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Hofstadter butterfly in a cavity-induced dynamic synthetic magnetic field
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Energy bands of electrons in a square lattice potential threaded by a uniform magnetic field exhibit a fractal
structure known as the Hofstadter butterfly. Here we study a Fermi gas in a 2D optical lattice within a linear cavity
with a tilt along the cavity axis. The hopping along the cavity axis is only induced by resonant Raman scattering
of transverse pump light into a standing-wave-cavity mode. Choosing a suitable pump geometry allows us to
realize the Hofstadter-Harper model with a cavity-induced dynamical synthetic magnetic field, which appears at
the onset of the superradiant phase transition. The dynamical nature of this cavity-induced synthetic magnetic
field arises from the delicate interplay between collective superradiant scattering and the underlying fractal band
structure. Using a sixth-order expansion of the free energy as a function of the order parameter and by numerical
simulations, we show that at low magnetic fluxes the superradiant ordering phase transition is first order, while it
becomes second order for higher flux. The dynamic nature of the magnetic field induces a nontrivial deformation
of the Hofstadter butterfly in the superradiant phase. At strong pump far above the self-ordering threshold, we
recover the Hofstadter butterfly one would obtain in a static magnetic field.
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I. INTRODUCTION

In the last decade, advancements in the manipulation of
cold atomic gases enabled the engineering of Hamiltonians
emulating the physics of effective gauge fields [1,2]. The
development of rotating traps [3,4] allowed to overcome the
challenge of coupling the external degrees of freedom of neu-
tral atoms to an effective vector gauge potential as for charged
particles. More sophisticated techniques based on light-matter
interaction [5,6] and lattice shaking [7,8] were also developed
to imprint a position-dependent geometric phase onto the
atomic wave function, analogous to the Aranov-Bohm phase
of electrons in an external magnetic field [9]. Shortly after,
the Hofstadter model [10,11] was implemented for cold atoms
in optical lattices by employing a laser-assisted tunneling
scheme [12–14]. The realization of such an artificial magnetic
field in lattice geometries [15,16] allows one to explore the
realm of topological many-body states of matter [17–19].
The most notable examples include measuring the Chern
number of nontrivial topological bands [20] and realizing
the Meissener phases for neutral atoms in ladder geometries
[21]. More recently, techniques exploiting internal degrees of
freedom as synthetic dimensions have been developed [22,23]
and are candidates for the observation of the quantum Hall
effect even in four dimensions [24].

The experimental realization of lattice models with ef-
fective gauge potential is of great interest for engineering
synthetic gauge theories [25]. Experimental realizations have
so far implemented static gauge fields which can be finely
tuned by varying experimental parameters, but are not dy-
namically affected by the atomic back action. However, to
simulate a genuine gauge theory, quantum matter needs to be
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dynamically coupled to a gauge (bosonic) field and the back
action of the matter dynamics onto the gauge field should be
accounted for. A first step in this direction is to use density-
dependent synthetic gauge fields [26,27], which were recently
observed for a Bose-Einstein Condensate (BEC) in a shaken
optical lattice [28,29]. A Z2 lattice gauge theory was also
experimentally realized [30,31].

Optomechanical systems [32,33] as well as cold atoms
in optical cavities [34] provide another natural route to the
realization of a dynamical gauge theory in a controllable and
accessible environment. This hinges on the nonlinearity of
these systems, where photons (phonons) feel the back action
of the atomic motion (photons). In view of the experimental
realization of a strongly interacting Fermi gas coupled to a
cavity [35] and the recent observation of a dynamical spin-
orbit coupling in a BEC in a linear cavity [36–39], theoretical
proposals [40–48] for dynamical gauge fields are now in reach
by experiments.

Here we study dynamical cavity-supported synthetic mag-
netic fields for fermions in an external optical lattice [12].
Atoms are driven by two transverse counterpropagating lasers
and can scatter photons into the cavity. The hopping along the
cavity axis is suppressed by a potential gradient. By choosing
proper laser detunings, it can be activated by resonant Raman
scattering of pump photons into a single resonant standing-
wave mode of the cavity [47]. Each pump laser here is respon-
sible for a particular hopping direction. Above a critical pump
strength, the collective buildup of the cavity field enables
resonant coherent tunneling. In addition, for any closed loop
in the atomic trajectory, a geometric phase proportional to the
enclosed area is imprinted onto the atomic wave function, in
analogy to the phase acquired by electrons in a magnetic field.

