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Dynamical quantum phase transitions (DQPTSs) represent a counterpart in nonequilibrium quantum time
evolution of thermal phase transitions at equilibrium, where real time becomes analogous to a control parameter
such as temperature. In quenched quantum systems, recently the occurrence of DQPTs has been demonstrated,
both with theory and experiment, to be intimately connected to changes of topological properties. Here,
we contribute to broadening the systematic understanding of this relation between topology and DQPTs to
multiorbital and disordered systems. Specifically, we provide a detailed ergodicity analysis to derive criteria
for DQPTs in all spatial dimensions and construct basic counterexamples to the occurrence of DQPTs in
multiband topological insulator models. As a numerical case study illustrating our results, we report on
microscopic simulations of the quench dynamics in the Harper-Hofstadter model. Furthermore, going gradually
from multiband to disordered systems, we approach random disorder by increasing the (super)unit cell within
which random perturbations are switched on adiabatically. This leads to an intriguing order of limits problem
which we address by extensive numerical calculations on quenched one-dimensional topological insulators and

superconductors with disorder.
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I. INTRODUCTION

Motivated by experimental progress on realizing quan-
tum matter far from equilibrium in various physical systems
including ultracold atomic gases [1,2], trapped ions [3-5],
nitrogen-vacancy centers in diamond [6] and light-driven
condensed matter systems [7,8], investigating the (coherent)
quench dynamics of quantum many-body systems has become
a broad frontier of current research [9]. A prominent example
allowing for a systematic study of intriguing nonequilib-
rium phenomena is provided by dynamical quantum phase
transitions (DQPTs) [10-24], a counterpart of thermal phase
transitions in coherent quantum time evolution, where the role
of a control parameter is replaced by real time.

The formal analog of a (boundary) partition function is in
the context of DQPTs played by the Loschmidt amplitude

G@t) = (Yle ™ |y) = r(t)e”, (1

with |¢) denoting the initial state and H denoting the Hamil-
tonian governing the nonequilibrium time evolution; i.e., [¥)
is far from being an eigenstate of H. The role of a free
energy density is assumed by the so-called rate function
gt)=— log(|g(t)|2)/N, where N is the size of the system,
i.e., in our present context the number of lattice sites. Further
following this formal analogy to thermal systems, DQPTs are
then simply hallmarked by nonanalytical behavior of g as a
function of real time, manifesting in characteristic cusps in
g(t) or one of its time derivatives. These cusps are accompa-

“christian.mendl @ tum.de
fjan.budich@tu-dresden.de

2469-9950/2019/100(22)/224307(10)

224307-1

nied by zeros of G(¢), known in statistical physics as Fisher
zeros of the partition function [25].

Taking a closer look at the analytical origin of DQPTs,
m-phase slips of the Pancharatnam geometrical phase ¢°(t)
[26,27] [see Fig. 1(a) for an illustration] have been identified
as a generic phenomenon behind the nonanalytical behavior
of g(t) [16]. The phase ¢(¢) is obtained from the total phase
¢(t) [see Eq. (1)] of the complex Loschmidt amplitude by
subtracting the dynamical phase

°t) = () — V(1) 2)

with the dynamical phase ¢%"(¢) = — fé ds (Y ($)|H|Y(s)).
Now, when G(¢) goes through a Fisher zero, its total phase
¢(t) generically jumps by m, as for any zero crossing of a
complex-valued function. Since the dynamical phase ¢®"(¢)
is always continuous in time, this jump must occur in the
geometrical phase ¢C(z). For the simple case of a time-
dependent two-level system—which is immediately relevant
for the experimentally realized two-band models—¢©(¢) may
be readily visualized using a Bloch sphere representation [see
Fig. 1(a)]. In this picture, ¢ (¢) is simply given by half of the
area bounded by the time evolution trajectory between times
7 =0 and t = ¢, which is augmented to a closed path by a
geodesic connecting its end points. At a Fisher zero, |¢) and
[ (¢)) then correspond to antipodal points of the Bloch sphere
which renders their geodesic connection [and with that ¢S (¢)]
ill defined. This provides a simple picture of how jumps in
¢%(t) occur at Fisher zeros hallmarking DQPTSs.

