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Motivated by the recent theoretical study by Okubo et al. [Phys. Rev. Lett. 108, 017206 (2012)] on the possible
realization of the frustration-induced symmetric skyrmion-lattice state in the J1-J2 (or J1-J3) triangular-lattice
Heisenberg model without the Dzyaloshinskii-Moriya interaction, we investigate the ordering of the classical
J1-J2 honeycomb-lattice Heisenberg antiferromagnet under a magnetic field by means of a Monte Carlo
simulation, a mean-field analysis and a low-temperature expansion. The model has been known to have an
infinite ringlike degeneracy in the wave-vector space in its ground state for 1/6 < J2/J1 < 0.5, in distinction
with the triangular-lattice model. As reported by Okumura et al. [J. Phys. Soc. Jpn. 79, 114705 (2010)], such
a ringlike degeneracy gives rise to exotic spin liquid states in zero field, e.g., the “ring-liquid” state and the
“pancake-liquid” state. In this paper, we study the in-field ordering properties of the model paying attention to the
possible appearance of exotic multiple-q states. Main focus is made on the J2/J1 = 0.3 case, where we observe a
rich variety of multiple-q states including the single-q, double-q, and triple-q states. While the skyrmion-lattice
triple-q state observed in the triangular-lattice model is not realized, we instead observe an exotic double-q state
consisting of meron/antimeron-like lattice textures.

DOI: 10.1103/PhysRevB.100.224404

I. INTRODUCTION

Frustrated spin systems have attracted much interest in the
field of magnetism. One of such research interest might be
that novel types of ordering are often generated by the effects
of quantum or thermal fluctuations on the highly degener-
ate classical ground states. The so-called “order-by-disorder”
mechanism often comes into play [1–4].

An intriguing example of such frustrated magnets with
heavily degenerate classical ground-state manifold might be
the antiferromagnetic (AF) Heisenberg model on a honey-
comb lattice with the competing nearest-neighbor (NN) J1

and next-nearest-neighbor (NNN) J2 couplings as illustrated
in Fig. 1.

Essentially, the ratio of these coupling parameters J2/J1

determines the nature of the ground state. For smaller J2/J1 �
1/6 where the frustration is relatively weak, a simple AF order
is stabilized in the ground state by reflecting the bipartite
character of the honeycomb lattice. For larger J2/J1 > 1/6,
the ground state becomes a helical or spiral state characterized
by a single wave vector q which is generally incommensurate
with the underlying honeycomb lattice [5], a single-q state.
An interesting feature here is that the ground-state mani-
fold possesses a macroscopic degeneracy associated with the
running directions of the wave vector q. In the wave-vector
space, the set of the ground-state q’s forms a closed curve
surrounding the origin in the sublattice wave-vector space.

*tokuro.shimokawa@oist.jp

For 1/6 < J2/J1 < 0.5, this closed curve looks like a “ring”
as demonstrated in Fig. 2. This “ringlike” degeneracy could
give rise to a variety of unique ordering properties [6,7]. In
fact, the effects of thermal and quantum fluctuations in this
J1-J2 honeycomb-lattice model have recently been investi-
gated quite intensively [6–25].

One candidate material of the J1-J2 honeycomb-lattice
Heisenberg model might be the S = 3/2 compound
Bi3Mn4O12(NO3) [26–31]. This compound exhibits a
spin-liquidlike behavior without any magnetic long-range
order (LRO) down to 0.4 K in spite of a large absolute value of
Weiss temperature, ∼257 K. Furthermore, neutron-scattering
measurements have revealed that it exhibits a field-induced
antiferromagnetism, i.e., a metamagnetic transition occurs
even under a relatively weak field [27].

Such unique features of Bi3Mn4O12(NO3) including the
spin-liquid behavior and the field-induced antiferromagnetism
were theoretically investigated by Okumura, Kawamura,
Okubo, and Motome by a Monte Carlo (MC) simulation
and a low-temperature expansion [6]. They have found that
the energy scale of the order-by-disorder is suppressed near
the AF phase boundary (J2/J1 = 1/6) down to extremely
low temperatures, and the two kinds of exotic spin-liquid
states, which are called “ring-liquid” and “pancake-liquid”
states, appear in the low-temperature region. The spin struc-
ture factor in the former state exhibits a ringlike pattern
surrounding the origin in the sublattice wave-vector space,
while, in the spin structure factor in the latter state, the center
of the ringlike pattern is “buried” in intensity, yielding a
“pancakelike” pattern. The ring radius of the spin structure
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FIG. 1. The J1-J2 honeycomb model with a trigonal symmetry,
where J1 and J2 represent the nearest-neighbor (black solid line) and
the next-nearest-neighbor (black dot line) interactions. The lattice
constant of the triangular lattice a, which is equal to the next-nearest-
neighbor distance of the honeycomb lattice, is taken to be the length
unit, i.e., a = 1. Unit vectors on the triangular lattice are ax = (a, 0)
and ay = ( a

2 ,
√

3a
2 ). The honeycomb lattice has two lattice sites in a

unit cell belonging to two triangular sublattices, which we denote I
(white site) and II (black site). Our choice of the unit cell is indicated
by the green box. The shape of the honeycomb cluster we mainly
treat in this study is a hexagonal one with the trigonal symmetry.
The depicted cluster contains 24 spins (L = 4) under open boundary
conditions.

factor just corresponds to the radius of the degenerate
ring (closed curve) of the ground-state manifold. Okumura
et al discussed the possible relationship of these ring-liquid
and pancake-liquid states to the experimental properties of
Bi3Mn4O12(NO3), and emphasized the crucial importance of
the ringlike degeneracy, which is a source of various exotic
spin-liquidlike behaviors and the field-induced antiferromag-
netism. At low enough temperatures, the mechanism of order
by disorder works, leading to an entropic selection of a
particular q on the degenerate ring and to a thermodynamic
phase transition into the symmetry-broken single-q spiral
state.

Frequently, an incommensurate ordering, as often realized
in the frustrated classical J1-J2 model, gives rise to a variety
of multiple-q states, especially under the applied magnetic
field [19,32–41]. The multiple-q state is a coherent superposi-
tion of states with equivalent but distinct wave vectors related
by the underlying symmetry of the lattice.

For the J1-J2 Heisenberg model on the triangular lat-
tice under a magnetic field, Okubo, Chung, and Kawamura
identified a variety of multiple-q states including single-q,
double-q, and triple-q states. Especially interesting might be
the triple-q state, which corresponds to the skyrmion-lattice
state. There, the skyrmion lattice is solely stabilized by the
symmetric exchange interaction, and hence, in contrast to
the standard skyrmion lattice stabilized by the antisymmetric
Dzyaloshinskii-Moriya (DM) interaction, the skyrmion with
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FIG. 2. The ground-state manifold of the J1-J2 classical
honeycomb-lattice Heisenberg antiferromagnet in the sublattice
wave-vector space. The red, blue, and purple lines represent the
degenerate lines for J2/J1 = 0.18, 0.3, and 0.5, respectively. Black
point is located at the origin. Note that the origin corresponds to the
wave-vector point having a simple two-sublattice Neel order on the
original honeycomb lattice. Black solid hexagon indicates the first
Brillouin zone of the triangular sublattice. Green dotted and solid
lines show the NN and NNN directions, respectively.

an opposite sense of the skyrmion number or the spin scalar
chirality, i.e., the antiskyrmion, is also possible.

