 in the sense that
the Frobenius norm between the coefficient matrices of these
two states is minimized. This property is the key ingredient
for the feasibility of MPS algorithm, as can be seen in the
following.

2. Matrix product states

Now we show how to represent the quantum states of a
system in matrix product form via making use of the SD
or SVD. Any pure state in 1D can be written as |ψ〉 =∑d

σ1···σL
cσ1···σL |σ1 · · · σL〉, where {|σi〉} are the local bases with

dimension d , L is the number of lattice sites, and cσ1···σL is the
complex amplitude. This pure state can be represented as an
MPS

|ψ〉 =
∑

�σ

χ0···χL∑
a0···aL

Aσ1[1]
a0,a1

Aσ2[2]
a1,a2

· · · AσL[L]
aL−1,aL

|�σ 〉

=
∑

�σ
Aσ1[1]Aσ2[2] · · · AσL[L]|�σ 〉, (B2)

where �σ is shorted for {σi}, following the recursive routine:
χl∑
al

Ual−1σl ,al SalV
†

al ,σl+1···σL
= �al−1σl ,σl+1···σL ,

Aσl [l]
al−1,al

= Ual−1σl ,al , (B3)

�al σl+1,σl+2···σL = (SV †)al ,σl+1···σL ,

where the initial � is reshaped from the coefficient vector
�a0σ1,σ2···σL = cσ1···σL (here a0 = 1 is an auxiliary index), the
first equality is the SVD on �, the second equality is just
the replacement of matrix U by the tensor A[l], and the last
equality is the reshaping of SV † into a new matrix �. Each A[l]

consists of d matrices of bond dimension χl−1 × χl , which is
determined from the SVD: χl = min (dl , dL−l ). The property
U †U = I makes A[l] satisfy the normalization relationship∑

σl

Aσl [l]†Aσl [l] = I (l < L),

(B4)∑
σL

AσL[l]†AσL[L] = 〈ψ | ψ〉.

The MPS with all matrices satisfying this normalization
condition is called left-canonical MPS. Note that the
decomposition of the complex amplitudes is not unique.
If the recursive procedure is started from the right side:

χl−1∑
al−1

Uσ1···σl−1,al−1 Sal−1V
†

al−1,σl al
= �σ1···σl−1,σl al ,

Bσl [l]
al−1,al

= V †
al−1,σl al

, (B5)

�σ1···σl−2,σl−1al−1 = (US)σ1···σl−1,al−1
,

where the initial �σ1···σL−1,σLaL = cσ1···σL (here aL = 1 is the
auxiliary index), the first equality is the SVD on matrix �,
the second equality is replacing V † by tensor B[l], and the
last equality is the reshaping of US into a new �, the MPS
reads as

|ψ〉 =
∑

�σ

χ0···χL∑
a0···aL

Bσ1[1]
a0,a1

Bσ2[2]
a1,a2

· · · BσL[L]
aL−1,aL

|�σ 〉

=
∑

�σ
Bσ1[1]Bσ2[2] · · · BσL[L]|�σ 〉. (B6)

The tensor B[l] consists of d matrices of bond dimension
χl−1 × χl and satisfy the normalization condition∑

σl

Bσl [l]Bσl [l]† = I (l > 1),

(B7)∑
σ1

Bσ1[1]Bσ1[1]† = 〈ψ | ψ〉,

making use of the fact V †V = I on each SVD decomposition.
The MPS with all matrices satisfying the above normalization
condition is called right-canonical MPS.

