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For the characterization of the dynamics in quantum many-body systems the question of how information
spreads and becomes distributed over the constituent degrees of freedom is of fundamental interest. The
delocalization of information under many-body dynamics has been dubbed scrambling, and out-of-time-order
correlators were proposed to probe this behavior. In this work we investigate the time evolution of tripartite
information as a natural operator-independent measure of scrambling, which quantifies to what extent the
initially localized information can be recovered only by global measurements. Studying the dynamics of quantum
lattice models with tunable integrability breaking, we demonstrate that in contrast to quadratic models generic
interacting systems scramble information irrespective of the chosen partitioning of the Hilbert space, which
justifies the characterization as a scrambler. Without interactions the dynamics of tripartite information in
momentum space reveals unambiguously the absence of scrambling.
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I. INTRODUCTION

The concept of scrambling was originally devised to study
the information paradox of black holes [1,2]. A scrambler is a
quantum system with many degrees of freedom in which in-
formation about local fluctuations in the initial state is, under
dynamics, strongly mixed up such that it can, after long times,
be recovered only by global measurements. It was found that
black holes can be regarded as the most efficient scramblers
[3]. The idea of scrambling is of interest also in quantum
many-body systems beyond the anti-de Sitter/conformal field
theory (AdS/CFT) paradigm, where the spreading of cor-
relations and information is a subject of ongoing research
[4–12] along with the question of thermalization after a
system was prepared far from equilibrium [13,14] and how
information about the initial conditions is lost [15–24]. Since
the timescales of thermalization and scrambling can strongly
differ, a central question is whether there is, nevertheless, a
connection between both [25].

In order to investigate scrambling from an information-
theoretical point of view Hosur et al. [26] introduced tri-
partite information as a measure for the delocalization of
information. The tripartite information quantifies how much
of the information about fluctuations that were in the initial
condition localized in one part of the system can be recovered
only with access to both constituents of a bipartition of the
time-evolved system. As such, tripartite information can be
regarded as a direct probe of scrambling. A particular virtue
is the fact that this information measure does not rely on any
selection of operators. The only choice is the partitioning of
the Hilbert space, with respect to which it is decided whether
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information is distributed or not. In this work, particular atten-
tion will be paid to the role of partitionings of Hilbert space in
connection with the behavior of the tripartite information. See
also Refs. [27–29], where alternative operator-independent
measures for the spreading of information are investigated.

By contrast to information-theoretic measures, so-called
out-of-time-order correlators (OTOCs) of the form

CV̂Ŵ = 〈V̂ (t )†Ŵ (0)†V̂ (t )Ŵ (0)〉β , (1)

introduced in Refs. [15,30–32], constitute an operator-based
probe of scrambling. In the expression above V̂ (t ) and Ŵ (t )
are operators in the Heisenberg picture, and 〈·〉β denotes a
thermal expectation value. Considering local operators V̂A and
ŴB acting on disjoint regions A and B, the OTOC probes how
the perturbation at A affects the system at B at later times. In
systems that scramble, the perturbation eventually disturbs the
whole system, which can be probed by the OTOC. Moreover,
considering the OTOC of the momentum and position opera-
tor, a semiclassical analysis suggests that OTOCs can indicate
a butterfly effect in quantum systems, including the possible
identification of Lyapunov exponents [3,33].

With regard to the question of scrambling, it is particularly
notable that in spin-1/2 systems there exists a rigorous rela-
tion between OTOCs and tripartite information in the limit
of high temperatures. In that case OTOCs bound the tripar-
tite information such that the butterfly effect as diagnosed
by an OTOC implies scrambling as measured by tripartite
information [26]. This justifies drawing conclusions about the
scrambling of information from the dynamics of OTOCs.

OTOCs have been studied in a series of works as a probe
of the spreading of information and scrambling in condensed-
matter systems [25,26,28,34–49]. However, tripartite infor-
mation as a direct measure of the dispersion of information
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FIG. 1. To define tripartite information as a measure of scram-
bling the unitary operator Û (t ) is viewed as a state in doubled Hilbert
space with in and out degrees of freedom.

under dynamics has so far been investigated only in large-N
or long-range interacting models [47,50,51]. The work pre-
sented in this paper comprises a systematic study of tripartite
information as a measure of scrambling in quantum lattice
models, with a particular focus on the role played by the
choice of the partitioning of Hilbert space. We demonstrate
numerically that in the dynamics of generic interacting sys-
tems the tripartite information at late times approaches a
stationary value that is close to the one obtained by evolution
with a Haar random unitary. This behavior is independent
of the chosen partitioning of the Hilbert space, indicating
scrambling of information. By contrast, the time evolution
of the tripartite information in quadratic systems varies with
the Hilbert space partitioning and can be much smaller than
the Haar value; hence, the dynamics of these systems cannot
be regarded as scrambling. The characteristic distinction be-
tween noninteracting and interacting systems in the view of
scrambling is particularly pronounced in momentum space,
for which, to the best of our knowledge, no results have been
reported so far.