Emergence of such multiple-q states are naturally expected
for incommensurate orderings on other lattices as well, e.g.,
the honeycomb lattice possessing a common trigonal sym-
metry with the triangular lattice. On the basis of such an
expectation, we study in the present paper the ordering prop-
erties of the classical J1-J2 honeycomb-lattice AF Heisenberg
model under a magnetic field. As emphasized above, unique
feature of the honeycomb-lattice model might be that it ex-
hibits a ringlike continuous degeneracy in its ground state
in sharp contrast to the triangular-lattice model, which might
give rise to still exotic multiple-q ordered states different from
the ones identified in the triangular-lattice model. With this
expectation, we study here the J1-J2 honeycomb model in the
parameter range of 1/6 < J2/J1 < 0.5 where the ground state
of the model exhibits a ringlike infinite degeneracy. As shown
in Fig. 2, this ring gets closer to a true circle as J2/J1 → 1/6
while its shape tends to deviate more from a true circle for
larger J2/J1.

Main focus of our simulation is on the case of J2/J1 = 0.3,
which is located in the middle of the paramagnetic (ring-
liquid)-helical phase boundary [6]. At this value of J2/J1, the
degenerate ring is still close to a true circle (see Fig. 2). Its
radius is q∗ � 2.494 in the NN direction, and is is q∗ � 2.462
in the NNN direction. When the associated ordered state is
to be a single-q spiral state, this q-value corresponds to a
turn angle on the triangular sublattice of 0.794π (NN), or of
0.784π (NNN), respectively.

For this value of J2/J1 = 0.3, we indeed find a variety
of novel multiple-q ordered states there, many of which
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differs in nature from the ones identified in the triangular
J1-J2 model. In particular, we observe three different types
of double-q state, one of which is essentially of the same
nature as the double-q state identified in the triangular model,
while the other two are new ones. One is a coplanar state,
and the other is a noncoplanar state where the spins form
interweaving “meronlike” vortex/antivortex lattice pattern.
By contrast, only one type of triple-q state is stabilized,
which is a collinear state distinct from the skyrmion-lattice
state. The triple-q (collinear) state is adiabatically identical
with the “Z state” identified in the triangular model. Mean-
while, the transverse spin correlation length stays very short
in the triple-q (collinear) state of the present model so that the
state does not look like the random-domain state consisting of
skyrmion and antiskyrmion lattices as observed in the Z phase
of the triangular model.

Concerning the single-q states, we find two types, the
umbrella (spiral)-type and the fan-type, the latter stabilized
only in higher magnetic field. For the umbrella-type single-q
state, we observe a switching of the running direction of the
associated q vector with varying the magnetic-field intensity
and the temperature. For fuller understanding of the ordering
process of the model, we also investigate other J2/J1-values
including J2/J1 = 0.20, 0.25, 0.35 and 0.45.

The present paper is organized as follows. In Sec. II,
we present our model and explain the numerical and the-
oretical methods employed. Section III is the main part of
the present paper, and is devoted to the presentation of the
results of our MC simulations on the model with J2/J1 = 0.3.
In Sec. IV, we deal with the other J2/J1 values, J2/J1 =
0.20, 0.25, 0.35 and 0.45. We summarize our main findings
in Sec. V. Details of the low-temperature expansion are given
in Appendix A, whereas some additional information about
the triple-q (collinear, type 2) state stabilized at J2/J1 = 0.45
is given in Appendix B. In order to get some insights into
the relative stability of various multiple-q states, we perform
a mean-field (MF) analysis of the model, and compare the
results with the MC results. The details are given in Ref. [42].

II. MODEL AND METHOD

We consider the J1-J2 classical honeycomb-lattice Heisen-
berg model in a magnetic field of intensity H , whose Hamil-
tonian is given by

H = −J1

∑
〈i, j〉

Si · S j − J2

∑
〈〈i, j〉〉

Si · S j − H
∑

i

Sz
i , (1)

where Si = (Sx
i , Sy

i , Sz
i ) is the classical Heisenberg spin with

the fixed length of |Si| = 1 located at the ith site on the
honeycomb lattice, J1 < 0 and J2 < 0 represent the antifer-
romagnetic NN and NNN interactions, while the

∑
〈i, j〉 and∑

〈〈i, j〉〉 are taken over all NN and NNN pairs, respectively.
It has been known that the ground state of the model in

zero field exhibits a single-q helical order for J2/J1 > 1/6,
with an incommensurate wave vector with an infinite ringlike
degeneracy in the q space, while the standard two-sublattice
antiferromagnetic order arises for J2/J1 � 1/6 [5].

In general, the multiple-q states are incompatible with the
fixed spin-length condition |Si|=1 imposed in the ground

state, and are not favored in the low temperature region in the
classical Heisenberg spin system. Indeed, the multiple-q states
have not been reported in previous zero-field calculations
of the present model, only a single-q spiral state stabilized
with a wave vector selected from the degenerate ring by
thermal fluctuations, breaking the threefold discrete C3 lattice
symmetry [6]. In the present paper, we wish to investigate
by means of a MC simulation the possible emergence of the
multiple-q states at moderate temperatures under a magnetic
field.

MC simulations are performed on the basis of the standard
heat-bath method combined with the over-relaxation [43,44]
and temperature-exchange [45] methods. Our unit MC step
consists of one heat-bath sweep and 5–10 over-relaxation
sweeps. Typically, our MC runs contain ∼107 MC steps, and
averages are made over three independent runs in most cases.
In computing certain physical quantities such as the spin
structure factor, the temperature-exchange process is stopped
to appropriately monitor the symmetry-breaking pattern.

We treat mainly hexagonal finite-size clusters with a trig-
onal symmetry as illustrated in Fig. 1 under open boundary
conditions. Due to the enhanced effects of incommensurabil-
ity, we check the stability of our results also by employing the
diamond-shape clusters under periodic boundary conditions.
The hexagonal clusters contain N=(3/2)L2 spins, where N is
the total number of spins on the honeycomb lattice, and we
treat the range of sizes 36 � L � 300.

In order to get information about the wave vector of the
relevant single-q state at low temperatures, we also employ
the low-temperature expansion technique [4,6]. The details
of the calculation are given in Appendix A. In order to get
information about the possible multiple-q ordered states of
the model, we also perform the mean-field (MF) analysis. Our
MF analysis is the Landau-type free energy expansion up to
quartic order following the method of Reimers et al. [46] and
of Okubo et al. [32,33]. The details are shown in Ref. [42].

III. MONTE CARLO RESULTS FOR J2/J1 = 0.3

In this section, we present our MC results. We focus here
on the case of J2/J1 = 0.3 to study typical ordering patterns
arising from the ring-liquid paramagnetic state. As has been
demonstrated in the zero-field calculation of Ref. [6], the
ordered state in zero-field is always a single-q spiral state,
not the multiple-q states. The single-q spiral state is generated
with a wave vector selected from the degenerate ringlike
manifold via the order-by-disorder mechanism, breaking the
C3 lattice symmetry of the Hamiltonian. For J2/J1 = 0.3, the
transition temperature is located at T/|J1| � 0.0405 [6]. In
this section, we construct a phase diagram in the temperature
(T ) versus magnetic-field (H) plane at J2/J1 = 0.3.