The onset of the superradiant (SR) phase transition and the
appearance of a synthetic magnetic field depends strongly on
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the phases imprinted, which can be tuned by setting the ratio
between the lattice constant and the pump field wavelength
B ∝ dy/λc. This is due to an intricate interplay between SR
scattering generating the synthetic magnetic field and the
emerging fractal energy bands corresponding to this field.
Such cavity-induced atomic back action on the effective gauge
potential is very different from existing free-space imple-
mentations. Interestingly, as shown below, the onset of the
SR phase transition (and hence appearance of the synthetic
magnetic field) exhibits a first-order behavior at low fluxes,
where the energy bands are Landau-like, while it becomes
second order for high flux. The energy spectrum itself carries
the signs of the nonlinearity of the atom-light interactions and
the dynamical nature of the magnetic field, resulting in the
emergence of peculiar structures compared to the commonly
known energy spectrum, i.e., Hofstadter butterfly [11].

The paper is organized as follows. In Sec. III D, we in-
troduce the detailed system model. The physical results are
summarized in Sec. III, where we focus on the bulk properties
of the system at half filling. Here the gas behaves as a
metal or semimetal, depending on the value of the magnetic
flux in a plaquette. We show the phase diagram, the energy
spectrum, and we investigate the point of change of the phase
transition from first to second order. Our final considerations
are reported in Sec. IV.

II. MODEL

We consider a Fermi gas confined in a two-dimensional
(2D) optical lattice of a lattice constant, d = {dx, dy}, in the
tight-binding regime. Hopping in the x direction is suppressed
by an additional energy gradient h̄� between neighboring
sites. This can be realized by adding a constantly accelerated
optical lattice, a magnetic field, or an electric field gradient
along the x direction. We consider only a single internal
atomic transition |g〉 ↔ |e〉 of frequency ω0. The hopping in
the x direction is restored via two-photon resonant scattering
processes mediated by cavity photons, where the resonance
condition is ωc � ω1 + � = ω2 − � [12]. Here, ω1 and ω2

are the frequencies of the two transversal laser pumps; see
Fig. 1.

Our model Hamiltonian in a tight-binding approximation
in a reference frame rotating at the average pump frequency
ωp = (ω1 + ω2)/2 then reads [47]

H = − Jy

∑
l,m

( f †
l,m+1 fl,m + H.c.)

− h̄η(a + a†)
∑
l,m

(e2iπmγ f †
l+1,m fl,m + H.c.)

− h̄�ca†a. (1)

Here Jy is the hopping amplitude in the y direction, η =
�1g0/δ = �2g0/δ is the two-photon Rabi coupling with δ =
ωp − ω0 the atomic detuning with respect to the average
pump frequency, g0 is the bare coupling strength of the cavity
mode to the atomic transition and �c = ωp − ωc is the cavity
detuning with respect to the average pump ωp. Note that
only resonant Raman scattering terms are retained in the
Hamiltonian. Further details are presented in Appendix A.

FIG. 1. Geometry sketch to realize a dynamical version of the
Harper-Hofstadter Hamiltonian: A 2D Fermi gas in a rectangular
lattice within a single-mode optical cavity is transversely illuminated
by two counterpropagating laser beams of orthogonal polarization.
The shaded area in the lattice represents the unit cell for φ = 2π/3.

The spatial phase dependence of the pump lasers imprints
a site-dependent tunneling phase γm = mγ = mkL/(2π/dy).
Hence, hopping around a plaquette, the wave function ac-
quires a total phase φ = 2πγ , which can be related to an
electron moving in a periodic potential threaded by a magnetic
field of strength |B| = 2πγ /(d2

y e).
The effective magnetic field breaks the translation sym-

metry of the original lattice and the Hamiltonian is invari-
ant under a combination of discrete translation and a gauge
transformation, i.e., magnetic translation. In particular, when
γ = p/q is a rational number with p and q being two integers,
and the energy spectrum splits into q subbands, which cluster
in a highly fractal structure known as Hofstadter butterfly [11].

In contrast to free-space setups, the hopping amplitude in
the cavity direction depends on the cavity field amplitude and
the effective magnetic field appears only for the nonzero cav-
ity field. Here the coherent amplitude 〈a〉 = α is determined
by the steady-state solution of the mean-field equation,

∂α

∂t
= −(�c − iκ )α − η� = 0, (2)

where

� =
∑
l,m

(e−2iπγ m〈 f †
l,m fl−1,m〉 + e2iπγ m〈 f †

l,m fl+1,m〉) (3)

is the atomic order parameter, which reveals emergent cur-
rents of equal number of left- and right-moving atoms along
the cavity axis. The order parameter � needs to be self-
consistently determined by diagonalizing the Hamiltonian at
fixed amplitude α:

� = 2

N2
k

∑
m

q∑
s=1

∑
k∈B.Z.

nF (εs,k ) cos(2πmγ )|vs,k(m)|2. (4)
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Here εs,k and vs,k(m) are the eigenvalues and eigenstates of
the Harper equation [10]:

Jy[eikywk(m + 1) + e−ikywk(m − 1)]

+ 2η(α + α∗) cos(kx − 2πmγ )wk(m) = εwk(m). (5)

We use the following Ansatz for the atomic wave function
�(l, m) = eikxl eikymwk(m), with wk = ∑

csvs,k(m) a linear
superposition of the eigenstates of the Hamiltonian.