Among many other intriguing applications (see Ref. [20]
for a review), DQPTs have become an important diagnostic
tool for identifying topological insulator phases [28,29] in

©2019 American Physical Society
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FIG. 1. (a) Interpretation of the Pancharatnam geometrical phase
on the Bloch sphere as half of the surface area enclosed by the tra-
jectory up to time ¢ and the geodesic curve leading back to the initial
wave function. (b) Time evolution snapshots of the geometrical phase
for the three-band Hofstadter model after a quench. Phase vortices
are circled in red, and the marked areas show the admissible region
according to the criterion (5) (cross-hatched) and the complement of
the exclusion (6) (dotted). (c) Corresponding rate function and its
derivative. Cusps of g'(¢) hallmark DQPTs, i.e., the (dis)appearance
of Fisher zeros and phase vortex pairs.

systems far from equilibrium, as has been demonstrated in
recent experiments on various physical platforms, ranging
from ultracold atomic gases [19], over superconducting qubit
systems [30], and quantum walks in photonic systems [31,32],

to nanomechanical settings [33]. The underlying conceptual
insight is that changes in the topological properties over a
quench generically imply the occurrence of DQPTs [15,16].
Moreover, a one-to-one correspondence distinguishing such
topology-induced DQPTs from accidental ones has been de-
rived by identifying a dynamical topological order parameter
for DQPTs [16]. Shortly thereafter, generalizing the relation
between DQPTs and topological properties, the occurrence
of DQPTs in the quench dynamics in multiband topological
insulators has been investigated [34].

Our present work is aimed at further generalizing the
understanding of the interplay between topology and DQPTs.
More concretely, the purpose of our analysis is twofold: First,
we revisit the quench dynamics in multiband systems, going
beyond Ref. [34] by providing a comprehensive ergodicity
analysis resulting in criteria for DQPTs that depend on the
spatial dimension of the system and by constructing basic
counterexamples to the occurrence of DQPTs in multiband
topological insulator models, where not all individual bands
are topologically nontrivial (see Sec. II). Furthermore, our
results on multiband models are supported by numerical sim-
ulations of the quench dynamics in the Hofstadter model (see
Sec. II). Second, we connect the theory of DQPTs in multi-
band and disordered systems by approaching disorder from an
angle of increasing the (super) unit cell within which random
perturbations are switched on adiabatically. This leads to an
intriguing order of limits problem, and to settle the question
of whether topology-induced DQPTs generically survive up
to a finite disorder strength, we present extensive numerical
simulations on quenches in a disordered one-dimensional
(1D) topological insulator model (see Sec. IV).

II. ERGODICITY ANALYSIS FOR MULTIBAND SYSTEMS

We consider free fermions on a (hypercubic) d-
dimensional lattice with unit lattice constant and n degrees
of freedom per site. For the quantum quench, the system
is assumed to be prepared in an insulating state of a filled
lowest Bloch band, forming the ground state of some initial
Hamiltonian H', before the system Hamiltonian is quenched
at time ¢ = 0 to a final Hamiltonian H.

A. Loschmidt amplitude in multiband lattice models

Assuming lattice translation invariance, the conservation
of lattice momentum allows us to factorize the Loschmidt
amplitude as G(t) = [ [, G(r) with

Ge() = (Yele X [y) = re()e O, A3)

where H (k) denotes the n x n postquench Bloch Hamiltonian
in reciprocal space and |y) is the occupied Bloch state of the
initial Hamiltonian.