The obtained T -H phase diagram is shown in Fig. 3. In
addition to the single-q states, various types of multiple-q
states, including the three distinct types of double-q states and
one triple-q state, are also stabilized under the magnetic field
due to thermal fluctuations.

In this phase diagram, the transition points are determined
mainly from the peak position of the specific heat. As an
example, we show in Fig. 4(a) the temperature and size
dependence of the specific heat at H/|J1| = 1.5. Three sharp
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FIG. 3. The H -T phase diagram of the J1-J2 honeycomb-lattice Heisenberg model with J2/J1 = 0.3 determined by MC simulations.
Transition points are determined from the specific-heat peak, the anomaly in the threefold symmetry order parameter m3, and that in
the magnetic susceptibility (see also Figs. 4 and 5). The low-temperature light-gray region is the region where the thermalization cannot
be achieved, while the zero-temperature limit can be identified based on the low-temperature expansion as a single-q (NN) state. The dotted
blue line representing the low-temperature phase boundary of the double-q (type 3) state remains somewhat arbitrary. The details of each phase
are explained in the main text.

peaks appear, each of which corresponds, from high to low
temperatures, to the transition from the ring-liquid param-
agnetic to the triple-q (collinear) states, to the one from the
triple-q (collinear) to the double-q (type 2) states, and to the
one from the double-q (type 2) to the double-q (type 1) states.
Other quantities such as the m3 order parameter describing the
C3 lattice-rotational-symmetry breaking are also employed,
m3, which is defined by

m3 = 〈|m3|〉, m3 = ε1e1 + ε2e2 + ε3e3, (2)

where e1 = (0, 1), e2 = (−√
3/2,−1/2), and e3 =

(
√

3/2,−1/2), ε1,2,3 are the total NN bond energy normalized
per bond along the three NN directions, respectively, and
〈· · · 〉 is a thermal average. As can be seen from Fig. 4(b),
a transition associated with the C3 symmetry breaking is
expected at T/|J1| � 0.035, which coincides with the second
peak of the specific heat in Fig. 4(a). Although a sharp
diverging peak of the specific heat, possibly corresponding
to a first-order phase transition, is observed at a higher
temperature T/|J1| � 0.039, the m3 order parameter in the
thermodynamic limit still remains to be vanishing there,
meaning that the transition at T/|J1| � 0.039 is the one
keeping the C3 symmetry, i.e., the transition into the triple-q
(collinear) state in the phase diagram of Fig. 3.

Sometimes, the phase boundary happens to be almost
temperature-independent, i.e., almost horizontal in the T -H
phase diagram. In such a case, the magnetic field dependence
of physical quantities could also be useful in determining

the phase boundary. As an example, we show in Figs. 5(a)
and 5(b) the magnetic-field dependence of (a) the xy and z
components of the differential magnetic susceptibility, and (b)
the m3 order parameter, which turn out to be useful in locating
the phase boundary between the double-q (type 2) and (type
3) states as indicated by the arrow in the figure.

A convenient quantity in identifying various types of
multiple-q ordered states might be the static spin structure
factor. In the present paper, in view of the basic two-sublattice
(I or II) nature of the ordering, we compute primarily the sub-
lattice spin structure factor, both perpendicular to the field (the
xy component) and parallel with the field (the z component).
Note that the honeycomb lattice contains two lattice points
in its unit cell, each forming a triangular sublattice whose unit
lattice vector corresponds to the NNN direction of the original
honeycomb lattice: see Fig. 1.

The xy component of the sublattice spin structure factor
S⊥(q) is defined by

S⊥(q) = 2

N

∑
μ=x,y

˝∣∣∣∣∣∣
∑

j∈I or II

Sμ
j e−iq·r j

∣∣∣∣∣∣
2̨

, (3)

while the z component S‖(q) by

S‖(q) = 2

N

˝∣∣∣∣∣∣
∑

j∈I or II

Sz
je

−iq·r j

∣∣∣∣∣∣
2̨

, (4)
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FIG. 4. The temperature dependence of the physical quantities
employed in drawing the phase diagram of Fig. 3, i.e., (a) the specific
heat per spin, and (b) the m3 order parameter. The magnetic-field
intensity is H/|J1| = 1.5. Arrows indicate the transition points.

where r j is the position vector of the spin at the jth site
on each triangular sublattice, and q = (qx, qy) is the asso-
ciated wave vector. Thus, in our present definition of the q
vector, the q = (0, 0) point corresponds to the wave-vector
point associated with the two-sublattice Neel order on the
original honeycomb lattice. In any finite-size simulation, fully
symmetric patterns should be obtained in the spin structure
factor when the system is fully thermalized, whereas in the
ordered state, such a timescale usually becomes extremely
long for a moderately large system. Hence, in computing
the spin structure factor in our present MC simulation, we
turn off the temperature-exchange process, and monitor the
symmetry-breaking pattern typically during 103 ∼ 104 MC
steps for the measurements.

A. The ring-liquid (paramagnetic) states

In Fig. 6, we show the intensity plots of the sublattice
static spin structure factor in the ring-liquid paramagnetic
state. As can be seen from the figure, S⊥(q) exhibits a broad
ringlike intensity, while S‖(q) exhibits a sharp peak only at
q = 0 arising from the uniform magnetization induced by
an applied magnetic field. This ringlike intensity reflects the
ringlike degeneracy of the ground state as argued above. On
decreasing the temperature, various types of ordered states
including multiple-q states could emerge by selecting various
wave vectors from the ringlike degenerate manifold. In this
sense, the ring serves as a source of various multiple-q states
to be discussed below.
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FIG. 5. The field dependence of the physical quantities employed
in drawing the phase diagram of J2/J1 = 0.30, i.e., (a) the xy and
z components of the magnetic susceptibility, and (b) the m3 order
parameter. The temperature is T/|J1| = 0.02705. Arrows indicate the
transition point.

B. The single-q states

The single-q state is characterized by one of the incom-
mensurate wave vectors on the ring, q∗, and its partner −q∗.
In fact, there exist several different types of single-q states
under the magnetic field at J2/J1 = 0.3, such as the single-q
(NN), the single-q (NNN), the single-q (INT), and the single-q
(fan) states. The former two states were already mentioned in
the Introduction and reported in Ref. [6]. The single-q (NN,
NNN, and INT) states have umbrella-type spin textures, while
the single-q (fan) state has a different type of spin texture, a
fanlike coplanar structure, as will be explained below.

In the single-q (NN) state, the spiral axis runs along the NN
direction of the honeycomb lattice. As can be seen from the
phase diagram of Fig. 3, this state is realized at the relatively
low magnetic field including zero magnetic field. In fact, this
observation is fully consistent with the previous finding of
Okumura et al. that the spiral runs along the NN direction
in zero field for J2/J1 = 0.3 [6].