In fact, the degree of nonuniqueness is much higher:
there is a gauge degree of freedom in writing the MPS.
That is, if one inserts an invertible matrix X with dimen-
sion χl × χl and its inverse X −1 into two adjacent MPS
matrices Mσl [l] and Mσl+1[l+1] and makes the transformation
Mσl [l]X → Mσl [l], X −1Mσl+1[l+1] → Mσl+1[l+1], the MPS is in-
variant. Instructively we can specify a general MPS |ψ〉 =∑

�σ Mσ1[1] · · · MσL[L]|�σ 〉 by choosing a site k, which is called
the orthogonal center, that all the matrices left and right to
it are left- and right-normalized, respectively. This particular
kind of MPS is called mixed-canonical MPS. The left- and
right-normalization condition can be imposed by the way
quite similar to the one constructing MPS from the coefficient
vector. The left-normalization condition is imposed by the
recursion

M̃al−1σl ,al = Mσl [l]
al−1,al

,∑
a′

l

U [L]
al−1σl ,a′

l
S[L]

a′
l

V [L]†
a′

l ,al
= M̃al−1σl ,al ,

Aσl [l]
al−1,a′

l
= U [L]

al−1σl ,a′
l
,

Mσl+1[l+1]
a′

l ,al+1
=

∑
al

(S[L]V [L]†)a′
l ,al M

σl+1[l+1]
al ,al+1

, (B8)

starting from M[1] to M[k]. The first equality is the reshaping
of tensor M[l] into a matrix M̃, the second equality is the
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SVD of M̃, the third equality is the replacement of U [L]

by the tensor A[l], and the last equality is the absorption of
the matrices S[L] and V [L]† into the next M[l+1]. Then the
tensors A[l] satisfy the normalization condition Eq. (B4). The
bond dimension of each tensor A[l] is determined from the
SVD: χ ′

l = min(dχ ′
l−1, χl ), where χl is the bond dimension

of the original tensor M[l]. The right-normalization condition
is enforced by the recursion

M̃al−1,σl al = Mσl [l]
al−1,al

,∑
a′

l−1

U [R]
al−1,a′

l−1
S[R]

a′
l−1

V [R]†
a′

l−1,σl al
= M̃al−1,σl al ,

(B9)
Bσl [l]

a′
l−1,al

= V [R]†
a′

l−1,σl al
,

Mσl−1[l−1]
al−2,a′

l−1
= Mσl−1[l−1]

al−2,al−1
(U [R]S[R])al−1,a′

l−1
,

starting from M[L] to M[k]. Then the tensors B[l] satisfy
the normalization condition Eq. (B7). The bond dimension
of each tensor B[l] is determined from the SVD: χ ′

l =
min(dχ ′

l+1, χl ). At last, multiplying the residual U and S
matrices resulting from the two recursion to M[k]: M̃σk [k] =
(S[L]V [L]†)Mσk [k](U [R]S[R]), the mixed-canonical MPS is
obtained:

|ψ〉 =
∑

�σ
Aσ1[1] · · · Aσk−1[k−1]M̃σk [k]Bσk+1[k+1] · · · BσL[L]|�σ 〉.

(B10)
The norm square of the state is read as 〈ψ | ψ〉 =∑

σk
Tr(M̃σk [k]†M̃σk [k] ). Definitely, if k is set as 1 or L, the

recursion Eq. (B8) or (B9) gives the left- or right-canonical
MPS, respectively.

The MPSs obtained in theses ways are exact, but not
suitable for numerical computation. This is because the
dimension of the matrices grows up exponentially, as can
be seen from the recursion constructing the canonical MPS.
One way to make the MPSs practicable is to bound the bond

dimension to some maximum χ̃ following Eq. (B1). That
is, in the process building a canonical MPS from a state
vector or a general MPS, once the bond dimension grows
above χ̃ , truncate it to χ̃ following Eq. (B1). As a result, the
elements in the MPS are decimated in block effectively. This
approximation is valid for GS in 1D without losing noticeable
accuracy, due to two facts: (i) the singular value spectra decay
exponentially, and (ii) the bipartite entanglement of the GS
obeys an area law in the gapped phase and increases as sub-
system size only logarithmically near the critical point. The
below MPS algorithm is in fact based on such a decimation
procedure.