Denoting the eigenvalues and eigenvectors of the
postquench Hamiltonian H/ (k) by E;, and |u; ), respec-
tively, Eq. (3) can be written as

Ge(t) =) Nuga i) e 5. €
a=I

As mentioned, note that this formula holds for the special case
of a single filled band.
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B. General criteria for Fisher zeros

Because of the generalized triangle inequality in the com-
plex plane, the occurrence of a Fisher zero at momentum &,
i.e., G¢(t) = 0 for some time ¢, then requires [34]

ko) > < 3 foralla =1,....n. 6)

This condition affords a simple geometric interpretation when
thinking of the sum in Eq. (4) as a polygonal chain in the
complex plane, the edges of which have length |(uk,(,,|1pk)|2
that rotate with independent frequencies Ej ,: A violation of
Eq. (5) then simply means that one edge dominates in length
over all others such that concatenating all edges can never lead
to a closed polygon, independent of their direction.

Another relevant criterion for the (non)occurrence of
Fisher zeros at a fixed time ¢ is whether the points
{e7Erat},_; , all lie within a minor arc of the unit circle,
or equivalently, whether the convex polygon with vertices
{e7Ere!},_ , (as points in the complex plane) contains the
origin. In other words, if there exists a w(¢) € R such that

cos[Ey ot —w()] >0 forala=1,...,n, (6)

then the sum in Eq. (4) cannot be zero.

Note that the condition (5) only depends on the initial
state and the eigenvectors of H/(k), whereas the dynamical
criterion (6) solely depends on the eigenvalues of H/ (k) and
time 7.

C. Abundance of Fisher zeros

In Ref. [34], it has been shown that quenches from a trivial
initial state into a postquench Hamiltonian, all individual
bands of which have nonzero Chern number, there must be
a momentum for which Eq. (5) is satisfied. Basic ergodicity
arguments then imply that G () must come arbitrarily close to
zero at some finite time ¢. However, these important insights
do not yet provide a sufficient condition for the actual occur-
rence of a Fisher zero, i.e., an exact zero crossing of G, () at
any finite time. In the following, we fill this gap by performing
an additional dimensional analysis, revealing also the generic
dependence of the abundance of Fisher zeros on the spatial
dimension d. We note that zeros of the partition function in
the complex plane have been studied in the context of phase
transitions for more than 50 years, including the analysis of
the dimensional dependence of critical exponents [25,35-40].

We start by observing that Eq. (5) for n > 2 is generically
satisfied in an entire admissible region of spatial dimension d,
i.e., in a whole neighborhood in momentum space. Therefore,
as a subset of the (d + 1)-dimensional momentum-time space
(where momentum space is constrained to the admissible
region), the dimension of the manifold of Fisher zeros Gy (1) =
0 is generically given by (d + 1) —2 = d — 1, since both the
real and imaginary parts of G () have to be tuned to zero. This

J

2 cos(ky) 1

dimensional counting is independent of n for n > 2, again
since (e 1’ . e~y is ergodic on the n-dimensional
torus as long as the energies are rationally independent. As
a consequence, in a one-dimensional system (d = 1), the
Fisher zeros are expected to occur at isolated points in time-
momentum space, while for d = 2, the set of Fisher zeros
are curves in the three-dimensional momentum-time space,
in agreement with microscopic simulations on the quench
dynamics of two-band models in d = 2 [41].

We now elaborate on the somewhat exceptional but ex-
perimentally highly relevant case n = 2. There, Eq. (5) im-
plies |(ux1|¥i)|> = [(w2|¥x))* = 1/2, which generically is
only satisfied in a (d — 1)-dimensional admissible region,
rather than the d-dimensional neighborhood found for n >
2. However, this reduction in dimension of the set of ad-
missible momenta for n = 2 is exactly compensated by the
fact that then Gy (t) = e B +E2)/2 cos[t(Ey | — Er2)/2] in
the admissible region which requires only tuning of a single
real condition (the argument of the cos function) in order
to achieve zeros. Hence, Fisher zeros are now guaranteed to
occur at all admissible momenta, namely at the times #,; =
QI+ Dr/(Ex1 — Ex2), I = 1,2, ... such that they after all
still form a (d — 1)-dimensional set, similar to the n > 2 case.

