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We explore an unusual type of quantum matter that can be realized by qubits having different physical origins.
Interactions in this matter are described by essentially different coupling operators for all qubits. We show that
the simplest such models, which can be realized with localized states in Dirac materials, satisfy integrability
conditions that we use to describe pseudospin dynamics in a linearly time-dependent magnetic field. Generalizing
to an arbitrary number of qubits, we construct a spin Hamiltonian, which we call the γ -magnet. This system
does not conserve polarization of any spin and the net spin polarization. Nevertheless, for arbitrarily strong
interactions, nonadiabatic dynamics, and any initial eigenstate, we find that quantum interference suppresses
spin flips. This behavior resembles many-body localization but occurs in phase space of many spins rather than
real space. This effect may not have a counterpart in classical physics and can be a signature of a new type of
spin ordering, which is different from both disordered spin glasses and ordered phases of spin lattices.
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I. INTRODUCTION

In addition to spins, electrons in solid state generally carry
additional pseudospins: valley and band indices, position
inside two coupled quantum dots, etc. Every such discrete
index can add an independent qubit for quantum information
processing. Hence, it is possible to perform basic quantum
computations using just one electron without the need to
entangle different qubit carriers. Moreover, qubits of different
physical origins can be conveniently accessible by different
fields individually. For example, the true spin is coupled to
the magnetic field whereas the energies of spatially separated
electron states can be controlled by electric voltages.

Heterogeneous multiqubit systems are different from the
commonly known magnets with exchange or dipole interac-
tions because not only the strength, but also the type of in-
teraction is different now for different qubits. Therefore, here,
we raise the main question of this article: Can heterogeneous
interacting qubits show collective effects that are not found in
conventional quantum spin models?

This question would be hard to address by standard theoret-
ical means that essentially rely on the assumption of identical,
at least, in the statistical sense, spin interactions. Here, we
propose a different approach by observing that some of the
most elementary models of heterogenious qubits turn out to
be integrable and generalizable to arbitrary number N of in-
teracting pseudospins. By deriving an exact solution for their
behavior in a time-dependent magnetic field, we will show
an unusual effect that we named dynamic spin localization
(DSL), which means the “yes” answer to our question.

II. TWO QUBITS: BOUND STATES OF DIRAC ELECTRONS

The discovery of graphene and two-dimensional Dirac
semiconductors opens the possibility to assign simultaneously

several pseudospins to a single electron, including the valley
and Dirac subband indices, as well as the layer index in the
case of multilayer material. Additional electron confinement
in a region with several metastable states can boost this num-
ber. The phase space of such a multiqubit system may then be
comparable to a mesoscopic spin cluster, e.g., a nanomagnet.

As the most trivial example, consider a weakly bound state
near an impurity of a Dirac semiconductor [1]. Conduction
electrons carry both spin and valley degrees of freedom that
are described by corresponding Pauli operators sα and τα ,
where α = x, y, z. A weakly bound state then carries the same
degrees of freedom, so the effective Hamiltonian of these two
qubits in an external magnetic field contains the terms that are
normally found in conduction electrons,

H0 = βτ Bτz + βsBsz + ετzsz, (1)

where βs and βτ are the effective g factors that describe
couplings to the external out-of-plane magnetic-field B, and
ε is the effect of the Kane-Mele spin-orbit coupling [2]. This
Hamiltonian conserves qubit polarizations. However, a short-
range nonmagnetic impurity potential mixes degenerate local-
ized states from different valleys. This mixing is described by
the effective coupling ∼τx. In addition, the impurity potential
may introduce its own intrinsic spin-orbit coupling. Since τz

and sα are odd under time reversal, the additional allowed
spin-orbit coupling has the form ∼τzsx. Thus, the most general
two-qubit Hamiltonian for such a localized state is given by

H = βτ Bτz + βsBsz + ετzsz + g1τx + g2τzsx. (2)

This Hamiltonian does not conserve qubit polarizations,
and for arbitrary values of parameters, there is no simple ex-
plicit expression for its eigenvalues. However, it is integrable
in the sense that we can write a simple expression for the
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Hamiltonian that commutes with it for arbitrary values of all
parameters,

H ′ = Bτzsz + ε

βτ

τz + ε

βs
sz + g1

βτ

τxsz + g2

βs
sx, (3)

[H, H ′] = 0. (4)

Hamiltonians with such simple commuting partners attract
a lot of attention for their comprehensive dynamics during
quantum quenches and thermalization [3,4]. They often have
Poisson statistics of energy-level splittings and frequent ap-
pearance of exact energy-level crossings [5].

According to Ref. [6], a system with a time-dependent
Hamiltonian H1(t, ε), where t is time and ε is a constant
parameter, can be solvable if there is a nontrivial Hamiltonian
H2(t, ε) such that the following two conditions are satisfied:

[H1(t, ε), H2(t, ε)] = 0, (5)

∂H1/∂ε = ∂H2/∂t, ∀ t, ε. (6)

The pair H and H ′ does satisfy the relation,

∂H

∂ε
= ∂H ′

∂B
. (7)

Hence, according to Ref. [6], dynamics with the Hamiltonian
H that satisfies (4) and (7) can be also understood analytically
if B is linearly time dependent. The explicitly time-dependent
Hamiltonian,

H (t ) = βτ tτz + βstsz + ετzsz + g1τx + g2τzsx (8)

describes a situation that typically appears during the mea-
surement of a hysteresis loop so that the magnetic field has to
sweep from large negative to large positive values. In Dirac
semiconductors, sufficiently strong and fast time-dependent
effective magnetic fields can be induced optically [7].