Equations (4) and (5) are solved self-consistently
within the reduced Brillouin zone kx ∈ [−π, π ] and ky ∈
[−π/q, π/q], for a magnetic unit cell with periodic boundary
conditions in x and y directions. We focus on the contribution
of the bulk to the superradiance, neglecting boundary effects
which appear in a pair of chiral edge states [47].

III. RESULTS

A. Phase diagram

For weak pump η
√

N , the system is in the uncoupled nor-
mal state (N), i.e., the atoms form a collection of independent
chains in the y direction and the cavity is empty. Increasing
the effective pump strength the system exhibits a transition
to a SR state, where photons are resonantly scattered into
the cavity mode and the hopping in the cavity (x) direction
builds up.

The stationary cavity-field amplitude is depicted in Fig. 2.
It grows continuously above the SR threshold for large mag-
netic flux (0.21 < γ < 0.5) but displays a noncontinuous
jump at lower γ < 0.21. To better understand the change from
a second- to a first-order phase transition, as presented in
Appendix B, we expand the free energy of the system in the
Landau form up to sixth order in the atomic order parameter:

F ∼
(

1 − 4�c

�2
c + κ2

χ1η
2

)
|�|2 − 8�3

c(
�2

c + κ2
)3 χ3η

6|�|4

− 64�5
c

3
(
�2

c + κ2
)5 χ5η

10|�|6. (6)

The effective optical response of the Fermi gas after cycles
of absorption and emission of cavity photons is determined by
the static susceptibilities, χi (Fig. 3). The linear susceptibility
χ1 determines the phase transition threshold,

√
Nηc =

√
�2

c + κ2

4�cχ1
N, (7)

which is shown as a red solid line in Fig. 2. The sign of χ3

determines the order of the phase transition.
In particular, for strong magnetic fields we have χ3 > 0

and the transition is of the second order. The atoms then
behave like a Kerr medium [49], inducing an intensity-
dependent shift of the refractive index, n = n0 + n2I , with
n2 = −8χ3η

2�3
c (�2

c + κ2). For decreasing magnetic field, the
third-order susceptibility monotonically decreases, becoming
negative at γ � 0.21, which renders the transition first order
(bottom panel of Fig. 3). In this regime, higher order sus-
ceptibilities only slightly depend on the magnetic flux γ . In
fact, the atomic orbit size significantly exceeds the unit cell
of the original lattice, making the lattice structure negligible.

FIG. 2. Phase boundary (red line) as function of effective flux
γ /2π = p/q and rescaled pump field η

√
N using the field amplitude

modulus |α|/√N as background color. Note that p/q is discrete
and rational, with 1 < p < 7 and 1 < q < 15. The field amplitude
is determined self-consistently for a Fermi gas at half-filling at fixed
finite temperature kBT = 0.5ER, where ER = h̄2k2

c /2m is the recoil
energy. At small fluxes, γ < 0.21, the system exhibits a first-order
phase transition, while for bigger fluxes it is of second order. The
solid red line shows the analytical result for the critical threshold and
the red dashed line the beginning of the region of hysteresis.

The system then exhibits a universal behavior and the band
structure corresponds to Landau levels in free space.

B. First-order transition

At low γ , the emergent magnetic field has only a little
influence on the system dynamics. The temperature and the
presence of an open Fermi surface then play a fundamental
role to unravel the physical origin of the first-order behavior
of the phase transition. By inspection of the temperature

FIG. 3. Atomic susceptibilities, χ1 (red), χ3 (black), and χ5

(blue) at kbT = 0.5ER. The third order susceptibility χ3 becomes
negative below p/q = 0.21, signaled by the dashed black line.
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FIG. 4. (a) Third-order susceptibility, χ3, as a function of the
temperature and effective magnetic flux, 2πγ = 2π p/q, with 1 <

p < 6 and 1 < q < 13. The red line corresponds to zero suscepti-
bility, separating positive and negative regions. (b) An atom at the
Fermi surface is scattered after absorbing a photon to a higher energy
state via an Umklapp (top panel) or a normal process (bottom panel).
The process is depicted using two Brilliouin zones of the original
lattice. Cavity field amplitude (c) and isothermal compressibility
(d) at kbT = 0.05ER for γ = 1/3 (solid black) and γ = 1/4 (dashed
blue).

dependence of χ3 for a Fermi gas at half filling, we can iden-
tify an important change around γ ≈ kF /kL = 1/4 [Fig. 4(a)].
The susceptibility χ3 is either positive at any temperature or
becomes negative at low temperature. The two regions are
separated by the red solid line in Fig. 4(a).