D. Avoided DQPTs in quenched Chern insulators

Quenches from trivial states to Chern insulator Hamiltoni-
ans imply DQPTs, at least when assuming that all individual
bands of the postquench Hamiltonian have nonzero Chern
number [34]. To demonstrate that this quite strong assumption
is indeed necessary, we construct a basic counterexample,
where the postquench Hamiltonian is in a Chern insulator
regime, but where no Fisher zeros or DQPTs occur as not
all individual bands have nonvanishing Chern number. To
this end, consider a system with three bands, where we
quench from an initial Hamiltonian with only topologically
trivial bands to a Chern insulator which has Chern numbers
(1,0, —1), ordered from the lowest to the highest band. Now
we assume that the lowest band of the initial Hamiltonian is
formed by Bloch functions that have a large overlap (>1/+/2
at all momenta) with the trivial central band of the postquench
Hamiltonian. In this case, the Fisher-zero admissibility crite-
rion (5) can never be satisfied and, as a consequence, no Fisher
zeros or DQOTSs occur at any time.

III. QUENCHED HOFSTADTER MODEL

In this section, we practically verify our general ergod-
icity analysis by time-dependent simulations of DQPTs in
multiband systems. For concreteness, we consider the g-band
(magnetic flux 2 /g per unit cell) Hofstadter model [42,43]
defined in the Landau gauge by the momentum space (Bloch)
Hamiltonian

1 2 cos (kx — 27”) 1

H(k) =

(N

1 2cos [kx — —2”(371)]
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Because of conservation of lattice momentum, the
Loschmidt amplitude factorizes [see Eq. (3)]. We consider
two scenarios for the topologically trivial initial state |y):
(i) the initial state occupies the first orbital [in the basis of
Eq. (7)] for each k, i.e., |{x) = |e1), and (ii) | ¥y ) is equal to a
fixed complex-random state (independent of k). The second
scenario will exemplify the absence of symmetries beyond
lattice momentum conservation.

Figure 1(b) shows snapshots of d)kG(t) at several points in
time, for scenario (i) and g = 3. Fisher zeros, at which ¢kG(t)
is ill defined, appear as phase vortices at isolated k points
(circled in red) which contain the whole range of phases,
[—m, ], in any (arbitrarily small) neighborhood. This is in
line with the dimension analysis in Sec. IIC: The Fisher
zeros should describe a (d — 1 = 1)-dimensional submanifold
within momentum-time space. Concretely, within a certain
interval of time, Fisher zeros are found at all points in time
at isolated momenta.

The cross-hatched areas in Fig. 1(b) show the static (time-
independent) admissible region defined via Eq. (5), and the
dotted areas the complement of the dynamical exclusion cri-
terion (6), solely depending on the eigenvalues and ¢. Indeed,
the phase vortices stay inside both regions, as required. Note
that the stripe-shaped pattern of the static admissible region
(for the present model parameters) implies that phase vortex-
antivortex pairs are constrained to remain within a single
stripe. At t = 2.5, the dynamical exclusion holds within the
entire Brillouin zone, thus disallowing any Fisher zeros. We
note that in general the admissible regions have a different
dimension as compared to the manifold of Fisher zeros.

Figure 1(c) visualizes the corresponding rate function g(z)
and a closeup of its derivative. Because of the factorization
G(t) = [, Gk(1), the rate function equals

1
g =—% log(IG()*) = — /[ . dklog(|Gk(t)]*)

®

with [—m, 7]? being the Brillouin zone of the present model.
The (weak) log singularity of the integrand at Fisher zeros
leads to a cusp in the derivative g'(¢) at their (dis)appearance,
as visible in Fig. 1(c). Specifically, Fisher zeros occur for
the first time around ¢ = 1.3 (first cusp) and then disappear
around ¢ = 2.3 (second cusp).