As t → ±∞, qubits cannot flip due to the strong field
along z. Thus, we can consider a solvable scattering problem
such that qubits start as an eigenstate of τz and sz operators as
t → −∞. Such states are called diabatic states. The problem
is to determine qubit polarizations as t → +∞. This informa-
tion is contained in the transition probability matrix P, whose
element Pnm is the probability that our system is at the diabatic
state n at t = +∞ given that, at t = −∞, the system is in
state m.

The solution of this problem for the model (2) has been
previously conjectured in Ref. [7], and the rigorous proof of
this solution can be found in Ref. [6]. The states,

|↑↑〉, |↓↓〉, |↓↑〉, |↑↓〉 (9)

are eigenstates of the Hamiltonian (2) at t = ±∞. In the
basis (9), the transition probability matrix is given by [7]

PN=2 =

⎛
⎜⎝

p1 p2 0 q1 p2 q2

0 p1 p2 q2 q1 p2

q1 p2 q2 p1 p2 0
q2 q1 p2 0 p1 p2

⎞
⎟⎠, β1 < β2, (10)

where

p1,2 = e−πg2
1,2/β1,2 , q1,2 = 1 − p1,2.

III. THREE QUBITS

Apart from spin and valley, Dirac-like Hamiltonians gen-
erally contain other discrete degrees of freedom, such as
electron and hole indices of a Dirac cone. For example, the
graphene Hamiltonian with a Kane-Mele type of spin-orbit
coupling is given by [2]

HKM = v(kxτzσx + kyσy) + εσzτzsz, (11)

where kx,y are effective momenta of electrons, and Pauli
operators σα originate from the difference of two sites in the
unit cell of the honeycomb lattice of graphene. This degree
of freedom is the time-reversal invariant and does not couple
to the magnetic field, but it can couple to the other two
pseudospins by spin-orbit coupling.

A short-range nonmagnetic impurity can create bound
states near zero energy of the Hamiltonian HKM . Qubits would
then become additionally coupled by the intrinsic to the
impurity spin-orbit coupling. In addition to the Kane-Mele
term with strength ε, time-reversal invariance allows, then,
additional terms ∼τzsz, ∼τzsx, and ∼τzszσx. So, a realistic
model of qubit interactions for this localized state in a linearly
time-dependent magnetic field has the Hamiltonian,

H = t[β1τz + β2sz] + ετzszσz

+ ε′τzsz + g1τx + g2τzsx + g3τzszσx, (12)

where β1,2, ε′, η, and g1–3 are constant parameters.
To verify that the model (12) is integrable, we searched

for the Hamiltonians that would depend linearly on t and ε

and satisfy relations (5) and (6). One of these Hamiltonians
was chosen to contain the same types of qubit couplings as in
Eq. (12). We found that there is a family that contains not just
two but three independent Hamiltonians,

H1 = ετzszσz + t[β1τz + β2sz + β3σz]

+ η[β1β2τzsz + β1β3τzσz + β2β3szσz]

+ g1τx + g2τzsx + g3τzszσx, (13)

H2 = tτzszσz + ε

[
τz

β1
+ sz

β2
+ σz

β3

]

+ η[β3τzsz + β2τzσz + β1szσz]

+ g1

β1
τxszσz + g2

β2
sxσz + g3

β3
σx, (14)

H3 = ε[β3τzsz + β2τzσz + β1szσz]

+ t[β1β2τzsz + β1β3τzσz + β2β3szσz]

+ η
[
2β1β2β3τzszσz + β1

(
β2

2 + β2
3

)
τz

+β2
(
β2

1 + β2
3

)
sz + β3

(
β2

1 + β2
2

)
σz

]
+ g1(β3τxσz + β2τxsz ) + g2(β3τzsxσz + β1sx )

+ g3(β2τzσx + β1szσx ). (15)

In addition to commuting with each other, they satisfy the
relations,

∂H1

∂ε
= ∂H2

∂t
,

∂H1

∂η
= ∂H3

∂t
,

∂H2

∂η
= ∂H3

∂ε
. (16)

The Hamiltonian (12) is a special case of this family. It is ob-
tained from H1 by setting β3 = 0 and identifying ε′ = ηβ1β2.
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So, the transition probability matrix for the model (12) can
be obtained explicitly as well as for any of the Hamiltonians
H1, H2, and H3.

The class of possible integrable time-dependent Hamilto-
nians with only three spinlike variables is not restricted to the
three Hamiltonians (13)–(14). According to Refs. [6,8], if we
introduce constant parameters a, b, c, e1, e2, and e3, then,
we can also introduce a new time-variable T such that

t = aT + e1, ε = bT + e2, η = cT + e3. (17)

Then, the Hamiltonian,

H (T ) = aH1(T ) + bH2(T ) + cH3(T )

belongs to the class of solvable multistate Landau-Zener (LZ)
systems. The way to obtain an explicit expression for the tran-
sition probability matrix for evolution with such Hamiltonians
is described in detail in Refs. [8,9].