We show in Figs. 7(a) and 7(b) the typical sublattice spin
structure factors for the single-q (NN) state. Sharp peaks
appear in the transverse component S⊥(q) at a pair of ±q∗,
while broader peaks appear in the longitudinal component
S‖(q) at the same wave-vector points ±q∗, in addition to the
uniform component at q = 0 induced by an applied field. The
broad peaks of S‖(q) do not sharpen with increasing the sys-
tem size, indicating the short-ranged-order (SRO) character
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FIG. 6. The intensity plots of the sublattice spin structure factors
in the wave-vector (qx , qy) plane in the ring-liquid paramagnetic
state: (a) the transverse component S⊥(q) and (b) the longitudinal
component S‖(q). The parameters are J2/J1 = 0.3, H/|J1| = 2.50,
and T/|J1| = 0.042, for the lattice size L = 72. The length unit is
taken to be the NNN distance of the honeycomb lattice (or the
NN distance of the triangular sublattice). The dotted purple line
depicts the zone boundary of the first Brillouin zone of the triangular
sublattice. The NN (NNN) directions of the honeycomb lattice are
given by the green broken (solid) lines.

of the z component. In contrast, the sharp feature of S⊥(q)
is consistent with the expected quasi-LRO character of the
single-q spiral structure.

Stronger magnetic field can produce a single-q spiral run-
ning along the NNN directions, which we denote as a single-q
(NNN) state as shown in Fig. 3. The corresponding spin

structure factors are shown in Figs. 7(c) and 7(d). In contrast
to sharp peaks of S⊥(q), weak broad peaks appear in S‖(q) at
the wave vectors complementary to the strong spots in S⊥(q).

We note that, in the lower temperature region and in
stronger magnetic field, the single-q spiral runs along an
intermediate direction between the NN and the NNN ones,
which we denote as a single-q (INT) state. The corresponding
spin structure factor is shown in Figs. 7(e) and 7(f).

Thus, depending on T and H , the single-q spiral can run
in various directions, while any direction can be selected from
the q directions on the degenerate ring. In order to understand
the selection mechanism of a particular q direction, i.e., the
“order-by-disorder” mechanism operating here, we employ
the low-temperature expansion calculations of Refs. [4,6] by
extending their zero-field calculations to a nonzero field. Note
that the low-temperature expansion is completely independent
of our MC calculation, no input provided from MC. Some
of the details are explained in Appendix A. We find that,
at J2/J1 = 0.30, thermal fluctuations always select the NN
direction at low enough temperatures for any H . In Fig. 8, we
show for J2/J1 = 0.30 the directional dependence of the free-
energy density difference between a given spiral state with the
wave vector q∗ lying on the degenerate ring (see black points
in the inset of Fig. 8) and the spiral running along the NN
direction, �F/T ≡ F (q∗)/T − F (q∗

NN)/T , computed based
on Eqs. (A9)–(A11). As can be seen from the figure, �F is
always positive, indicating that thermal fluctuations prefer the
NN direction in the low-temperature limit T/|J1| → 0 among
all possible directions on the degenerate ring.

(a) S⊥(q)
Single-q (NN) state

qx

qy

-4 -2  0  2  4

-4
-2
 0
 2
 4

 0
 100
 200
 300
 400
 500
 600

(b) S||(q)

qx

qy

-4 -2  0  2  4

-4
-2
 0
 2
 4

 0
 5
 10
 15
 20
 25
 30

(c) S⊥(q)
Single-q (NNN) state

qx

qy

-4 -2  0  2  4

-4
-2
 0
 2
 4

 0
 100
 200
 300
 400
 500
 600

(d) S||(q)

qx

qy

-4 -2  0  2  4

-4
-2
 0
 2
 4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6

(e) S⊥(q)
Single-q (INT) state

qx

qy

-4 -2  0  2  4

-4
-2
 0
 2
 4

 0
 50
 100
 150
 200
 250
 300

(f) S||(q)

qx

qy

-4 -2  0  2  4

-4
-2
 0
 2
 4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6

(g) S⊥(q)
Single-q (fan) state

qx

qy

-4 -2  0  2  4

-4
-2
 0
 2
 4

 0
 20
 40
 60
 80
 100
 120

(h) S||(q)

qx

qy

-4 -2  0  2  4

-4
-2
 0
 2
 4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8

FIG. 7. The intensity plots of the sublattice spin structure factors in the wave-vector (qx , qy) plane for various single-q states realized for
J2/J1 = 0.3. (a) and (b) correspond to the single-q (NN) state at H/|J1| = 0.5, T/|J1| = 0.0215, and L = 108, (c) and (d) to the single-q (NNN)
state at H/|J1| = 4.0, T/|J1| = 0.0182, and L = 120, (e) and (f) to the single-q (INT) state at H/|J1| = 5.5, T/|J1| = 0.003075, and L = 120,
and (g) and (h) to the single-q (fan) state at H/|J1| = 6.0, T/|J1| = 0.003862, and L = 150. (a), (c), (e), and (g) represent the transverse
component S⊥(q), while (b), (d), (f), and (h) the longitudinal component S‖(q). Note that we tune the intensity range in (d), (f), and (h) to
focus subtle features of the intensities on the degenerate ring except for a dominant q = 0 peak.
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FIG. 8. The q∗-vector direction dependence of the free-energy
density difference �F/T ≡ F (q∗)/T − F (q∗

NN )/T for various fields
calculated by the low-temperature expansion at J2/J1 = 0.30, where
the free energy density of the spiral running along the NN direction
F (q∗

NN ) is taken as an energy origin, and q∗ = (q∗
x , q∗

y ) is the wave
vector on the degenerate ring (the blue line in the inset) for J2/J1 =
0.3. As depicted in the inset, the direction of the spiral is represented
by its q∗

y value. The NN and the NNN directions are drawn by the
green solid and broken lines, respectively.

At higher magnetic field of H/|J1| > 2.2, the low-
temperature expansion results might seem inconsistent with
our MC phase diagram of Fig. 3. One possible cause of
this apparent discrepancy might be a possible failure of the
harmonic (Gaussian) approximation of our low-temperature
expansion neglecting the nonlinear effects. Meanwhile, our
MC specific-heat data at H/|J1| > 2.2 take values greater
than the harmonic value of unity expected for the classical
Heisenberg spin systems, down to a low temperature T/|J1| =
0.005. In contrast, the specific heat should take a value less
than unity [47] when the nonlinear effects around the ground
state are dominant. Hence, a plausible explanation here might
be that an additional phase transition, most probably to the
single-q (NN) state, occurs at a still lower temperature of
T/|J1| < 0.005. Unfortunately, we could not thermalize such
a low-temperature regime in our MC.

These three types of single-q states (NN, NNN and INT)
have umbrella-type structures in their real-space spin con-
figurations. We show in Fig. 9 typical real-space sublattice
spin configurations of the single-q (NNN) state: (a) for the
sublattice I and (b) for the sublattice II. These real-space spin
configurations correspond to the spin structure factors shown
in Figs. 7(c) and 7(d). In Figs. 9(c) and 9(d), spins at various
sites on the sublattice I are reorganized in the spin space with
a common origin, a top view in the (Sx, Sy) plane in (c), and
a side view in the (Sx, Sz) plane in (d). Essentially the same
plots are obtained also for the sublattice II (not shown here).
The real-space xy-spin configurations on the two sublattices
look essentially similar, with a phase difference of α ∼ 0.55π .
This value of the phase difference is a bit smaller than, but
close to the corresponding value expected in the ground state
for J2/J1 = 0.3, α ∼ 0.61π : Refer to αq∗

1,NNN
in Fig. S1(a) of

Ref. [42]. The observed small deviation is most probably the
temperature effect.