To systematically understand the symmetries of the phase
pattern of qka(t) with respect to lattice momentum, first note
that H (k., —k,) = H (k)T according to Eq. (7), such that for
real-valued | ), Gk, —k,)(t) = Gi(). In particular, this mirror
symmetry holds in the first scenario. Moreover, central inver-
sion (k — —k) can be expressed as unitary transformation:
Let P, be the g x g permutation matrix which sends the jth
entry of a vector (counting from zero) to —j mod g (j =
0,...,g— 1), and define

(2n)?

o—iks

Uky) =P, - . . ©9)

Then
U (ky) H(k)U (ky) = H(—k). (10)

(a) ¢¢ (t) for the Hofstadter model with random initial state

[[8}

-2

(b) corresponding rate function g(¢) and closeup of g’(t)

FIG. 2. Pancharatnam geometrical phase and rate function for
the three-band Hofstadter model as in Fig. 1, but for a (k-
independent) initial state with complex random entries. The lack of
momentum symmetry of the geometrical phase is expected (see main
text). Note that the dynamical criterion for Fisher zeros (dotted areas)
only depends on the spectrum of H (k) and thus agrees with Fig. 1(b).

It follows that

G (t) = (U k) Y—ile U KDY—). (A1)
Since U (ky)le;) = e~ e;) and since the phase factor e~
cancels in G_(¢), this explains the inversion symmetry appar-
ent in Fig. 1(b).

In contrast, for the second scenario (ii) of a complex ran-
dom initial state, our analysis does not predict any momentum
symmetry. Figure 2 shows the geometrical phase and rate
function for the second scenario, and indeed momentum sym-
metry is now absent. Nevertheless, the dynamical exclusion
criterion in Eq. (6) only depends on the spectrum of H (k)
and time, and thus agrees for both scenarios. In particular, it
disallows any Fisher zeros at ¢ = 2.5, as in the first scenario.

IV. DISORDERED SYSTEMS
A. General framework

We now gradually extend the framework of Pancharatnam
geometric phase vortices leading to DQPTs from multiorbital
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to disordered systems. To this end, we consider systems that
are still periodic, but with respect to a supercell containing
£ > 1 lattice sites. Within the supercell, disorder is modeled
by adding random, spatially uncorrelated perturbations to
the Hamiltonian coefficients in a real-space representation,
concretely by changing the onsite potential term ,uc;c ; to
M cjcj with p; =t + Ap; and Ap; the perturbation. For
sufficiently large ¢, the system resembles a disordered system
(without any periodicity), as the relevant physical properties
are expected to be negligibly changed when matching distant
coefficients, i.e., Apji¢ = Ap;. The momentum representa-
tion of the Hamiltonian is now based on a supercell of size £.
For example, an unperturbed Hamiltonian in Bogoliubov—de
Gennes form

H:ifdk(éT & )dk)- 5] & (12)
2 T k —k @T_k

(with & the vector of Pauli matrices) is changed to
1 N .
H'= 2_/ dk (¢)" h k) ¢ (13)
TJT
with
Gt i)’ (4

and h'(k) being a 2¢ x 2¢ matrix depending on the disorder
realization. The index « in ¢, , appearing in (14) may be
interpreted as orbital index.

The Loschmidt amplitude defined in (3) becomes in the
supercell representation

Gi(r) = det((Yrejle ™™ ® 1y ) oy (15)

with the orthonormal v ;, j =1, ..., ¢ defining the initial
state as Slater determinant | ; ... ¥x.¢) of occupied modes.
We denote the complex phase of G{ (1) by ¢ (¢). Note that one
recovers the special case of zero noise as

ol _ oa At
K=o Chp

14

Gl = Jwesle™ © y ) (16)

j=1

since the matrix in (15) can then be canonically diagonalized
due to translation invariance. In particular, the corresponding
phase ¢,‘f (1) is then given by the following ¢-fold superposition
of phases:

Jé
$i(t)=> ¢ ;(t) mod 2. (17)

j=1
The dynamical phase reads in the supercell representation

14

B0 ==t 3 W El) mod 27, (18)

J=1

and analogously ¢ (1) = ¢f () — Ey"'z(t).