Moreover, the family (13)–(14) is only a special case of
integrable families called multitime Landau-Zener models [8].
There are also possibilities to construct integrable interacting
spin families that contain operators with, e.g., ∼1/t time de-
pendence of some of the parameters [10,11]. Hence, the possi-
bilities to find solvable time-dependent systems are numerous.
Therefore, quantum integrability is an attractive possibility
to study behavior of heterogeneous interacting qubits. This
is not only because solvable models provide the insight into
the nonperturbative regime, but also because they can do this
when standard methods, which usually deal with identical
spin types, cannot be used.

IV. γ-MAGNETS

The unusual behavior of heterogeneous qubit systems is
fully revealed if we look at their dynamics for arbitrary
number N of interacting qubits. We will demonstrate a quan-
tum interference effect that occurs with quantum spins in
a linearly changing external field. Interacting spin clusters
usually reverse their magnetization after passing through sev-
eral resonances in a slow linearly time-dependent field as
the black magnetization curve in Fig. 1 shows for a spin
S = 4 nanomagnet with quadratic anisotropy. At least, in
the adiabatic limit, the magnetization usually follows the
direction of the external field, which changes sign during the
hysteresis measurements. We will show that heterogeneous
spin interactions can make the magnetization in a linearly
time-dependent field behave in a radically different way.

After the field changes with any rate between strongly
different values, the state of our system ends up close to the
initial state, despite spin not being conserved as we show by
the blue curve for the magnetization in Fig. 1. This happens
for any multispin interaction strength and any initial state.
This is what we call DSL. We will demonstrate this effect by
constructing an analytically solvable model that shows it.

To construct an integrable N-spin Hamiltonian, let us re-
turn to the two-qubit one, in Eq. (2), and note that its coupling
terms,

γ1 ≡ τx, and γ2 ≡ τzsx (18)

FIG. 1. Numerically found normalized average magnetization
of the S = 4 spin with the Hamiltonian H (t ) = −aS2

z + bS2
x + βtSz

(black curve; a = 5, b = 0.5, β = 1), and a γ -magnet (32) with
N = 5 (blue curve and inset; ε = −10, β1 = 0.5, β2 = 1.7, β3 =
4.1, β4 = 7.1, β5 = 9.2, g1 = g5 = 0.14, g2 = g4 = 0.15, g3 =
0.17). Evolution starts from the highest-energy state.

are represented by 4 × 4 matrices that satisfy the relations,

{γ1, γ2} = 0, γ 2
1 = γ 2

2 = 1. (19)

Thus, the coupling terms are Dirac γ matrices in four-
dimensional space. There are four such matrices. The other
two are

γ3 ≡ τy, and γ4 ≡ τzsy. (20)

The Kane-Mele coupling term in (2) is then associated with
the matrix,

γ5 ≡ −γ1γ3γ2γ4 = τzsz. (21)

Thus, all interqubit couplings become linear when they are
written in terms of Dirac γ matrices. The commuting Hamil-
tonian H ′ from (3) can also be naturally rewritten in terms of
the γ matrices because

τxsz = iγ3γ5, and sx = iγ4γ5. (22)

Next, we recall that Dirac γ matrices have a natural gen-
eralization to an arbitrary even spacial dimension. A Wigner-
Jordan fermion representation (also known in the literature as
the Wigner-Jordan transformation) of a finite quantum spin
chain with j = 1, . . . , N labeling the spins, can be written in
a form

ψ j = σ x
j

j−1∏
k=1

σ z
k , ψN+ j = σ

y
j

j−1∏
k=1

σ z
k , (23)

where we introduced operators that satisfy the fermion com-
mutation relations,

{ψ j, ψk} = 2δ jk, j = 1, . . . , 2N. (24)

Alternatively, the operators ψ j can be viewed as 2N × 2N

matrices that represent the fermion operators acting in the
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2N -dimensional space of N spins. By introducing an addi-
tional operator,

ψ2N+1 = (−i)N
N∏

j=1

ψ jψ j+1 =
N∏

j=1

σ z
j , (25)

we obtain the anticommutation relations,

{ψ j, ψk} = 2δ jk, j = 1, . . . , 2N + 1, (26)

which is a 2N -dimensional representation of the Clifford
algebra with (2N + 1) generators. On the other hand, the cor-
responding 2N -dimensional Lie algebra representations can
be integrated to the group representations known as spinor
representations of Spin(2N ) and Spin(2N + 1) (see Ref. [12]
for the explicit construction of the spinor representations).

Spinor representations are used in quantum field theory
to build relativistic fermions in higher-dimensional spaces,
equipped with a Euclidean signature where the operators
ψ j play the role of higher-dimensional analog of the Dirac
matrices and, therefore, will be hereafter denoted as γ j . We
also define γc ≡ γ2N+1.