In addition to such umbrella-type single-q states, the other
type of single-q state also appears in the high-field region of
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FIG. 9. Real-space sublattice spin configurations in the single-q
(NNN) state for J2/J1 = 0.3 obtained by the short-time average of
1000 MC steps: (a) for the sublattice I and (b) for the sublattice II.
The parameters are H/|J1| = 4.0, T/|J1| = 0.01820, and L = 120.
[(a) and (b)] The xy components of the spin are represented by the
arrow, while the z component is represented by the blue-to-red color
scale. In (c) and (d), spins at various sites on the sublattice I are
reorganized with a common origin: (c) the top view in the (Sx , Sy)
plane and (d) the side view in the (Sx , Sz) plane.

the phase diagram just below the phase boundary to the ring-
liquid paramagnetic state. In this state, as can be seen from
Figs. 7(g) and 7(h), the associated ordering wave vector runs
along an intermediate direction between the NN and the NNN
directions like the single-q (INT) state. The real-space spin
configuration has a fanlike coplanar structure, instead of the
noncoplanar umbrella-type one. We call this type of single-q
state a single-q (fan) state. Figure 10 exhibits the typical spin
configuration of this single-q (fan) state realized at H/|J1| =
6.00 and T/|J1| = 0.003862 for the sublattice I in (a)–(c) and
for the sublattice II in (d) and (e). As can be seen from the
figures, the spin structure in the fan state is coplanar.

C. The double-q (type 1) state

The double-q structure is characterized by two pairs of
q∗ in S⊥(q). For J2/J1 = 0.3, three distinct types of double-
q states appear. Let us begin with the double-q (type 1)
state, whose sublattice spin structure factors are shown in
Figs. 11(a) and 11(b). Two pairs of spot intensities appear
in S⊥(q), while a pair of intensities appears in S‖(q) at the
wave vectors complementary to the two pairs in S⊥(q). In
this state, relevant q∗ vectors run along the NN direction.
The reason why the q∗ vectors run along the NN directions
will be discussed within the MF analysis (see Ref. [42]).
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FIG. 10. Real-space sublattice spin configurations in the single-
q (fan) state for J2/J1 = 0.3 obtained by the short-time average of
1000 MC steps: (a)–(c) for the sublattice I and (d) and (e) for the
sublattice II. The parameters are H/|J1| = 6.0, T/|J1| = 0.003862,

and L = 150. (a) The xy components of the spin are represented by
the arrow, while the z component is represented by the blue-to-red
color scale. In (b)–(e), spins at various sites on a given sublattice are
reorganized with a common origin: [(b) and (d)] the top view in the
(Sx , Sy) plane and [(c) and (e)] the side view in the (Sx , Sz) plane.

In fact, this double-q (type 1) state is essentially the same
state as the double-q state observed in the triangular-lattice
Heisenberg model in Ref. [33]. The state can be regarded as
the superposition of the two spirals in the xy component and
the lineally polarized spin density wave in the z component.
Its real-space sublattice spin configurations corresponding to
the spin structure factor shown in Figs. 11(a) and 11(b) are
given in Figs. 12(a) and 12(b) for the two sublattices.

D. The double-q (type 2) state

Next, we move to the second type of double-q states, the
double-q (type 2) state. The corresponding intensity plots of
the sublattice spin structure factors are given in Figs. 11(c)
and 11(d). Note that six peaks appear in the xy component
of the static spin structure factors shown in Figs. 11(c), while
two of them indicated in Fig. 11(c) are just broad peaks with
weaker intensity than the other four peaks, about 52% weaker
in intensity, spontaneously breaking the sixfold rotational
symmetry. As can be seen from Figs. 11(c) and 11(d), the
associated wave vectors run along the NN directions. Hence,
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FIG. 11. The intensity plots of the sublattice spin structure fac-
tors in the wave-vector (qx , qy) plane in various type of double-q
states at J2/J1 = 0.3: [(a), (c), and (e)] the transverse component
S⊥(q) and [(b), (d), and (f)] the longitudinal component S‖(q).
The parameters are H/|J1| = 1.5, T/|J1| = 0.017, and L = 108 for
(a) and (b), H/|J1| = 1.5, T/|J1| = 0.025, and L = 108 for (c) and
(d), and H/|J1| = 2.5, T/|J1| = 0.027, and L = 150 for (e) and (f).

overall features of the static spin structure in this double-q
(type 2) state are similar to those in the double-q (type 1)
state. The real-space spin configuration, however, are very
different. We show in Figs. 13(a) and 13(b) the real-space
spin configurations in the double-q (type 2) state, (a) for the
sublattices I, and (b) for the sublattice II. In Figs. 13(c)–13(f),
spins at various sites on the sublattice I [(c) and (d)] and on
the sublattice II [(e) and (f)] are reorganized with a common
origin. As can be seen from the figures, the double-q (type 2)
state has a coplanar structure in real space, spins lying on a
plane containing the magnetic-field (z) axis, in contrast to the
noncoplanar structure of the double-q (type 1) state.

E. The double-q (type 3) state

Still another type of double-q state, the double-q (type
3) state, is also possible, which actually occupies a rather
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FIG. 12. Real-space sublattice spin configurations in the double-
q (type 1) state obtained by short-time average of 400 MC steps:
(a) for the sublattice I and (b) for the sublattice II. The parameters are
J2/J1 = 0.3, H/|J1| = 1.5, T/|J1| = 0.017, and L = 108. [(a) and
(b)] The xy components of the spin are represented by the arrow,
while the z component is represented by the blue-to-red color scale.
In (c) and (d), spins at various sites on the sublattice I are reorganized
with a common origin: (c) the top view in the (Sx , Sy) plane and
(d) the side view in the (Sx , Sz) plane.

wide region of the phase diagram of Fig. 3. The typical
intensity plots of the double-q (type 3) state are shown in
Figs. 11(e) and 11(f). Unlike the double-q states of type 1 or
2, the peaks of S‖(q) appear at the same two-pair positions as
those of S⊥(q). Indeed, a closer inspection has revealed that
the ordering wave vectors at the double-q (type 3) state have
features different from those of the other double-q states (type
1 and type 2). In Figs. 14(a) and 14(b), we show the intensity
plots of both (a) S⊥(q) and (b) S‖(q), focused around one
given spot located near the qy axis corresponding to the NN
direction of the honeycomb lattice, together with the curve
of the degenerate ring. As can be seen from the figures, the
peak positions of S⊥(q) and of S‖(q) differ somewhat, both
being off lines from the NN direction in mutually opposite
directions. Hence, wave vectors in the double-q (type 3) state
are actually composed of four individual wave vectors. Fur-
thermore, both peak positions deviate even from the degener-
ate ring, the |q∗| value being smaller than the degenerate-ring
radius by about 2% in S⊥(q) and by about 4% in S‖(q). In fact,
the deviation of the |q∗| value from the degenerate ring is also
seen for other states due to the effects of thermal fluctuations,
though by the same amount between in S⊥(q) and in S‖(q).