3. Matrix product operators

The natural generation of writing states as matrix product
form to operators is the matrix product operator (MPO).
A general operator Ô expressed in the local bases is Ô =∑

�σ,�σ ′ O�σ ,�σ ′ | �σ 〉〈�σ ′|. Its matrix product form is defined as

Ô =
∑
�σ ,�σ ′

D1···DL−1∑
b1···bL−1

W
σ1,σ

′
1[1]

1,b1
· · ·W σL,σ ′

L[L]
bL−1,1

|�σ 〉〈�σ ′|

=
∑
{bl }

Ŵ [1]
1,b1

Ŵ [2]
b1,b2

· · ·Ŵ [L]
bL−1,1

, (B11)

where each Ŵ [l] can be considered as a Dl−1 × Dl

operator-valued matrix with elements Ŵ [l]
bl−1,bl

=∑
σl ,σ

′
l
W

σl ,σ
′
l [l]

bl−1,bl
|σl〉〈σ ′

l |. The expression of the MPO is actually
a sum of matrices products, which is of the same form as a
general Hamiltonian. This makes it quite intuitive to express
a 1D Hamiltonian as an MPO. In fact, through defining
some finite state automaton rules, all 1D Hamiltonians with
finite-range interaction can be written as exact MPO form
[34]. In considering our model Eq. (3), we can write down its
MPO representation directly:

Ŵ [1] = [−�′Ŝx − 1
λ

(cos φŜx − sin φŜy) − 1
λ

(cos φŜy + sin φŜx ) − 2λ−1
λ

Ŝz I
]
,

Ŵ [1<l<L] =

⎡
⎢⎢⎢⎢⎢⎣

I 0 0 0 0

Ŝx 0 0 0 0

Ŝy 0 0 0 0

Ŝz 0 0 0 0

−�′Ŝx − 1
λ

(
cos φŜx − sin φŜy

) − 1
λ

(
cos φŜy + sin φŜx

) − 2λ−1
λ

Ŝz I

⎤
⎥⎥⎥⎥⎥⎦

, Ŵ [L] =

⎡
⎢⎢⎢⎢⎢⎣

I

Ŝx

Ŝy

Ŝz

−�′Ŝx

⎤
⎥⎥⎥⎥⎥⎦

. (B12)

4. Variational ground state search

We now show how to obtain the GS using an MPS as
a variational ansatze. To find the optimal ground MPS |ψ〉
with maximum bond dimension χ , we have to minimize the
functional

ε[|ψ〉] = 〈ψ |Ĥ |ψ〉 − E〈ψ | ψ〉, (B13)

where E is the Lagrangian multiplier, and Ĥ is the Hamil-
tonian in the MPO form. This optimization problem is hard
to solve at first glace for the variables appear as prod-
ucts. Fortunately we can get the optimal solution via an

iterative algorithm: minimize the energy ε with respect to
the tensor M[k] at site k with all other MPS tensors fixed,
and obtain the better state lower in energy; move to the
next M[k+1] and find the state again lower in energy; repeat
sweeping through all sites until the energy is converged, and
finally the minimum energy and the corresponding GS are
obtained.

To minimize the energy functional ε with respect to a
particular M[k], we have to calculate ε explicitly. Suppose
the ansatze MPS |ψ〉 is of mixed-canonical form with the
orthogonal center at a chosen k, the overlap can be directly
read as 〈ψ | ψ〉 = ∑

σkak−1ak
|Mσk [k]

ak−1,ak
|2. The expectation value

224420-10
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of the MPO Ĥ in |ψ〉 is written as

〈ψ |Ĥ |ψ〉 =
∑
σk ,σ

′
k

∑
ak−1,ak

∑
a′

k−1,a
′
k

∑
bk−1,bk

× (
Lbk−1[k−1]

ak−1,a′
k−1

Mσk [k]∗
ak−1,ak

W
σk ,σ

′
k [k]

bk−1,bk
M

σ ′
k [k]

a′
k−1,a

′
k
Rbk [k+1]

ak ,a′
k

)
,

(B14)

where the tensors L and R are the partial overlap of the
Hamiltonian and the state, constructed following the recursive
procedure