By collecting terms that have the same form as the terms
in the pair of two-state Hamiltonians (2) and (3) we construct
the generalization of this pair to higher-dimensional Dirac γ

matrices,

H1(t, ε) = εγc +
N∑

j=1

(β jt iγN+ jγ j + g jγ j ), (27)

H2(t, ε) = tγc +
N∑

j=1

(
β−1

j εiγN+ jγ j + β−1
j g j iγN+ jγc

)
,

(28)

where βi, and gi are constant parameters; ε is a constant in H1

but is treated as the physical time in H2. Using the Clifford
algebra relations, it is easy to check that the Hamiltonians H1

and H2 satisfy the integrability conditions (5) and (6).
In order to return to the Pauli operators σα

k of N spins,
where α = x, y, z and k = 1, . . . , N is the spin’s index, we
define the coupling operators,

(I) γ1 = σ x
1 , γ2 = σ x

2 σ z
1 , . . . , γN = σ x

N

N−1∏
k=1

σ z
k ,

(II) γ̃1 = σ x
1

N∏
k=2

σ z
k , . . . , γ̃N−1 = σ x

N−1σ
z
N , γ̃N = σ x

N ,

(29)

which satisfy parafermion algebra relations [13],

{γi, γ j} = {γ̃i, γ̃ j} = 2δi j, (30)

[γi, γ̃ j] = 0, ∀ i, j. (31)

Then, the two Hamiltonians have the form

H1(t, ε) = ε

N∏
j=1

σ z
j +

N∑
j=1

(
β jtσ

z
j + g jγ j

)
, (32)

FIG. 2. Time-dependent spectrum of the γ -magnet (32) with
N = 3 interacting spins. The blue, green, and red arrows show three
interfering semiclassical trajectories. The choice of parameters: ε =
3, β1 = 2.83, β2 = 1.35, β3 = 3.5, and g1 = g2 = g3 = 0.3.

H2(t, ε) = t
N∏

j=1

σ z
j +

N∑
j=1

(
ε

β j
σ z

j + g j

β j
γ̃ j

)
. (33)

For the two-time vector,

(t, ε),

they satisfy (5) and (6). Hence, they are integrable and belong
to the two-time Landau-Zener family [8]. The example with
N = 3 shows that this family can be extended to add more
parameters and independent commuting Hamiltonians, but we
will not do this because finding just one pair is sufficient to
determine the transition probability matrix.

Since H1 and H2 have a particularly simple form when they
are written in terms of the 2N -dimensional Dirac γ matrices,
and since these models describe interacting spins, we will
call them γ -magnet Hamiltonians. Let us focus on the γ -
magnet H1. It describes a heterogeneous qubit system because
each qubit is coupled differently from any other qubit in the
system. However, this system cannot be considered disordered
because all interaction terms are taken to be γ matrices that
satisfy simple algebraic relations (30).

In Fig. 2, we plot the energy spectrum of H1(t ) for different
t’s and N = 3. Integrability of this model can be inferred
from the large number of points with exact crossings of
energy levels. This feature is common for many models of
real nanomagnets [14,15].

Truly quantum behavior becomes evident if we use the
semiclassical approximation that can be justified for ε � |gi|.
The diabatic states in the model (32), i.e., the eigenstates of
only the time-dependent part of H1(t ), are the spin projection
states along z, e.g., the ground state at t = −∞ is |↑↑ · · · ↑〉 if
βi > 0 ∀ i. According to the adiabatic theorem, all transitions
between such states are suppressed when energy levels are
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well separated from each other. This happens with the spec-
trum in Fig. 2 as t → ±∞.

However, inside the time interval shown in this figure, pairs
of levels experience avoided crossings, i.e., the regions where
levels do not cross exactly but appear very close to each other
for short-time intervals. This happens when two diabatic en-
ergy levels (i.e., the eigenvalues of the time-dependent part of
H1) with a nonzero direct coupling between the corresponding
diabatic states cross. For the spin with index k in H1, this can
happen at

tk = ±ε/βk, (34)

where the sign depends on the z projections of all spins.
After passing through such points, the system has finite

amplitudes to stay on the initial level and to jump to a
new one. Thus, semiclassical trajectories can split from each
other, but, then, they also can merge by the end. One can
estimate the amplitude of a transition between any pair of
states by summing amplitudes of all semiclassical trajectories
that connect the initial state at t = −∞ and the final state at
t = +∞.

A common feature of all γ magnets with N > 1 is that
there are generally more than one trajectory connecting pairs
of different states. An example is shown by red, green, and
blue arrows in Fig. 2. All the marked trajectories start from
the ground state as t → −∞, then, split at different avoided
crossings, but then, return to one energy level as t → +∞.
Such an interference is a signature of a nonclassical and
many-body behavior. For example, it does not happen if spins
are uncoupled from each other, so one can expect purely
quantum-mechanical effects to appear even for large N .