Since Q,f (t) is a real-analytic function of the noise coeffi-
cients (such as Apu; in the example), the nonanalytic points
of the Pancharatnam geometrical phase (i.e., Fisher zeros of
the Loschmidt amplitude) cannot instantaneously disappear
when continuously increasing the noise strength; instead, the

nonanalytic points will continuously move in the k-t plane,
potentially annihilating or being created in pairs.

B. Disordered Kitaev chain

As a specific example, we investigate the Kitaev chain
[44,45] described by the Hamiltonian

1
H= Z [ —t(cle;y +He) + M<c;cj _ E)

JEZL
+ (chchrl +H.c.)i|, (19)

where ¢ is the hopping amplitude, u is the chemical potential,
and A is the superconducting gap.

Switching to the Bogoliubov—de Gennes momentum rep-
resentation of the Hamiltonian,

Hk)=dk) -z (20)

with cf(k) = [0, A sin(k), % —tcos(k)] and T the Nambu
pseudospin, one obtains the Pancharatnam geometrical phase
defined in (2), which allows to identify singular points of
the Loschmidt amplitude [16]. We now employ the supercell
representation to investigate the effects of disorder (see also
Appendix for technical details): For simplicity, we solely let
the chemical potential in (19) be site dependent, i.e., u; =
it + Apj with independent and identically distributed random
variables A ; chosen from some interval [—A fimax, Afbmax]
(uniformly distributed); we retain periodicity with period £ €
N, i.e., wj¢ = pu; for all j € Z. The specific parameters for
the following aret = 1, i = 6, and A = 1. We checked, how-
ever, that different disorder scenarios, such as adding noise
to the hopping amplitudes or superconducting gap parameters
instead of the potentials, lead to qualitatively similar findings
regarding the physics of DQPTs. In particular, the cusps of
the rate function (see below) remain intact. This holds even
though these scenarios differ regarding their effectiveness in
localizing the eigenstates of the Hamiltonian.

Figure 3 shows the Pancharatnam geometrical phase for
a fixed noise realization but increasing noise strength, and
various supercell sizes ¢. According to Eq. (17), the su-
percell representation effectively folds back the phase along
the momentum direction. Accordingly, the geometrical phase
assumes a stripelike pattern with increasing ¢; i.e., it varies
less as a function of momentum.

Using the supercell representation, the rate function for the
present model reads

] T
g = —;/0 dklog[|G; )]]/¢. @n

Thus, the zeros of g,f (t) result in (weak) log-singularities of
the integrand and corresponding cusps of g*(t).

Figure 4 visualizes g‘(t) for the disordered Kitaev chain
and random disorder realizations, illustrating (a) the effect of
increasing disorder at fixed supercell size and (b) increasing
supercell size at fixed disorder strength. The critical time ¢,
of the first Fisher zero for the case without disorder has been
obtained semianalytically [16]. One observes in Fig. 4(a) that
the rate function is continuously deformed with increasing
noise strength, and while the time points of the cusps (i.e.,
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FIG. 3. Pancharatnam geometrical phase for the disordered Kitaev chain with period ¢ and increasing disorder strength A j,,. Each row
corresponds to a fixed disorder strength (starting from zero disorder in the top row), and each column to a fixed supercell size €. The dashed
vertical lines mark the critical momentum k. of the ordered system (A pim,x = 0).