To further examine the nature of the ordering, we show
in Figs. 14(c) and 14(d) the size dependence of the S⊥(q)
and S‖(q) peaks. As can be seen from the figure, the peak
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FIG. 13. Real-space sublattice spin configurations in the double-
q (type 2) state obtained by the short-time average of 100 MC steps:
(a) for the sublattice I and (b) for the sublattice II. The parameters are
J2/J1 = 0.3, H/|J1| = 1.5, T/|J1| = 0.025, and L = 200. [(a) and
(b)] The xy components of the spin are represented by the arrow,
while the z component is represented by the blue-to-red color scale.
In (c)–(f), spins at various sites on the sublattice I [(c) and (d)] and II
[(e) and (f)] are reorganized with a common origin: [(c) and (e)] the
top view in the (Sx , Sy) plane, and [(d) and (f)] the side view in the
(Sy, Sz) plane.

positions clearly differ in |q| between in S⊥(q) and in S‖(q).
On increasing the lattice size L, the peak of S⊥(q) tends to
sharpen, which seems consistent with the expected quasi-LRO
of the xy components: remember that the xy spin components
possess the U(1) [or SO(2)] symmetry around the z axis under
the magnetic field. A similar behavior is observed in the size
dependence of the peak height of S‖(q) suggesting the exis-
tence of the quasi-LRO also in the longitudinal component.

The real-space spin configurations in the double-q (type 3)
state are shown in Figs. 15(a) and 15(b) for the sublattice I
and Figs. 15(c)–15(f) for the sublattice II. The spin configu-
rations are shown in (a) and (c) and in (b) and (d), each set
representing two different spatial regions in the same sample.
As can be seen from the figures, the xy-spin components
form interweaving vortex/antivortex lattice patterns. The state
shown in Fig. 15(a) looks like a periodic array of vortices
as highlighted by the circled regions in the figure, while
antivortexlike spin configurations are formed in the regions
between the vortices. Likewise, the state shown in Fig. 15(b)
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FIG. 14. The intensity plots of the sublattice spin structure fac-
tors in the double-q (type 3) state focused around one spot located
close to the qy axis: for (a) the transverse component S⊥(q) and
(b) for the longitudinal component S‖(q). The parameters are J2/J1 =
0.3, H/|J1| = 2.5, T/|J1| = 0.027, and L = 240. The blue dotted
curve represents the degenerate ring corresponding to J2/J1 = 0.3
as shown in Fig. 2. The wave-vector |q| dependence of the static
spin structure factor peaks of (c) the transverse component S⊥(q),
and (d) the longitudinal component S‖(q), measured along the line
passing the peak position in the NN direction. The parameters are
J2/J1 = 0.3, H/|J1| = 2.5, and T/|J1| = 0.02708 for the lattice sizes
L = 108, 150, 200, and 240.

looks like a periodic array of antivortices, while vortexlike
spin configurations are formed in the regions between the an-
tivortices. The vortex-lattice-looking region on the sublattice I
[Fig. 15(a)] looks like the vortex lattice also on the sublattice
II with some phase shift [Fig. 15(c)], and the antivortex-
lattice-looking region on the sublattice I [Fig. 15(b)] looks like
the antivortex-lattice also on the sublattice II with some phase
shift [Fig. 15(d)]. The reason why the vortex-lattice-looking
region and the antivortex-lattice-looking region spatially al-
ternates in the same sample is simply because the q value
associated with the present vortex/antivortex lattice state is
incommensurate with the underlying triangular sublattice, and
the relative phase difference gradually modulates from lattice
point to lattice point. Indeed, the |q| value associated with the
present vortex/antivortex order is |q| � 2.43 as can be seen
from Fig. 14(c), slightly off the threefold commensurate value
of |q| = 4π/3

√
3 � 2.418.

In Figs. 15(e) and 15(f), spins on one sublattice at various
sites are reorganized in the spin space with a common origin:
a top view in the (Sx, Sy) plane in (e) and a side view in
the (Sx, Sz) plane in (f). One can see from Fig. 15(f) that the
spin texture does not cover a whole sphere, only a half sphere
being mapped like a half-skyrmion or “meron” [48–50]. The
meronlike structure arises from the modulation of the spin
z component characterized by q∗ observed in S‖(q). Hence,
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FIG. 15. [(a) and (b)] The real-space sublattice spin configura-
tions of the double-q (type 3) state obtained by the short-time average
of 1000 MC steps: [(a) and (b)] for the sublattice I and (c)–(f)
for the sublattice II. The parameters are J2/J1 = 0.3, H/|J1| = 2.5,
T/|J1| = 0.027, and L = 240. The spin configurations are shown in
(a) and (c) and in (b) and (d), each set representing two different
spatial regions in the same sample. The xy components of the spin
are represented by the arrow, while the z component is represented
by the blue-to-red color scale. In (e) and (f), spins at various sites on
the sublattice II are reorganized with a common origin: (e) the top
view in the (Sx , Sy) plane and (f) the side view in the (Sx , Sz) plane.

the sublattice spin structure in the double-q (type 3) state is a
meron/antimeronlike lattice rather than the vortex/antivortex
lattice.

F. The triple-q (collinear) state

We now move to the triple-q state. We find only one type
of triple-q state in our model with J2/J1=0.3, the triple-q
(collinear) state. The corresponding sublattice spin structure
factors are shown in Fig. 16. S‖(q) exhibits sharp peaks of
equal intensities at all q∗ wave vectors in the NN directions,
keeping the C3 lattice symmetry. The observation is consis-
tent with the behavior of the m3 order parameter shown in
Fig. 4(b). S⊥(q) also exhibits peaks at the same positions as
the ones of S‖(q), while they remain very broad, suggesting
only a weak SRO developed in the xy-spin component. The
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FIG. 16. The intensity plots of the sublattice spin structure fac-
tors in the wave-vector (qx , qy) plane in the triple-q (collinear)
state: (a) the transverse component S⊥(q) and (b) the longitudinal
component S‖(q). The parameters are J2/J1 = 0.3, H/|J1| = 1.10,
T/|J1| = 0.03617, and L = 108.

degenerate ringlike structure characteristic of the ring-liquid
paramagnetic state is still clearly visible in S⊥(q), suggesting
the remanence of enhanced fluctuations similar to those of the
ring-liquid state. As already mentioned, from the symmetry
viewpoint, this collinear state is adiabatically identical with
the Z state observed in the triangular model [33].

A typical real-space spin configurations in the triple-q
(collinear) state are shown in Fig. 17: (a) for the sublattice
I and (b) for the sublattice II. As can be seen from the
figures, the spin z component on each sublattice forms a
super-triangular-lattice pattern, while the spin xy components
remain disordered, leading to the collinear spin ordering. The
spin z-component configurations on the two sublattices turn
out to be essentially similar, their apparent difference borne
by appropriate phase factors between the sublattices I and II.
Namely, each of the triple-q wave vectors, q∗

1, q∗
2 and q∗

3,
possesses associated phase factors, αq∗

1
, αq∗

2
and αq∗

3
, which are

not necessarily equal with each other, reflecting our choice of
the unit cell indicated in Fig. 1, which apparently breaks the
lattice C3 symmetry. Some more information of the MF level
is given in Ref. [42].

The triple-q (collinear) state is realized in the phase dia-
gram only at relative high temperatures and at the intermediate
field, say, around H/J1 � 1.5. In fact, the ordering behaviors
at this intermediate field turns out to be quite rich, as can
be seen from the H-T phase diagram of Fig. 3. Namely, on
decreasing the temperature from the ring-liquid paramagnetic
state, the system first enters into the collinear triple-q state,
then into the noncollinear but coplanar double-q state [double-
q (type 2) state], then into the noncoplanar double-q state
[double-q (type 1) state], and eventually into the noncoplanar
single-q (NN) state at low enough temperatures.