V. TRANSITION PROBABILITIES

Let us now construct the matrix of transition probabilities
between pairs of diabatic states for evolution from t = −∞
to t = +∞. Following Ref. [6], we consider the evolution
operator for a path P in the two-time space:

U = T̂ exp

[
−i

∫
P

(H1dt + H2dε)

]
,

where T̂ is the path ordering operator. Since we are interested
in the effect of the sweep of the external field from large
negative to large positive values, the path P of our interest
starts at time −T and ends at T , where T → ∞. Along this
path, we have ε = const as shown in Fig. 3. Let m and n be
the initial and the final diabatic states, respectively. Our goal
is to find the transition probabilities for all such pairs,

Pnm = |Unm|2. (35)

Due to (5) and (6), U does not depend on the choice of
the path P , except the initial and final two-time points. This
invariance follows from the fact that the gauge field A =
(−iH1,−iH2) has zero curvature. Hence, P can be deformed
to make either |t | or |ε| large [6]. In what follows, we change
indices of spins so that:

β1 < β2 < β3 < · · · < βN , (36)

FIG. 3. The physical evolution path P from (−T, ε) to (T, ε)
(dotted black arrow) can be continuously deformed to either the
path P+ (blue arrows) or the path P− (red), where E � ε. The
crosses “X” mark positions of avoided crossings. Along P such
points are close to each other, which leads to collective nonadiabatic
dynamics. However, along P+ and P−, resonances are far apart. The
chronological orders of resonances along P+ and P− are opposite
to each other. The green arrows mark positions of resonances during
changes in λ = |E/ε|.

and we redefine the spin-up and spin-down states to make all
βi’s positive.

Imagine now that we found the matrix of transition proba-
bilities for any H1 with N spins. We add an extra spin to the
model and redefine spin indices to satisfy (36) again. Consider
the spin that has the largest slope: βN+1 > βN . The analysis
then depends on whether the term ε

∏N+1
i=1 σ z

i in H1 is positive
or negative in the initial diabatic state at t = −T . First, let it
be negative. We then deform P into P+ as shown in Fig. 3 so
that we initially change the Kane-Mele-like coupling from ε

to E = λε, where λ � 1, then change time from −T to T and
then return the coupling from E to ε. At the left vertical leg
of P+, we fix t = −T . Evolution along this leg is adiabatic
because spin polarizations are fixed in H2 by infinitely large
fields as T → ∞. Hence, this leg only changes the phase of
the initial state but does not lead to spin flips. The same is true
for the right vertical leg of P+.

Resonances do happen along the horizontal part of P+ but,
since |E | � |gi|, all of them are now very well separated in
time. Hence, the semiclassical approximation that we already
described can be applied and it becomes exact for |E/gi| →
∞. Then, among the resonances (34), the first one that will
happen will be at time,

tN+1 = |E |/βN+1 > 0,

at which only the spin (N + 1) can flip. Since all other spins
remain frozen during the passage through this resonance, the
stay/flip probabilities for this spin are given by the Landau-
Zener formula [16–19]. Namely, let pN+1 and qN+1 be the
probabilities for the (N + 1)st spin, respectively, to remain the
same and to flip. Then,

pN+1 = e−πg2
N+1/βN+1 , qN+1 = 1 − pN+1. (37)

If this spin does not flip, then during the following evolu-
tion it cannot flip either because t > ±tN+1, and the rest of
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spins flip as if they are uncoupled from this spin and have
the initial condition E ′ ∏N

i=1 σ z
i < 0, where E ′ = Eσ z

N+1, and
where σ z

N+1 is the polarization of the (N + 1)st spin after it
settles its value. Hence, the probability of any final diabatic
state in this case will be pN+1 times the probability of finding
the given first N-spin configuration after evolution with the
N-spin Hamiltonian, ignoring the spin N + 1.

Alternatively, if the (N + 1)st spin flips, then it creates the
condition E ′ ∏N

i=1 σ z
i > 0 for the rest of the spins. However,

all resonances at such a condition can happen only at negative
times −tk = −|E |/βk , whereas t is already positive after
passing through the resonance at tN+1. Hence, in this case,
none of the other spins will flip until the end of the evolution.

The case with initially ε
∏N+1

i=1 σ z
i > 0 becomes much more

complex along P+ due to the path interference but it produces
the same result because we have freedom to deform the path
P into another path P− at which ε → −λε, where λ � 1,
as shown in Fig. 3. At the beginning of the horizontal piece
of this path, we find that −λε

∏N+1
i=1 σ z

i < 0, and the analysis
reduces to the previous case.

To summarize, the transition probability matrix for the
γ -magnet H1 in which spin indices are changed to satisfy (36)
can be constructed along a simple recursive process. Namely,
consider a sequence of models (32) with N = 1, 2, . . ., such
that the (N + 1)st Hamiltonian is different from the N th
one only by adding terms with gN+1 and βN+1 couplings,
and adding a σ z

N+1 factor to the product of operators with ε

coupling. Let P|iN 〉→| jN 〉 be the transition probability between
states with indices i and j in the N-spin model and denote

pn ≡ e−πg2
n/|βn|, qn = 1 − pn, n = 1, 2, . . . . (38)

We will mark the states of the model with N + 1 spins as |iN↑〉
and |iN↓〉, where iN marks the states of the first N spins as in
the N-spin model. The transition probabilities in the (N + 1)-
spin system are given by the following rules:

(i) The only nonzero probabilities of processes that flip the
(N + 1)st spin are given by