Fisher zeros) shift, the cusps do not instantaneously disappear
(see also the time derivative around 7. on the right). This is
expected due to the real-analytic dependence of the Loschmidt
amplitude on the noise coefficients, as detailed above. Visu-
ally, the perseverance of the cusps can be understood based on
the geometrical phase in Fig. 3. Namely, the cusps correspond
precisely to the phase vortices, and thus the (dis)appearance
of cusps and vortex-antivortex pairs at momenta k and —k
with increasing disorder strength is equivalent. This does not
happen instantaneously when turning on disorder at finite ¢,
since the vortex positions depend continuously on the disorder
strength and have a finite distance in momentum at zero
disorder.

However, in the limit £ — oo, the size of the effective
Brillouin zone associated with the supercell shrinks to zero,
leading to a nontrivial order of limits problem for the stability
of DQPTs against disorder. To settle this issue, we performed

extensive numerical simulations on systems with finite disor-
der strength and large £. Our results, summarized in Fig. 4,
give strong numerical evidence that the nonanalyticities in
the rate function hallmarking DQPTs persist up to signifi-
cant disorder strength even in the large ¢ limit, i.e., when
approaching the disordered case without residual translational
invariance.

Having investigated instances of disorder realizations so
far, we will now analyze averaging effects as the supercell size
increases. Figure 5 shows the histogram and corresponding
variance of the rate function g(¢) evaluated at time point t =
1, for various supercell sizes £. The observed =~ 1/¢ scaling
of the variance is likely due to the disorder contributions from
individual lattices sites being (almost) independent, analogous
to the sum of independent random variables in the central
limit theorem. This becomes plausible when assuming that
(16) holds approximately for weak disorder, and by inserting
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FIG. 4. Rate function and its derivative around the first critical
time point 7., for the disordered Kitaev chain with random disorder
realizations in the supercell representation.

(16) into (21) we get
I 1 (7 "
gﬁ(t)%—ZZ; /0 dklog[| (W jle™™ @y )11 (22)
j=1

Now a lattice to momentum transformation applied to h‘(k)
may be understood as an orthogonal transformation of the
random disorder coefficients, and if these are multivariate
normal distributed, the transformed coefficients will remain
independent.

PDF
200 =1
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100 ] /=10
[] ¢=100
0.07 0.1
(a) histogram
Var(g(t=1))
.\
10~ -
\.\\
\ 1
10-5 \.f
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’\
1076 ~o ‘
1 10 100

(b) variance

FIG. 5. Histogram and corresponding variance for random dis-
order realizations (Amax = %) of the rate function g‘(¢) evaluated
at t = 1. The variance exhibits a ~1/¢ scaling, with £ the supercell
size.

V. CONCLUDING DISCUSSION

We investigated the stability and topological properties
of dynamical quantum phase transitions going beyond the
minimal setting of lattice translation invariant two-band mod-
els in two somewhat related directions. First, building upon
recent results [34] on the occurrence of DQPTSs in multiorbital
systems, we demonstrated how the phenomenology of DQPTs
depends on the spatial dimension of the system by means of a
more in-depth ergodicity analysis of the Loschmidt amplitude.
We emphasize that our analysis (and Ref. [34]) was based on
the assumption of a single filled band. Hence, the derivation
of strict criteria for the occurrence of DQPTs in multiband
systems with more than one occupied bands remains an
interesting subject of future research.

Second, we considered random potential fluctuations
within a (super)unit cell of increasing size as a route toward
understanding the stability of DQPTs in disordered systems.
This approach yielded clear analytical insights supporting for
the considered settings the stability of DQPTs for finite unit
cells with random potential. However, a nontrivial order of
limits problem renders an analytical proof for the truly disor-
dered case of an infinite spatial period of the random potential
elusive. To fill this gap, at least for the considered model
systems, we presented numerical simulations for systems with
large unit cells, thus corroborating the existence of DQPTs
as hallmarked by nonanalyticities of the rate function up to
significant disorder strength.

The numerical simulations presented in this work encour-
age accompanying theoretical investigations: Specifically, a
promising direction could be a perturbation analysis (with
respect to disorder strength) applied to Eq. (15), which should
result in (16) as a lowest order term. Also, the questions of
whether and to what extent disorder contributions to the rate
function can indeed be treated as independent (as conjectured
in Sec. IV B) may be settled in future work.