In concluding this section, we comment on our MF anal-
ysis very briefly. In order to clarify the origin of the various
multiple-q states observed in this section, we also perform a
MF analysis following the methods of Reimers et al. [46] and
of Okubo et al. [32,33]. The details are given in Ref. [42].
Note that our MF analysis have some limitations in accuracy
since it completely neglects fluctuations. Furthermore, as we
have used the knowledge of the static spin structure factors
obtained from our MC simulations in finding the possible
solutions of the MF equation, we cannot rule out any state
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FIG. 17. Real-space sublattice spin configurations in the triple-q
(collinear) state obtained by the short-time average of 1000 MC
steps: (a) for the sublattice I and (b) for the sublattice II. The
parameters are J2/J1 = 0.3, H/|J1| = 1.5, T/|J1| = 0.03778, and
L = 200. The xy components of the spin are represented by the
arrow, while the z component is represented by the blue-to-red color
scale. In (c) and (d), spins at various sites on the sublattice I are
reorganized with a common origin: (c) the top view in the (Sx , Sy)
plane and (d) the side view in the (Sx , Sy) plane. Essentially the same
figure is obtained also for the sublattice II.

other than the ones reported here as saddle-point MF solu-
tions. As a stable state, our MF analysis always yields only
the umbrella-type single-q state in contrast to the richness of
the phase diagram of Fig. 3. This inadequacy is due to the
neglected fluctuations. The energy scale associated with the
ordering at the MF level is an order of magnitude greater
than the true transition temperature Tc determined by MC.
Though Tc generally tends to be over-estimated in any MF
analysis due to its negligence of fluctuations, the extent of
the over-estimation is quite remarkable in the present case.
This is probably due to the ringlike degeneracy where many
possible wave vectors compete, which is again neglected in
the present MF analysis. However, we succeed in obtaining
all ordered state observed in our MC simulation, at least
as the saddle-point solutions of the MF equations. It then
turns out that the umbrella-type single-q is the only stable
solution and the all other states are just the saddle-point
solutions, indicating that the umbrella-type single-q state is
always stabilized at the MF level. This observation highlights
the crucial importance of fluctuations in stabilizing the various
multiple-q states in the present honeycomb-lattice system.
The MF analysis also provides us some useful information
about, e.g., the running direction of the wave vector chosen
from the degenerate ring, the relative relationship between
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the phase factors in each multiple-q state, as well as the
convenient compact expressions of the spin configurations
describing the spin configurations in each multiple-q state,
etc., even when the multiple-q states are not true stable states
at the MF level.

IV. OTHER VALUES OF J2/J1

In the previous section, we have focused on the case of
J2/J1 = 0.3. There, the ordering behavior has turned out to
be quite rich, including a variety of multiple-q states. In this
section, we touch upon the ordering behavior of the model
for other J2/J1-values in the range 1/6 < J2/J1 < 0.5, i.e.,
J2/J1 = 0.20, 0.25, 0.35, and 0.45. We find that, unlike
the case of J2/J1 = 0.30, most of the H-T phase diagrams
consists of umbrella-type single-q states, as shown in Fig. 18,
being qualitatively similar to the MF phase diagram (see
Ref. [42]). Exceptions might be that, for J2/J1 = 0.25, the
triple-q (collinear) state appears in a narrow part of the phase
diagram, and that, for J2/J1 = 0.45, two kinds of triple-q
states possessing different spin configurations from that in the
triple-q (collinear) state, are stabilized. In fact, J2/J1 = 0.45
is close to the border line value J2/J1 = 0.50 at which the
degenerate ring coincides with the first Brillouin zone (BZ)
boundary, where underlying physics might be related to the
BZ boundary. The two triple-q states observed at J2/J1 = 0.45
are the “3-1 triple-q state” and “collinear 3-1 triple-q state”
already reported in Ref. [19] for J2/J1 = 0.5. The 3-1 triple-q
state is not a collinear state different in nature from the triple-q
(collinear) state realized at J2/J1 = 0.3 and 0.25. On the other
hand, we find that the spin configuration in the collinear
3-1 triple-q state, shown in Appendix B, can be described
by the same equation as in the triple-q (collinear) state (see
Eq. (33) in Ref. [42]). The apparent difference in their spin
configurations comes only from the length of the ordering
wave vectors on the associated degenerate ring.

We also comment that the emergence of an infinituple-q
ordered state called a “ripple state” was recently reported in
Ref. [51] for the system of J2/J1 = 0.18 lying close to the AF
phase boundary.

V. SUMMARY AND DISCUSSION

In summary, we have investigated the ordering behaviors
of the frustrated J1-J2 classical honeycomb-lattice Heisenberg
AF under a magnetic field. Special attention has been paid
to the case of J2/J1 = 0.3, which is located in the middle
of the paramagnetic (ring-liquid)-helical phase boundary. The
ringlike continuous degeneracy, and the resulting paramag-
netic ring-liquid state provides a matrix of a rich variety of
multiple-q ordered states stabilized under the field.

Via extensive MC simulations on the model, we have
found a variety of multiple-q states including the single-q, the
double-q, and the triple-q states, also including the noncopla-
nar, coplanar and collinear states. In contrast to the triangular-
lattice case, the triple-q skyrmion-lattice state is not stabilized.
In fact, the obtained H-T phase diagram turns out to differ
considerably from that of the corresponding triangular-lattice
model.
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FIG. 18. The H -T phase diagrams for J2/J1 = 0.20, 0.25, 0.35,
and 0.45 obtained by MC simulations. Transition points denoted by
black dots are determined from the specific-heat peak.

For single-q states, the umbrella-type and the fan-type
single-q states are found, the latter being stabilized only in
high field. The umbrella-type single-q state occupies a wide
region in the H-T phase diagram, which might be further
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divided into several types of phases depending on the running
direction of the associated q vector. In the low-temperature
limit, the q vector running along the NN direction is preferred
irrespective of the filed intensity for J2/J1 = 0.3 as is indi-
cated by the low-temperature expansion calculation, whereas
at higher temperatures the q vector sometimes runs along the
NNN direction or along the intermediate direction between
NN and NNN.

In addition to these single-q states, three distinct types of
double-q states, i.e., the type 1, 2, and 3 double-q states, are
identified. The double-q (type 1) state is similar to the double-
q state of the triangular-lattice model. It is a noncoplanar
state with the double-q structure in the xy plane, forming
the linearly polarized spin-density wave along the z direction.
The double-q (type 2) state is a coplanar state where spins
lie on a plane containing the z axis. Particularly intriguing
might be the double-q (type 3) state, which corresponds to
an interweaving meron/antimeronlike lattice state.

The triple-q state realized in the present honeycomb model
at J2/J1 = 0.3 is the collinear triple-q state in which the spin
z component forms a superlattice structure incommensurate
with the underlying honeycomb lattice and the translational
symmetry is spontaneously broken. This collinear state is
adiabatically identical with the “Z” state identified in the
triangular-lattice model. In the latter state, the transverse spin
correlation length turns out to be moderately long, which
corresponds to the average domain size of the skyrmion (anti-
skyrmion) lattice domains. The triple-q skyrmion-lattice state,
which was observed to be stabilized in the triangular model in
the vicinity of its Z phase, turns out not to be stabilized in the
present honeycomb model.