P|iN ↑〉→|iN ↓〉 = P|iN ↓〉→|iN ↑〉 = qN+1. (39)

(ii) The probabilities of transitions that do not lead to
(N + 1)st spin flip are given by

P|iN ↑〉→| jN ↑〉 = P|iN ↓〉→| jN ↓〉 = pN+1P|iN 〉→| jN 〉. (40)

For example, N = 1 is a single spin two-state LZ model
with the matrix of transition probabilities,

PN=1 =
(

p1 q1

q1 p1

)
. (41)

For N = 2, we find the matrix (10). Iterating (i) and (ii),
we find that, for the N-spin γ magnet, the probabilities of
transitions from any initial diabatic state are given explicitly
by the following rules:

(a) the probability of not flipping any spin is P0 = ∏N
i=1 pi;

(b) the probability to flip only the ith spin is Pi =
qi

∏N
k=i+1 pk ;

(c) the probability of flipping more than one spin is zero.
In the Appendix, we show numerical tests that confirm

(a)–(c) up to N = 8.

VI. DYNAMIC SPIN LOCALIZATION

The last property (c) is the central result of this article. It
defines the DSL behavior, i.e., that quantum many-body ef-
fects prevent propagation of spin flips during time-dependent
changes in parameters despite there are spin-flipping cou-
plings for all spins. In fact, even the commutation of operators
H1 and H2 is not a conservation law here due to the explicit
time dependence of parameters. For large classical or quantum
spin systems, it is conceivable to construct a model with
simple interactions that suppresses multispin flips for some
initial conditions during a chirp of a magnetic field. However,
our model shows this behavior for arbitrary values of all
parameters and arbitrary initial conditions.

We are not aware of similar to DSL behavior in any known
spin system. Among distantly related dynamic effects, we
mention that there is evidence for slowing down heating of fi-
nite spin systems that are driven by sufficiently weak periodic
pulses [20,21]. This is manifestation of so-called dynamic
localization in the AC field [22]. Another somewhat related
effect is electron localization in energy space in a uniform
electric field [23]. However, DSL is essentially different, e.g.,
unlike the localization length in Refs. [22,23], the maximal
number of spin flips in our model does not depend on the
driving field ramp.

There are totally 2N diabatic states of N spins. Even if we
adjust couplings to make all nonzero probabilities equal to
1/(N + 1), we find that the final entropy,

S ≡ −
2N∑

k=1

Pn→k loge Pn→k (42)

for γ magnets is saturated at Sγ
max = loge(N + 1). In con-

trast, for N-independent spins in a time-dependent field H =∑N
i=1[(βit + εi )σ z

i + giσ
x
i ], there is a finite probability to

find any spin configuration at the end. The entropy is then
saturated when each spin has the flipping probability 1/2:
Smax = N loge 2. Thus, the final entropy of a γ -magnet per
field sweep cannot increase by more than a value of ∼ ln(N )
versus ∼N for noninteracting spins.

Property (b) provides another practically interesting feature
of γ -magnets. Imagine that g1 � g2 � · · · � gN , whereas all
βi’s are comparable. There is, then, a possibility to flip only
spin k no matter what is the initial state by changing only one
parameter. Namely, all βi’s are proportional to the external
field sweeping rate dB/dt , such as in Eq. (2). By changing
this rate, we rescale all βi’s by the same factor. We can then
choose the sweeping rate so that for the indices i, i > k, the
dynamics is strongly nonadiabatic, i.e., pi → 1, whereas, for
the kth spin, it is adiabatic so that qk → 1. According to (b),
only the kth spin will, then, have almost unit probability to
flip. Thus, by varying only the external field ramp, we will be
able to change the z projection of any spin keeping other spins
intact. This property is not found in noninteracting spins.

VII. DISCUSSION

We constructed the γ -magnet Hamiltonian such that cou-
pling terms that flip spins are essentially different for all
spins. This Hamiltonian has considerable symmetry when it is
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written in terms of Dirac γ -matrices. Due to such proper-
ties, γ -magnets do not fit the types of commonly studied
interactions, e.g., spin glasses, regular spin lattices, and even
commonly known spin cluster models, such as Gaudin mag-
nets [10].

We found a phenomenon of DSL, which is unusual both
for quantum and classical spin systems. It essentially relies on
quantum interference, so it may be a purely quantum effect
that has no classical counterpart. This suggests that hetero-
geneous interacting qubits may be a source of essentially
novel physical phenomena and possibilities for quantum state
control. Therefore, such interacting qubit systems deserve
attention on their own without assuming that they belong to
the previously studied types of spin matter.

The transition probability matrix of any multistate Landau-
Zener model with nondegenerate diabatic levels depends con-
tinuously on all couplings and level slopes. Hence, even if we
add small interactions that break integrability, then, the effect
of the time-dependent field remains almost the same, except
for extremal values of some of the parameters. Therefore,
there are definitely domains of parameters for which nonin-
tegrable interacting qubit systems show DSL behavior.

Other integrable many-body time-dependent models (for
their reviews, see Refs. [9,10]) show the behavior that is found
in nonintegrable systems too. For example, experimentally
realized dynamic conversion of ultracold fermions into a
molecular Bose condensate is well modeled by the integrable
driven Tavis-Cummings model [24–26]; and suppression of
nonadiabatic excitations in the time-dependent BCS Hamilto-
nian is also found in numerical simulations of more complex
models [11].