Lbl [l]
al ,a′

l
=

∑
σl ,σ

′
l

∑
al−1,a′

l−1

∑
bl−1

Lbl−1[l−1]
al−1,a′

l−1
Aσl [l]∗

al−1,al
W

σl ,σ
′
l [l]

bl−1,bl
A

σ ′
l [l]

a′
l−1,a

′
l
,

(B15)
Rbl−1[l]

al−1,a′
l−1

=
∑
σl ,σ

′
l

∑
al ,a′

l

∑
bl

Bσl [l]∗
al−1,al

W
σl ,σ

′
l [l]

bl−1,bl
B

σ ′
l [l]

a′
l−1,a

′
l
Rbl [l+1]

al ,a′
l

,

with the initial Lb0[0]
a0,a′

0
= RbL[L+1]

aL,a′
L

= 1. Now take the extremum

of Eq. (B13) with respect to Mσk [k]∗
ak−1,ak

, we obtain

∑
σ ′

k

∑
a′

k−1,a
′
k

∑
bk−1,bk

Lbk−1[k−1]
ak−1,a′

k−1
W

σk ,σ
′
k [k]

bk−1,bk
Rbk [k+1]

ak ,a′
k

M
σ ′

k [k]
a′

k−1,a
′
k

− EMσk [k]
ak−1,ak

= 0. (B16)

It is an eigenvalue problem Ĥ [k]|v[k]〉 − E |v[k]〉 = 0 if we view
M[k] as a vector |v[k]〉 with entries v[k]

ak−1σkak
= Mσk [k]

ak−1,ak
, and

introduce the effective Hamiltonian by the reshaping

Ĥ [k]
ak−1σkak ,a′

k−1σ
′
ka′

k
=

∑
bk−1,bk

Lbk−1[k−1]
ak−1,a′

k−1
W

σk ,σ
′
k [k]

bk−1,bk
Rbk [k+1]

ak ,a′
k

. (B17)

Thus the optimal solution M[k] at present can be obtained by
solving the effective Hamiltonian Ĥ [k] for the GS |v[k]

0 〉 with
energy E0 and reshaping |v[k]

0 〉 back to M[k], with E0 being the
current energy.

In summary, the iterative variational GS search algorithm
is as follows:

(i) Input. Input Ĥ in the MPO form, a guessed MPS |ψ〉
with maximum bond dimension χ , and a tolerance ς for
energy convergence.

(ii) Initialization. Transform |ψ〉 to the right-canonical
form according to Eq. (B9). Initialize the 0th tensor Lb0[0]

a0,a′
0
= 1.

Construct all the right overlaps R by Eq. (B15).
(iii) Right sweep. Construct the effective Hamiltonian ac-

cording to Eq. (B17), solve it for the minimum energy E0

and state vector |v[k]〉. Update M[k] by reshaping Mσk [k]
ak−1,ak

=
v[k]

ak−1σkak
. Left-normalize M[k] and move the orthogonal center

to the right site k + 1 by Eq. (B8). Update the kth overlap
L[k] recursively following Eq. (B15). Continue sweeping to
the right until the boundary is reached.

(iv) Left sweep. Construct the effective Hamiltonian and
solve it for the minimum energy E0 and state vector |v[k]〉. Up-
date M[k] by reshaping Mσk [k]

ak−1,ak
= v[k]

ak−1σkak
. Right-normalize

M[k] and move the orthogonal center to the left site k − 1 by
Eq. (B9). Update the kth overlap R[k] recursively following
Eq. (B15). Continue sweeping to the left until the boundary is
reached.

(v) Repeat steps (iii) and (iv) until the convergence is
achieved 〈Ĥ2 − E2

0 〉 < ς .
(vi) Output. Output the minimum energy E0 and the MPS

|ψ〉 which is of right-canonical form now.
Note that the state obtained in this way is not necessarily

the GS, for it may get stuck in some local minimum state. Two
ways help improve such a dilemma. The first is to prepare
the initial state in the desired subspace with good quantum
number. The approached state must be the energy-minimized
state in that subspace. This is not the case for our model, for
there is no explicit conserved quantity in our system. The sec-
ond way is to generalize the single site to a contiguous block
during the local search and modify the algorithm accordingly,
at the cost of consuming longer computational time and more
computational resources.