We also have investigated other J2/J1 values than J2/J1 =
0.3, to find that the dominant ordered state is an umbrella-
type single-q state except for the case near J2/J1 = 0.5. The
richness of the J2/J1 = 0.3 phase diagram might be related to
the fact that the J2/J1 = 0.3 point is located in the midst of the
ring-liquid state in the J2/J1-T phase diagram, as shown by
Okumura et al. in Ref. [6] (see its Fig. 9). In a wider parameter
region of 0.2 � J2/J1 � 0.45, we have observed switching
behaviors of the running directions of the critical wave vector
in single-q states as a function of the magnetic field and the
temperature, which is likely to be a universal character of the
honeycomb-lattice system.

Finally, we wish to discuss possible implications of our
present results to real magnets. One candidate material might
be the S = 3/2 honeycomb-lattice Heisenberg antiferromag-
net Bi3Mn4O12(NO3) [26–31]. Spin-liquidlike behavior was
reported for this material in zero field, together with the field-
induced antiferromagnetism. Further comprehensive experi-
mental study of its in-field properties and the magnetic phase
diagram might be interesting. This material actually consists
of stacked honeycomb bilayers, with the AF coupling between
the two honeycomb layers. In comparing the present results
with experiments especially under the field, care needs to be
taken.

The other candidate material might be a quantum bilayer
kagome material Ca10Cr7O28, which was revealed to ex-
hibit a spin-liquidlike behavior [52,53]. It was suggested that
Ca10Cr7O28 might be modeled as a semiclassical honeycomb-
lattice Heisenberg model with the ferromagnetic NN and the

antiferromagnetic NNN interactions [54,55]. This material ex-
hibits a ring-liquidlike behavior with a characteristic ringlike
pattern in the associated neutron scattering signal [54,55].
Although J1 is ferromagnetic in this material distinct from
the one studied here, some of the ordering features may be
common. Further study is desirable to clarify the situation.

Finally, we wish to emphasize that the ringlike degener-
acy and the resulting ring-liquid state could be a source of
various exotic multiple-q states. This is true not only in the
present honeycomb-lattice system, but also in other systems
with different lattice geometries, e.g., a square-lattice system
having a ringlike degeneracy in its ground state was reported
to exhibit a vortex crystal state in Ref. [38]. Another example
might be a three-dimensional diamond-lattice system having
a surfacelike degeneracy [4], which was reported to give rise
to different types of multiple-q states [56].

We hope that our present theoretical studies on a simple
honeycomb model could provide a step toward the fuller
understanding of rich ordering behaviors exhibited frustrated
honeycomb magnets, or more generally, frustrated magnets
possessing a massive ground-state degeneracy.
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APPENDIX A: LOW-TEMPERATURE EXPANSION

In this Appendix, we explain some of the details of the
low-temperature expansion. Our low-temperature expansion
is performed following the method described in Refs. [4,6].
The partition function Z of the model with the Hamiltonian H

Z =
∫

DSe−βH
N∏

j=1

δ
[
S2

j − 1
]
, (A1)

is evaluated by the low-temperature expansion from an arbi-
trary state on the degenerate ring as an unperturbed state. The
fixed spin-length condition of the classical system requires
that the ground state of the model is a single-q state, and
we assume as a ground state under the magnetic field an
umbrellalike state given by

S
a
n = (√

1 − m′
z
2cosθa

n ,

√
1 − m′

z
2sinθa

n , m′
z

)
(A2)

θa
n = q∗ · rn + αq∗δaII, (A3)

where rn is the position vector of the unit cell n, a is the
label for the two sublattices (a = I or II), q∗ denotes the
incommensurate spiral wave vector in the xy plane, and αq
denotes the sublattice phase difference as defined by Eq.
(6) of Ref. [42]. The spin longitudinal component m′ is
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FIG. 19. Real-space sublattice spin configuration in the collinear
3-1 triple-q state obtained by the short-time average of 1000 MC
steps. The parameters are J2/J1 = 0.45, H/|J1| = 3.0, T/|J1| =
0.04006, and L = 120 under periodic boundary conditions. (a) The
xy components of the spin are represented by the arrow, while the z
component is represented by the blue-to-red color scale. In (b) and
(c), spins at various sites on a given sublattice are reorganized with a
common origin: (b) the top view in the (Sx , Sy) plane and (c) the side
view in the (Sx , Sz) plane.

obtained as

m′
z = H

λ+
q∗ − λ−

0

, (A4)

where the λ±
q are the eigenvalues of the Hamiltonian given in

Eq. (10) of Ref. [42].
Let us introduce the deviation vector πa

n, which satisfies
πa

n ⊥ S
a
n. Then, we have

Sa
n = πa

n + S
a
n

√
1 − π2

j . (A5)

The plane perpendicular to S
a
n can be spanned by the two

orthogonal unit vectors e⊥ and e⊥ × S
a
n, where

e⊥ = (−m′
zcosθa

n ,−m′
zsinθa

n ,

√
1 − m′

z
2
)
. (A6)

We decompose the vector πa
n as

πa
n = φa

ne⊥ + χa
n

[
e⊥ × S

a
n

]
(A7)

and expand the Hamiltonian up to the quadratic order both in
χ and φ. The partition function Z can be written as

Z =
∫ ∏

n,a

dφa
ndχa

n e−βH. (A8)

which can be evaluated by the Gaussian integrals. Neglecting
the terms independent of the critical wave vector q∗, we finally
get the following expression of the q∗-dependent part of the
free energy density,

F (q∗)/T ∼
∫

dq{ln[−(WI,I + |WI,II|)]

+ ln[−(WI,I − |WI,II|)]}, (A9)
where

WI,I(q∗, q)

= 2J2
{[(

1 − m′
z
2)cos(q∗ · ax ) + m′

z
2]cos(q · ax )

+ [(
1 − m′

z
2)cos(q∗ · ay) + m′

z
2]cos(q · ay)

+ [(
1 − m′

z
2)cos(q∗ · (ax − ay)) + m′

z
2]

× cos(q · (ax − ay))
} − λ+(q∗), (A10)

WI,II(q∗, q) = J1
{[(

1 − m′
z
2)cosαq∗ + m′

z
2]

+ [(
1 − m′

z
2)cos(q∗ · ax − αq∗ ) + m′

z
2]eiq·ax

+ [(
1 − m′

z
2)cos(q∗ · ay − αq∗ ) + m′

z
2]eiq·ay

}
.

(A11)

When m′
z=0, these equations reduce to the ones given in

Appendix of Ref. [6].

APPENDIX B: THE COLLINEAR 3-1 TRIPLE-q STATE

We present the real-space sublattice spin configuration for
the collinear 3-1 triple-q state observed for J2/J1 = 0.45, as
given in Fig. 19. We find that this spin configuration can
be reproduced by Eq. (35) of Ref. [42], that means, the
same equation of the triple-q (collinear) state observed for the
J2/J1 = 0.3, with the ordering wave vectors on the degenerate
ring corresponding to J2/J1 = 0.45.
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