On the experimental side, we hope that our paper will
stimulate interest in effective quibt Hamiltonians of localized
states in Dirac materials. Additional degrees of freedom of
Dirac electrons are often mentioned as an opportunity for
quantum computation. Within a localized state, such electrons
can realize types of interactions that are generally needed to
entangle qubits. We showed that, in addition, there can be a
detailed analytical understanding of such interactions, which
can be used to design efficient control protocols. Possibilities
to create related integrable models are numerous, and they still
remain to be explored. In addition to a variety of such different
models, the same γ -magnet Hamiltonians may have different
physical interpretations. For example, the representation of
γ -matrices in (23) is not unique. For N = 3, we can choose

γ1 = τxσz, γ2 = syσy, γ3 = σx,

γ4 = τyσz, γ5 = sxσy, γ6 = szσy. (43)

In terms of the pseudospins, the Hamiltonian (23) then reads

H1 = ετzσz + t (β1τz + β2sz + β3szσz )

+ g1τxσz + g2syσy + g3σx. (44)

Note that this Hamiltonian includes only pairwise pseudospin
interactions. This Hamiltonian can describe two nearby zero
energy localized states of a Dirac electron. The operator

σx, then, describes tunneling between these states, the parame-
ter β3 follows from the difference of such state’s spin g factors,
g2 is the standard spin-orbit coupling effect on tunneling
electrons [7], and g1 describes mixing of states from different
valleys; ε may be unphysical, but we can safely set it to
zero.

It should be possible to study more complex γ -magnets
experimentally too. Their Hamiltonians can be realized phys-
ically or programmed in artificial qubit systems. Indeed, in-
teractions in Eq. (32) are what is normally needed physically
for implementing generalized quantum CNOT gates such that
the state of a single qubit changes conditionally on states
of several other qubits in the computational basis. Simple
polynomial algorithms for implementing such gates using
only the standard gate set exist [27]. Another possibility is to
use the fact that interactions involving products of multiple
qubit projection operators along the z axis can be realized
using only pairwise qubit couplings by employing additional
qubits [28,29].

It is unclear whether DSL-like behavior can be found
in natural large spin systems. At this stage, we can only
speculate. The first candidate is the class of molecular nano-
magnets. Indeed, for N = 2, the γ -magnet Hamiltonian has
the same matrix form as a spin-3/2 nanomagnet [30], such
as the molecule V15 [31]. Flexibility of nanomagnet syn-
thesis enables the design of spin systems with desirable
properties: strength and type of interactions, long quantum
coherence, control by means of optics, voltage, and magnetic
fields [32–34]. Nanomagnets are already used as quantum
information hardware [35,36]. For nanomagnets, macroscopic
quantum tunneling in multispin configuration space is ob-
servable during linear-in-time changes of the magnetic field
as a staircase of magnetization steps. Interference between
tunneling pathways is then found as the suppression of some
of such steps [37–40].

However, spins in nanomagnets are normally coupled by
exchange interactions. Our discussion of Dirac Hamiltonians
suggests that DSL can be more likely found when spins
interact via the spin-orbit coupling. Hence, DSL-like behavior
may be found in nanomagnets with strong [41] or artificially
enhanced [42] Dzyaloshinskii-Moriya interactions.

It is also interesting to find connections between DSL
and many-body localization [43,44] in strongly disordered
spin systems. There are important differences: DSL occurs
in multispin phase space and does not require disorder. Nev-
ertheless, the many-body localization emerges when a spin
system behaves locally as an integrable model with complex
interactions [44] that has a large but essentially finite num-
ber of commuting operators. If this property is preserved in
a wide range of strong external magnetic fields, then, the
time-dependent integrability may also emerge when this field
becomes time dependent. Therefore, the many-body localized
spin systems are potential candidates for finding DSL in
quantum materials.

Finally, there are many similarities between our heteroge-
neous qubits and qubit Hamiltonians that are used in quantum
annealing computations. The latter realize quantum evolution
with explicit time dependence,

Ĥqa(t ) = ĤA
(
ŝz

1, . . . , ŝz
N

) + g(t )ĤB(ŝ1, . . . , ŝN ), (45)
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where ĤA contains only Ising-like qubit couplings and ĤB has
a ground state that is relatively easy to prepare. The parameter
g(t ) is initially taken to be large enough to make the second
term in (45) completely dominate ĤA, but g(t ) later decays to
zero as t → ∞. According to the adiabatic theorem, a very
slow decay of g(t ) converts the initial ground state (of ĤB) to
the final ground state (of ĤA), which is then read by measuring
spins along the z axis.