In the latter case, the phase transition becomes first order at
low temperatures. This coincides with the regime where scat-
tering one photon keeps the atomic momentum state within
the same first Brillouin zone of the original lattice (normal
scattering). In contrast, the transition becomes second order
when the photon scattering is an Umklapp process [Fig. 4(b)],
i.e., by inverting the direction of the atomic motion, a mo-
mentum transfer (G = nkL) to the optical lattice is required.
However, the occupation of higher energy states at higher
temperatures can favor the Umklapp processes at the expense
of direct scattering, enhancing the rate to scatter to the next
Brillouin zone even for a small momentum transfer. This
explains why at higher temperatures a second-order phase
transition occurs and the critical temperature at which this
happens increases for small γ [Fig. 4(a)].

These results are confirmed by the numerical simulations
at lower temperatures, kbT = 0.05ER. The rescaled cavity
amplitude as a function of the pump strength either grows
continuously around the threshold for γ = 1/3 [black line in
Fig. 4(c)] or exhibits a jump at the critical point for γ = 1/4
[blue dashed line in Fig. 4(c)]. For γ = 1/3, the rescaled
amplitude shows an additional jump at higher pumps η > ηc,
hinting that an additional first-order transition inside the SR

FIG. 5. Atomic order parameter at T = 0.5ER for γ = 1/12 as a
function of the effective pump η

√
N . The arrows shows the hysteresis

loop and the dotted lines represent the metastable solution. The insets
show a qualitative picture of the free energy in the different regimes.

phase can appear. Such transition occurs when the cavity-
induced hopping exceeds the hopping in the y direction,
Jx/Jy = η(α + α∗) = 1. The two SR states are characterized
by the same order parameter but different isothermal com-
pressibility, κT = (1/ρ2)∂ρ/∂μ, where ρ is the density of the
Fermi gas. This divides the SR region into two phase zones:
SRI and SRII. In many respects, this suggests a liquid-gas type
of transition between the SRI and SRII phases, as confirmed
by the rapid growth of density fluctuations that can be inferred
from the divergence of the compressibility at the critical point
[Fig. 4(d)]. The transition is reminiscent of the case observed
for fermions in linear cavities without external optical lattice
[50]. In the latter case, however, the transition was driven by
the coupling to an additional degree of freedom, in a process
similar to the Larkin-Pimkin mechanism [51].

C. Hysteresis

For small magnetic flux, the system exhibits a bistable
hysteresis behavior near the SR threshold ηc. The hysteresis
loop and a qualitative picture of the free energy in the different
regions are shown in Fig. 5. As can be seen in the insets, below
the threshold

η1 = ηc√
1 − χ2

3 /
(
12χ1χ5

) , (8)

the solution with α = 0 (empty cavity) is the only minimum
of the free energy. Between η1 < η < ηc, the free energy has
three minima, either local or absolute. The solution for α �= 0
is metastable for η1 < η < η2, with

η2 = ηc√
1 − 3χ2

3 /
(
8χ1χ5

) . (9)

Between η2 < η < ηc, the zero field solution α = 0 is
metastable and finally ceases to be a minimum at ηc, where
the system becomes SR.
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FIG. 6. Energy spectrum as function of flux p/q for four different
pump strengths η

√
N = {1.1, 1.2, 1.3, 1.4}ER from top left to bottom

right corner at kbT = 0.5ER. The spectrum initially shows singular
shapes and reduces to the conventional Hofstadter butterfly at strong
pump.

D. Dynamical Hofstadter Butterfly

Figure 6 shows the energy spectrum as a function of
the magnetic flux p/q for increasing pump strength η

√
N .

The magnetic field, B ∼ p/q, emerges spontaneously with
the cavity field amplitude and leads to the opening of
q − 1 gaps in the band structure. As the SR phase is already
entered at lower pump power for stronger magnetic fields,
the gap opening progressively extends toward p/q = 0 as the
pump is increased. The different structures visible in the
energy spectrum strongly depend on the pump strength. At
low pump strength (top panels of Fig. 6), the gaps organize
in the shape of a small butterfly confined in the region of
large magnetic fields 0.21 < γ < 0.5. The gaps close at the
boundary of this region, where the amplitude of the cavity
field is infinitesimally small. When the pump is increased, the
Hofstadter butterfly is entirely retrieved (right-bottom panel in
Fig. 6) like in a static optical lattice. The gaps will gradually
close, generating a 1D tight-binding in the x direction with
bandwidth, 2Jx = 2η(α + α∗). In fact, the system evolves
toward a regime of very weakly coupled 1D chains in the x
direction, for which the magnetic field can be gauged out.