5. Variational excited states search

With the GS achieved, we now show how to obtain the
subsequent excited states incrementally. As the way searching
the GS, the nth excited state (nExS) is found by minimizing
the energy functional εn[|ψn〉] = 〈ψn|Ĥ |ψn〉 − En〈ψn | ψn〉,
but under n orthogonality constraints

〈ψn | φm〉 = 0, (B18)

where {|φm〉} with m = 0, 1, . . . , n − 1 are the n lower-lying
eigenstates. It makes the searching program constrained in the
space orthogonal to the one formed by {|φm〉}. The minimiza-
tion of εn with respect to local MPS tensor M[k] under such
constraints is equivalent to solving the eigenvalue problem

(P̂[k]†Ĥ [k]P̂[k] )|v[k]〉 − E |v[k]〉 = 0, (B19)

where Ĥ [k], defined by Eq. (B17), is the effective Hamiltonian
for the variational local tensor M[k], and P̂[k] is the project
operator into the orthogonal space of the lower-lying space
{|φm〉}.

To find the projector P̂[k] for every local tensor,
we calculate the overlaps between the lower-lying
states and the variational state explicitly: 〈ψn | φm〉 =∑

ak−1,σk ,ak
Mσk [k]∗

ak−1,ak
F σk [k](m)

ak−1,ak
, with

F σk [k](m)
ak−1,ak

=
∑

a′
k−1,a

′
k

L[k−1](m)
ak−1,a′

k−1
Aσk [k](m)

a′
k−1,a

′
k
R[k+1](m)

ak ,a′
k

, (B20)

where A[k](m) is the kth MPS tensor of the mth lower-lying
state, and the tensors L(m) and R(m) are the partial overlap
between |φm〉 and |ψn〉, constructed following the recursive
procedure

L[l](m)
al ,a′

l
=

∑
al−1,σl ,a′

l−1

Mσl [l]∗
al−1,al

L[l−1](m)
al−1,a′

l−1
Aσl [l](m)

a′
l−1,a

′
l
,

(B21)
R[l](m)

al−1,a′
l−1

=
∑

al ,σl ,a′
l

Mσl [l]∗
al−1,al

R[l+1](m)
al ,a′

l
Aσl [l](m)

a′
l−1,a

′
l
,
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with the initial L[0](m)
a0,a′

0
= 1 and R[L+1](m)

aL,a′
L

= 1. By viewing the

tensor M[k](F [k](m) ) as vector |v[k]〉(|u[k](m)〉) with elements
v[k]

ak−1σkak
= Mσk [k]

ak−1,ak
(u[k](m)

ak−1σkak
= F σk [k](m)

ak−1,ak
), the projector P̂[k] for

the local tensor space is directly read as

P̂[k] = 1̂ −
n−1∑

m,m′=0

F [k](m)(N−1)mm′F [k](m′ )†, (B22)

where (N−1)mm′ = Tr(F [k](m)†F [k](m′ ) ).
The flow of the variational nExS search is the same as that

for the GS, but with each step modified accordingly:
(i) Input. Input Ĥ in the MPO form, the n lower-lying states

{|φm〉} that have already obtained in the MPS form, a guessed
MPS |ψ〉 for the nExS with maximum bond dimension χ , and
a tolerance ς for energy convergence.

(ii) Initialization. Transform |ψ〉 to the right-
canonical form according to Eq. (B9). Initialize the
0th tensors Lb0[0]

a0,a′
0
= 1 and L[0](m)

a0,a′
0

= 1. Construct all
the right overlaps R and R by Eqs. (B15) and (B21),
respectively.

(iii) Right sweep. Construct the effective Hamiltonian by
Eq. (B17) and the projector by Eqs. (B20) and (B22). Solve
the projected effective Hamiltonian for the minimum energy
En and state vector |v[k]〉. Update M[k] by reshaping Mσk [k]

ak−1,ak
=

v[k]
ak−1σkak

. Left-normalize M[k] and move the orthogonal center
to the right site k + 1 by Eq. (B8). Update the kth overlaps

L[k] and Lk recursively following Eqs. (B15) and (B21), re-
spectively. Continue sweeping to the right until the boundary
is reached.