A classical optimization problem encoded in the Ising part
ĤA, introduces couplings that are neither regular nor taken
from some distribution. Each Ising spin plays a specific role
in this problem and has for it a unique set of links to other
spins. In this sense, ĤA resembles the γ -magnet. DSL-like
behavior can be a considerable problem for quantum anneal-
ing computations because DSL prevents a spin system from
exploring its phase space during time-dependent parameter
driving. This analogy suggests that DSL can be searched
using quantum annealing machines by exploring the problems
that produce anomalously large amounts of computational
errors.
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APPENDIX: NUMERICAL TEST OF THE SOLUTION
FOR THE γ-MAGNET

We found the transition probabilities for the γ -magnet with
the Hamiltonian (6) up to N = 8 numerically by discretizing
the evolution in small time-steps �(t + dt ) = U (t, dt )�(t )
where U (t, dt ) = e−iH (t )dt and finding the matrix exponent for
each step.

In Fig. 4, we show the transition probabilities for N = 5–8
and various initial conditions. Only some of the transition

P1 2

P1 3

P1 17

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

g5

P

(a) N = 5

P1 1

P1 4

P1 5

P1 9

0.0 0.5 1.0 1.5 2.0

0.00

0.05

0.10

0.15

g5

P

(b) N = 5

P4 1

P4 2

P4 3

P4 4

P4 36

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

g6

P

(c) N = 6

P2 1

P2 2

P2 3

P2 4

P2 66

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

g7

P

(d) N = 7

P1 2

P1 3

P1 5

P1 65

P1 129

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

g8

P

(e) N = 8

P1 1

P1 4

P1 9

P1 17

P1 33

0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

0.08

g8

P

(f) N = 8

FIG. 4. The transition probabilities for the γ -magnets with: (a) and (b) N = 5, (c) N = 6, (d) N = 7, and (e) and (f) N = 8. The points are
results of numerical simulations, and the solid curves are analytical predictions. The labeling of states is such that state |σ1, σ2, . . . , σN 〉
with σi = 0 for spin ↑, and σi = 1 for spin ↓ is labeled by the decimal number converted from the binary number “σ1σ2 · · · σN ” plus
1. For example, the spin configurations appeared in (a) and (b) are as follows: |1〉 = |↑↑↑↑↑〉, |2〉 = |↑↑↑↑↓〉, |3〉 = |↑↑↑↓↑〉, |4〉 =
|↑↑↑↓↓〉, |5〉 = |↑↑↓↑↑〉 |9〉 = |↑↓↑↑↑〉, and |17〉 = |↓↑↑↑↑〉. Note that the probability P1→4 is zero because states |1〉 and |4〉 are different
by the direction of a pair of spins. The spin configurations appeared in (c) are as follows: |1〉 = |↑↑↑↑↑↑〉, |2〉 = |↑↑↑↑↑↓〉, |3〉 =
|↑↑↑↑↓↑〉, |4〉 = |↑↑↑↑↓↓〉, and |36〉 = |↓↑↑↑↓↓〉. Parameters: (a) and (b) ε = 1, β1 = 0.5, β2 = 1.7, β3 = 4.1, β4 = 5.1, β5 =
6.2, g1 = 0.5, g2 = 0.17, g3 = 0.32, g4 = 0.61, and g5 changes from 0 to 2; (c) ε = 1, β1 = 0.5, β2 = 1.7, β3 = 2.1, β4 = 3.1, β5 =
3.6, β6 = 4.1, g1 = 0.6, g2 = 0.35, g3 = 0.32, g4 = 0.24, g5 = 0.55, and g6 changes from 0 to 2; (d) ε = 1, β1 = 0.5, β2 = 1.7, β3 =
2.1, β4 = 3.1; β5 = 3.6, β6 = 4.1, β7 = 5.4, g1 = 0.6, g2 = 0.35, g3 = 0.32, g4 = 0.24, g5 = 0.2, g6 = 0.55, and g7 changes from 0
to 2; (e) and (f) ε = 1, β1 = 0.5, β2 = 1.7, β3 = 2.1, β4 = 3.1, β5 = 3.6, β6 = 4.1, β7 = 4.4, β8 = 5.2, g1 = 0.6, g2 = 0.35, g3 =
0.32, g4 = 0.24, g5 = 0.2, g6 = 0.38, g7 = 0.55, and g8 changes from 0 to 2.
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probabilities are shown. The corresponding theory predictions
by the rules (a)–(c) from the main text are marked by the solid
curves. For example, for N = 5, the transition probabilities
shown on the plots are as follows:

|↑↑↑↑↑〉 → |↑↑↑↑↑〉: P1→1 = p1 p2 p3 p4 p5,

|↑↑↑↑↑〉 → |↑↑↑↑↑〉: P1→2 = q5,

|↑↑↑↑↑〉 → |↑↑↑↓↑〉: P1→3 = q4 p5,

|↑↑↑↑↑〉 → |↑↑↑↓↓〉: P1→4 = 0, (A1)

|↑↑↑↑↑〉 → |↑↑↓↑↑〉: P1→5 = q3 p4 p5,

|↑↑↑↑↑〉 → |↑↓↑↑↑〉: P1→9 = q2 p3 p4 p5,

|↑↑↑↑↑〉 → |↓↑↑↑↑〉: P1→17 = q1 p2 p3 p4 p5,

with pn and qn defined in Eq. (13) in the main text. All
numerical results agree with the analytical predictions. Note,
e.g., that states |1〉 and |4〉, here, differ by the direction of a
pair of spins, so this probability is identically zero.
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