The distortion of the energy spectrum, compared to the
conventional Hofstadter butterfly [11], is due to the dynamical
nature of the coupling between atoms and cavity photons. At
a fixed magnetic field, the system spontaneously chooses the
most favorable amplitude of the cavity field, i.e., the effective
hopping parameter, Jx = η(α + α∗). As the system becomes
SR, the effective Lorentz force exerted by the artificial mag-
netic field favors the tunneling in the x direction, resulting
in an asymmetry of the tunneling amplitudes. Therefore, the
energy spectrum can be seen as the superposition of differ-
ent Hofstadter butterflies with asymmetric hopping, Jx − Jy.
While the fractal structure is preserved by the form of the

(a)

(b)

FIG. 7. (a) Effective cavity-induced hopping as a function of
flux p/q at different pumping strengths. Parameters: η

√
N =

{1.1, 1.2, 1.3, 1.4, 1.5}ER in black, dark blue, light blue, yellow, and
red, respectively. (b) Fermi surface at γ = 1/3 for kbT = 0.5ER for
η
√

N = 1.2ER (left) and η
√

N = 1.3ER (right).

Hamiltonian as the hopping phase is not cavity dependent,
the size of the gaps are set by the ratio of the hopping
parameters and are characterized by a nontrivial dependence
on the magnetic flux 2π p/q.

This is illustrated in Fig. 7(a), where the hopping ratio
Jx/Jy is shown as a function of the magnetic flux for different
pump strengths. In the weak pump regime (black and dark
blue lines), the dynamic butterfly is a superposition of static
Hofstadter butterflies with very different effective hopping
amplitudes. The hopping in the x direction grows as the
magnetic field is increased but remains rather small compared
to the hopping in the other direction. As a consequence, the
curvature of the band structure and the Fermi surface align
along the y direction, see left panel in Fig. 7(b).

As the pump is increased, the field amplitude and the
hopping in the x direction become almost independent of
the magnetic flux [red and yellow line in Fig. 7(a)]. In this
regime, the kinetic energy in the x direction dominates and
the Fermi surface aligns along the cavity axis. Note that at low
temperature, this is accompanied by the onset of a first-order
transition within the SR phase, SRI-SRII, as shown in the
previous section.

IV. CONCLUSIONS AND OUTLOOK

We have shown that nonlinear coupling between atomic
motion and a cavity-field mode offers a perspective on the
generation of synthetic dynamical magnetic fields. In contrast
to free space, the gauge field emerges spontaneously via max-
imizing the light scattered into the cavity and changing the
atomic density configuration. The complex interplay between
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|gn

|gn−1

|gn+1

|en+1

|en−1

|en

Ω2e
−iky

Ω1e
iky

G0 cos(kx)
ω1

ω2

ωc

Δ

δ

ω0

FIG. 8. Three generic lattice sites along x direction.

the fractal structure of the energy bands and the SR scattering
thus generates shapes for a dynamical Hofstadter butterfly.

Note that atoms are coupled only to a specific wavelength
of the light field determined by the chosen cavity mode.
As shown recently, employing several distinct cavity modes
the system gets more freedom and a global symmetry can
“emerge” in a cavity-QED system [52]. Therefore, general-
ization of our studied system to multimode cavities and, in
particular, a ring or fiber geometry [53] could allow us to fully
reproduce the minimal coupling of a charged particle to a local
U (1) gauge potential. Making use of the dynamical coupling
between light and atoms in cavity systems is a promising route
toward the experimental realization of synthetic dynamical
gauge fields. Moreover, on a different level, the mediation
of long-range two-body interactions due to the exchange of
photons can lead to the observation of exotic states, such as
particles with anyonic statistics in fractional quantum Hall
states.
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APPENDIX A: EFFECTIVE HAMILTONIAN

Consider atoms loaded into a 2D optical lattice of lattice
constant, d = [dx, dy]. The hopping along x direction is at
first suppressed due to the potential offset � between adjacent
lattice sites and then restored thanks to the cavity- and laser-
assisted hoppings. The hopping along y direction is due to the
kinetic energy of the atoms. Let us just focus on the x direction
and consider three generic lattice sites labeled n − 1, n, and n
as in Fig. 8. First consider only transitions which involve the

atomic excited state in site n, that is, |en〉. The Hamiltonian
H = H0 + Hint reads (h̄ = 1),

H0 = −(ω0 + �)σn−1 − ω0σn − (ω0 − �)σn+1 + ωca†a,

(A1)

Hint = �2e−ikye−iω2tσ+
n−1 + g0 cos (kxn)aσ+

n

+�1eikye−iω1tσ+
n+1 + H.c., (A2)

where σn−1 = |gn−1〉 〈gn−1|, σn = |gn〉 〈gn|, σn+1 =
|gn+1〉 〈gn+1|, σ+

n−1 = |en〉 〈gn−1|, σ+
n = |en〉 〈gn|, σ+

n+1 =
|en〉 〈gn+1|. For simplicity a two-photon resonance is
assumed ωc = ω1 + � = ω2 − � in the following and
k ≡ kc � k1 � k2.