(iv) Left sweep. Construct the projected effective Hamil-
tonian and solve it for the minimum energy En and state
vector |v[k]〉. Update M[k] by reshaping Mσk [k]

ak−1,ak
= v[k]

ak−1σkak
.

Right-normalize M[k] and move the orthogonal center to the
left site k − 1 by Eq. (B9). Update the kth overlaps R[k] and
R[k] recursively following Eqs. (B15) and (B21), respectively.
Continue sweeping to the left until the boundary is reached.

(v) Repeat steps (iii) and (iv) until the convergence is
achieved 〈Ĥ2 − E2

n 〉 < ς .
(vi) Output. Output the energy En and the MPS |ψ〉 which

is of right-canonical form now.
The variational excited states search also suffers from the

local minimum dilemma. Besides, the area law of entangle-
ment does not apply to the bulk excited states, thus the bond
dimension χ has to be increased to ensure the discarded
states are of small-weighted singular values. This limits the
algorithm to be applicable only for low-energy states.

6. Calculation of observables

For a general observable Ô = ∑
�σ,�σ ′ O[1]

σ1,σ
′
1

· · · O[L]
σL,σ ′

L
|�σ 〉〈�σ ′|, the expectation value in the state expressed

as right-orthogonal MPS is directly written as

〈Ô〉 =
∑

σL,σ ′
L

O[L]
σL,σ ′

L
MσL[L]†

( · · · ( ∑
σ2,σ

′
2

O[2]
σ2,σ

′
2
Mσ2[2]†

(∑
σ1,σ

′
1

O[1]
σ1,σ

′
1
Mσ1[1]†Mσ ′

1[1]
)
Mσ2[2]

) · · · )Mσ ′
L[L]

∑
σ1

Tr(Mσ1[1]†Mσ1[1])
, (B23)

where the dominate is the norm square of the state. When
reduced to single-site and two-site cases, the calculation
is greatly simplified by making use of the normalization
conditions. In calculating the single-site observable Ŝα

j =∑
σ j ,σ

′
j
Sα[ j]

σ j ,σ
′
j
|σ j〉〈σ ′

j |, it is convenient to transform the right-

canonical MPS into one of mixed-canonical form with the
orthogonal center at site j. Then the expectation value is just
read as

〈Ŝα
j 〉 =

∑
σ j ,σ

′
j

[
Sα[ j]

σ j ,σ
′
j
Tr(Mσ j [ j]†Mσ ′

j [ j] )
]

∑
σ j

Tr(Mσ j [ j]†Mσ j [ j] )
. (B24)

In calculating the expectation value of the two-site observable
Ŝα

j Ŝβ

l (here we set j < l without lose of generality), we move
the orthogonal center k to any site in the range j � k � l .

The evaluation of the expectation value is thus reduced to
contracting the tensors in this range. This can be done in a
recursive manner: we first construct a tensor at site j, G[ j]

a j ,a′
j
=∑

σ j ,σ
′
j ,a j−1

M
σ j [ j]∗
a j−1,a j S

α[ j]
σ j ,σ

′
j
M

σ ′
j [ j]

a j−1,a′
j
, then generate the next G by

the recursion

G[m]
am,a′

m
=

∑
σm, am−1
σ ′

m, a′
m−1

G[m−1]
am−1,a′

m−1
Mσm[m]∗

am−1,am
O[m]

σm,σ ′
m
Mσ ′

m[m]
a′

m−1,a
′
m
, (B25)

until the lth site is reached, where O[m] is the identity matrix
when m < l and O[l] = Sβ[l], and finally the expectation value
is calculated as 〈Ŝα

j Ŝβ

l 〉 = Tr(G[l] )
Tr(Mσk †[k]Mσk [k] )

.
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