We close by briefly discussing the relation of our present
analysis to recent other studies on the combination of disorder
and DQPTs. In Ref. [46], the interplay between quasiperiodic
potentials and DQPTs has been investigated, demonstrating
the existence of Fisher zeros in certain limits of quasidisorder
and identifying the value of the Loschmidt echo as a marker
for localization. Shortly after, in Ref. [47], DQPTs have been
exemplified to serve as a tool for diagnosing Anderson local-
ization transitions in certain disordered 1D and 3D models.
Very recently, the effect of disorder on DQPTs in extended
toric code models has been analyzed [48]. Approaching the
fate of DQPTs in disordered systems by following vortices
in the geometric phase in systems with a growing disordered
supercell, however, is unique to our present work.
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APPENDIX: GENERALIZED KITAEV CHAIN WITH
PERIODIC SUPERCELL STRUCTURE

We consider the Kitaev chain as in (19), generalized to site-
dependent coefficients, i.e.,

1
H = Z |: —l‘j(C;CjJrl + H.c.) ~|—/Lj<CjCj — E)
JeZ

+ (Ajejep, + H.c.)}. (A1)

The Hamiltonian may formally be represented in
Bogoliubov—de Gennes form as

— i T
H — ( . Cj Cj Cj+1 Cj+l oo )
y Bl_, Ai B; c!
Bj Aj+1 Bj+1 Cj+l
*
: : Cit1

with 2 x 2 blocks

1/ i 0 1/—t; —A*
Ai=—"" d Bi=-( " 7). (A2
J 2(0 —u;) me s 2<Aj fj) (A2

In the following, we assume periodicity with period £ € N,
ie., tive =1j, Wjre = Uj, and Aj+g = Aj forall j € Z. Thus,
we may subsume the creation and annihilation operators in a
spinor

Xn = (C(Zn cén (A3)

:
Conte—1  Conto—1)

and represent the Hamiltonian as

H = Z Xn hlocal Xn [(Xif)T hﬁop er+1 + HC]} (A4)

nez
with
Ao By
, B, A B
hlocal - X . (AS)
BZ—Z Ap
and
0 0
. 0
hhop = . (A6)
Bg,1 0

To arrive at a momentum representation of the Hamilto-
nian, we use Fourier transformation

1

dkdlkn sl
2

Xy = (A7)

with

Al N AT A AT T
=@y S v Gy L) (A8)

Here the index « in ¢, , may be interpreted as orbital index.
The first Brillouin zone is equal to the interval T = [—m, 7]
with periodic boundary conditions. Inserting (A7) into (A4)
yields

1

H o= o [ b (5 [+ (e oy + B

o (A9)

Note that the conventional momentum representation of the

Kitaev chain is recovered for £ = 1: In this case, hloCal = Ay
and hﬂlop = By, such that (for real-valued Ag)
1 N
H=— | dkdk)-7 (A10)
2 T
with J(k) = [0, Ag sin(k), “70 —tpcos(k)[ and T being the

Nambu pseudospin.

From a slightly different perspective, for the special cases
Ap=---=A;_ and By =--- = By_; we may again use
Fourier transformation applied to the orbitals:

¢
sl k.o _
Xk,a - (H{ )
k,

If this is inserted into (A9) it results in

27‘((@ 1)
Z eza(k+q)/£ ( (k+q)/t ) (A11)

*(k+q)/5

| G

i Z Clsqre Cerqye)

x [Ag + (el(kvLLI)/KB +Hec. )]( (k+q)/¢ )’ (A12)
—(k+q)/€

and with the substitution p = (k + ¢q)/¢ € T, one arrives at

1
H = dp(

_p)Ao + (e By + H.c. )]( )
o

*P

(A13)

Thus, we have again recovered (A10) (for real-valued A), as
expected.
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