Applying the unitary transformation U =
exp {−i[ω2σn−1 + ωp(σn − a†a) + ω1σn+1]t} to the
Hamiltonian H yields

H̃ = δ(σn−1 + σn + σn+1) + [�2e−ikyσ+
n−1

+ g0 cos (kxn)aσ+
n + �1eikyσ+

n+1 + H.c.], (A3)

where δ = ωc − ω0 ∼ ωp − ω0, with ωp = (ω1 + ω2)/2 the
average pump frequency. Here we have made use of
the relations Uσ+

n−1U
† = eiω2tσ+

n−1, etc. and H̃ = UHU † +
i(∂tU )U †. We find the stationary values of the operators σ+

n−1,
σ+

n , σ+
n+1 by setting to zero the Heisenberg equation of motion

i∂t O = [O, H̃ ] upon assuming a large detuning δ,

σ+
n−1 � 1

δ
(�∗

2eikyσn−1 + �∗
1e−ikyσn+1,n−1

+ g0 cos (kxn)a†σn,n−1),

σ+
n � 1

δ
(�∗

2eikyσn−1,n + �∗
1e−ikyσn+1,n

+ g0 cos (kxn)a†σn),

σ+
n+1 � 1

δ
(�∗

2eikyσn−1,n+1 + �∗
1e−ikyσn+1

+ g0 cos (kxn)a†σn,n+1), (A4)

where σn,n−1 = |gn〉 〈gn−1|, σn+1,n−1 = |gn+1〉 〈gn−1|,
σn+1,n = |gn+1〉 〈gn|, etc. Here we have also assumed a
negligible population of the excited state, |en〉 〈en| � 0, due
to the large detuning δ.

Substituting Eq. (A4) back in the Hamiltonian Eq. (A3)
yields the effective Hamiltonian,

H̃ (n)
eff = 2

δ

{
g2

0 cos2 (kxn)a†aσn

+ [�2g0e−iky cos (kxn)a†σn,n−1

+ �∗
1g0e−iky cos (kxn)aσn+1,n + H.c.]

}
, (A5)

where the constant terms proportional to �1 and �2, and terms
involving next-nearest-neighbor scattering σn+1,n−1 have been
omitted.

Considering now transitions which involve the states |en±1〉
results in the following contributions to the {n − 1, n, n + 1}
manifold:

H̃ (n−1)
eff ∝ 2

δ

{
g2

0 cos2 (kxn−1)a†aσn−1

+ [
�∗

1g0e−iky cos (kxn−1)aσn,n−1 + H.c.
]}

,

224306-6



HOFSTADTER BUTTERFLY IN A CAVITY-INDUCED … PHYSICAL REVIEW B 100, 224306 (2019)

H̃ (n+1)
eff ∝ 2

δ

{
g2

0 cos2 (kxn+1)a†aσn+1

+ [
�2g0e−iky cos (kxn+1)a†σn1,n + H.c.

]}
. (A6)

Assuming �1 = �2 = � ∈ R and λc = 2π/k = dx, the total
effective Hamiltonian takes the form

H̃eff = 2

δ

∑
n

{
g2

0 cos2 (kxn)a†aσn

+ �g0(a + a†)[e−iky cos (kxn)σn,n−1 + H.c.]
}
, (A7)

or in the second-quantized tight-binding formalism,

H̃eff = a†a
∑
n,m

εn,mc†
n,mcn,m

+ (a + a†)
∑
n,m

(
Jx

n,me−ikym c†
n,mcn−1,m + H.c.

)

+ Jy
∑
n,m

(c†
n,mcn,m−1 + H.c.), (A8)

where the hopping along the y direction is now also included.
The matrix elements are given by

εn,m = 2

δ
g2

0

∫∫
dxdy cos2 (kx)|W (x − xn)W (y − yn)|2

= 2

δ
g2

0

∫∫
dx cos2 (kx)|W (x − xn)|2,

Jx
n,me−ikym = 2

δ
�g0

∫∫
dxdyW ∗(x − xn)W ∗(y − yn)

× e−iky cos (kx)W (x − xn−1)W (y − ym)

= 2

δ
�g0

∫
dx cos (kx)W ∗(x − xn)W (x − xn−1)

×
∫

dye−ikyW ∗(y − ym)W (y − ym), (A9)

where W (X − R) = W (x − xn)W (y − ym) is the ground-state
Wannier function describing particles localized at the site
[n, m].

APPENDIX B: FREE-ENERGY EXPANSION

To derive an effective Landau theory for the atomic order
parameter �, as defined in the main text, we start from the the
action of the system expressed in momentum space:

S[α, α∗, c†
kx,ky

, ckx,ky ]

= �c|α|2

+ 1

βV

∑
n,kx,ky

(iωn − 2Jy cos(ky))c†
n,kx,ky

cn,kx,ky

− η(α + α∗)
1

βV

∑
kx,ky

(
e−kx c†

kx,ky
ckx,ky+γ

+ e−kx c†
kx,ky

ckx,ky−γ

)
.

(B1a)

Note that only the static component of the bosonic field
α is retained, which is linearly related to the atomic order
parameter by the equation of motion α = −η�/(�c − iκ ).
We integrate out fermionic degrees of freedom, obtaining
an effective action for the photonic field only, Seff[α, α∗] =
�c|α|2 + tr lnĜ−1. The trace operator

tr lnĜ−1 = tr lnG−1
0 −

∑
n

1

2n
tr(G0�)2n (B2)

is obtained by perturbatively expanding the Green function
G(k, iωn) around the zero order one,

G−1
0 (k, ωn) =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . . 0 0 0 0
0 iωn − 2Jy cos(ky − γ ) 0 0 0
0 0 iωn − 2Jy cos(ky − γ ) 0 0
0 0 0 iωn − 2Jy cos(ky − γ ) 0

0 0 0 0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B3)

where the perturbative term is given by the interaction matrix

�(k) = −η(α + α∗)

⎡
⎢⎢⎢⎢⎣

0 e−ikx 0 0 0
eikx 0 e−ikx 0 0
0 eikx 0 e−ikx 0
0 0 eikx 0 e−ikx

0 0 0 eikx 0

⎤
⎥⎥⎥⎥⎦.

(B4)

Here, iωn = π (2n + 1)/β are fermionic Matsubara frequen-
cies. By keeping up to the sixth order in α, the effective free

energy is

F = �c|α|2 − η2χ1(α + α∗)2 − η4

2
χ3(α + α∗)4

− η6

3
χ5(α + α∗)6, (B5)

or in powers of the atomic order parameter, �, reads

F ∼
(

1 − 4�c

�2
c + κ2

χ1η
2

)
|�|2 − 8�3

c(
�2

c + κ2
)3 χ3η

6|�|4

− 64�5
c

3
(
�2

c + κ2
)5 χ5η

10|�|6. (B6)
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The free energy depends on the cavity properties and the
coupling with the atoms is enclosed inside the susceptibilities

χ1 = 1

β

∑
n,k∈BZ

Gk (iωn)Gk+γ (iωn), (B7a)

χ3 = 1

β

∑
n,k∈BZ

[
G2

k (iωn)G2
k+γ (iωn)

+ 2Gk−γ (iωn)G2
k (iωn)Gk+γ (iωn)

]
, (B7b)

χ5 = 1

β

∑
n,k∈BZ

[
G3

k (iωn)G3
k+γ (iωn)

+ 3G2
k−γ (iωn)G3

k (iωn)Gk+γ (iωn)

+ 3Gk−γ (iωn)G3
k (iωn)G2

k+γ (iωn)

+ 3Gk (iωn)G2
k+γ (iωn)G2

k+2γ (iωn)Gk+3γ (iωn)
]
.

(B7c)

The susceptibilities shown in the main text are numerically
calculated by truncating the summation over the Matsubara
frequencies until convergence with fixed chemical potential
μ = 0, the same for the matrices G0(k, ωn) and �(k), which
are summed in momentum space over the original Brillouin
zone [−π/dx, π/dy].

Expansion of the susceptibility for low magnetic fluxes

To have a better understanding of the physics at low mag-
netic fluxes, we have analytically computed the expressions
for the susceptibilities χ1 and χ3. The first-order susceptibility
is

χ1 =
∑
k∈BZ

nF (εk+γ ) − nF (εk )

εk+γ − εk
, (B8)

with εk = Jy cos(k), the tight-binding energy along the y
direction where we set μ = 0 for half filling. We expand χ1

for small γ :

χ1(γ � 1) =
∑
k∈BZ

[−βnF (cos(k))[1 − nF (cos(k))]]. (B9)

Note that the linear term vanishes and the main contribution
to the linear susceptibility is a constant, which is proportional
to the compressibility of a 1D chain of fermionic particles in
the tight-binding regime. As nF (ε) is the probability that the
state ε is occupied, while 1 − nF (ε) is the probability that the
state ε is not occupied, their product represents the scattering

amplitude of a scattering process between two states of the
same energy, which at very low temperature is only possible
from one side to the other of the Fermi surface. The next
contribution to χ1 is quadratic and this behavior can also be
observed in the plot of the susceptibility χ1, see Fig. 2 in
the main text. Note that at zero order, in γ we don’t see
the effect of the magnetic field but rather the temperature,
dimensionality, and filling play the fundamental role.

The third-order χ3 susceptibility represents the response
of the medium to three photon processes, through cycles
of multiple emission and absorption. The full analytics
expression is

χ3 =
∑
k∈BZ

−2
nF (εk+γ ) − nF (εk )

(εk+γ − εk )3

+ n′
F (εk+γ ) − n′

F (εk )

(εk+γ − εk )2

+ 2
nF (εk−γ )

(εk−γ − εk )2(εk−γ − εk+γ )

− 2
nF (εk+γ )

(εk+γ − εk )2(εk−γ − εk+γ )

+ 2
nF (εk )

(εk−γ − εk )(εk − εk+γ )

×
(

1

εk − εk+γ

+ 1

εk − εk−γ

)

− 2
n′

F (εk )

(εk−γ − εk )(εk − εk+γ )
. (B10)

In a linear cavity, photons are in a superposition state of
two counterpropagating momenta. The interaction with the
cavity photons induces two type of processes. The first two
lines refer to cycles of absorption and emission where the
scattering processes always involve interactions with the same
momentum component of the photon field. The other lines re-
fer to scattering processes in which a redistribution of photons
between the two momentum components are involved. At the
lowest order in γ , the susceptibility χ3 becomes

χ3(γ � 1) =
∑
k∈BZ

β3

6
n f (εk )[1 − n f (εk )]

× [1 − 6n f (εk )[1 − n f (εk )]]. (B11)
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Phys. 83, 1523 (2011).

[3] P. Engels, I. Coddington, P. C. Haljan, V. Schweikhard, and
E. A. Cornell, Phys. Rev. Lett. 90, 170405 (2003).

[4] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff,
and E. A. Cornell, Phys. Rev. Lett. 92, 040404 (2004).

[5] Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V.
Porto, and I. B. Spielman, Phys. Rev. Lett. 102, 130401
(2009).

[6] Y.-A. Chen, S. Nascimbène, M. Aidelsburger, M. Atala, S.
Trotzky, and I. Bloch, Phys. Rev. Lett. 107, 210405 (2011).

[7] P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet,
J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M.
Lewenstein, and A. Eckardt, Phys. Rev. Lett. 109, 145301
(2012).

[8] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 (2014).
[9] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

[10] P. G. Harper, Proc. Phys. Soc. Sec. A 68, 874 (1955).
[11] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[12] D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003).

224306-8

https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/PhysRevLett.90.170405
https://doi.org/10.1103/PhysRevLett.90.170405
https://doi.org/10.1103/PhysRevLett.90.170405
https://doi.org/10.1103/PhysRevLett.90.170405
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.102.130401
https://doi.org/10.1103/PhysRevLett.102.130401
https://doi.org/10.1103/PhysRevLett.102.130401
https://doi.org/10.1103/PhysRevLett.102.130401
https://doi.org/10.1103/PhysRevLett.107.210405
https://doi.org/10.1103/PhysRevLett.107.210405
https://doi.org/10.1103/PhysRevLett.107.210405
https://doi.org/10.1103/PhysRevLett.107.210405
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1088/1367-2630/5/1/356


HOFSTADTER BUTTERFLY IN A CAVITY-INDUCED … PHYSICAL REVIEW B 100, 224306 (2019)

[13] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A.
Chen, and I. Bloch, Phys. Rev. Lett. 107, 255301 (2011).

[14] K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein,
Phys. Rev. Lett. 95, 010403 (2005).

[15] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[16] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature(London) 515, 237
(2014).

[17] N. Goldman, J. C. Budich, and P. Zoller, Nat. Phys. 12, 639
(2016).

[18] D.-W. Zhang, Y.-Q. Zhu, Y. X. Zhao, H. Yan, and S.-L. Zhu,
Adv. Phys. 67, 253 (2018).

[19] N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev. Mod. Phys.
91, 015005 (2019).

[20] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N.
Goldman, Nat. Phys. 11, 162 (2014).

[21] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Nat. Phys. 10, 588 (2014).

[22] O. Boada, A. Celi, J. I. Latorre, and M. Lewenstein, Phys. Rev.
Lett. 108, 133001 (2012).

[23] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman,
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