II. TRIPARTITE INFORMATION

In the following we study tripartite information as a mea-
sure of scrambling as introduced in Ref. [26]. For simplic-
ity we consider systems consisting of two-dimensional local
Hilbert spaces and a corresponding basis {|i〉}. To define
tripartite information the time-evolution operator acting on a
system consisting of N lattice sites,

Û (t ) =
∑

i, j

ui j (t )|i〉〈 j|, (2)

which would commonly be interpreted as a tensor with N
input and N output legs as depicted in Fig. 1, is thought of
as a state in doubled Hilbert space,

|U (t )〉 = 1

2n/2

∑

i, j

ui j (t ) | j〉in ⊗ |i〉out

= 1

2n/2

∑

j

| j〉in ⊗ Û (t ) | j〉out . (3)

In this language the reduced density matrix of the input
subsystem, ρ̂in = trout[|U (t )〉 〈U (t )|], corresponds to a uni-
form ensemble of states of the physical system, whereas

the reduced density matrix of the output subsystem, ρ̂out =
trin[|U (t )〉 〈U (t )|], corresponds to the time-evolved initial
density matrix, ρ̂out = Û (t )ρ̂inÛ (t )†.

In this view one can consider more general input ensembles
ρ̂in = ∑

j p j |ψ j〉 〈ψ j | given by probabilities p j and a set of
orthonormal states {|ψ j〉}. The corresponding state |�(t )〉 =∑

j
√

p j |ψ j〉in ⊗ Û (t ) |ψ j〉out contains all information about
the time evolution, in this case with a possible weighting of
the input ensemble. The following discussion is, however,
restricted to the uniform ensemble corresponding to infinite
temperature.

In the doubled system it is possible to define mutual
information of subsystems on the input and on the output
side. Considering bipartitions of the input and the output
subsystem into parts A, B,C, and D as depicted in Fig. 1, the
mutual information of, e.g., A and C is defined as I (A : C) =
SA + SC − SAC , where SA = −tr(ρ̂A log2 ρ̂A) with the reduced
density matrix of subsystem A, ρ̂A = trBCD[|�(t )〉〈�(t )|]. On
this basis the tripartite information

I3(A : C : D) = I (A : C) + I (A : D) − I (A : CD) (4)

quantifies how much information about A is, after time evo-
lution, hidden nonlocally in CD and cannot be detected by
local measurements just on C or D. If a system scrambles
initially local information, the tripartite information will as-
sume a negative value with large magnitude. Therefore, in
contrast to OTOCs tripartite information allows us to diagnose
scrambling based only on properties of the time-evolution
operator, avoiding ambiguities that can occur due to the choice
of observables.

When considering the infinite temperature ensemble, the
density matrix ρ̂AB(t ) is proportional to the identity at all
times; therefore, I (A : CD) = 2a, with a being the size of
subsystem A, is constant and, moreover, an upper bound for
−I3(A : C : D) due to the positivity of mutual information.
Making use of the time independence of ρ̂AB(t ), Eq. (4) sim-
plifies to I3(A : C : D) = N − SAC − SAD. Furthermore, writ-
ing the initial state |U (t = 0)〉 at infinite temperature as a
product of maximally entangled pairs in the in and the out
parts of the system, it is straightforward to show that, ini-
tially, SAC + SAD = N . Hence, under scrambling dynamics,
the negative tripartite information −I3 will rise from zero to
a large value (see also Refs. [26,52]). Next, we discuss how
the evolution with Haar random unitaries can be used as a
quantitative reference for values of tripartite information.

III. REFERENCE FOR SCRAMBLING

As a reference for scrambling, we consider evolution with
Haar random unitary operators [26,29]. For our analysis we
will compute the value of the tripartite information attained
under Haar scrambling numerically by considering the tripar-
tite information in states |UH 〉 defined as in Eq. (3) with Haar
random unitaries ÛH . We will consider a system a scrambler
if the corresponding tripartite information is close to the
average tripartite information obtained in the Haar ensemble
of unitaries irrespective of the partitioning of the Hilbert space
and the choice of subsystems A, B,C, and D. The existence of
a basis and a partitioning into subsystems where −I3 remains
well below the Haar scrambled value implies that information
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is not fully scrambled. Note that −I3 can exceed the Haar
value as already pointed out in [26,52].

To evaluate the Haar scrambled value of the tripartite
information, we take a sample ÛH from the unitary matrices
[53], calculate the tripartite information of the resulting state
|UH 〉 [see Eq. (3)], and then average over many samples.

However, because of symmetries our model Hamiltonians,
and hence the corresponding time-evolution operators, are
block matrices. This observation requires us to similarly use
block random unitaries for the Haar scrambled value. To
achieve this we take the block structure from the physical
time-evolution operator and fill each block with a random
unitary matrix from the Haar measure.

Taking these symmetries into account, we arrive at the
Haar scrambled values used as references in this work. In-
terestingly, in this case it is sufficient to consider only the
N + 1 blocks of the particle number conservation since further
symmetries (momentum conservation, parity conservation)
did not suppress the reference value any further.

IV. MODEL HAMILTONIANS AND THE
NUMERICAL METHOD

For the purpose of this study we consider the following
model Hamiltonian of spinless fermions in a one-dimensional
lattice with periodic boundary conditions:

Ĥ (th, λ,V ) = − th
2

N∑

l=1

(ĉ†
l ĉl+1 + λĉ†

l ĉl+2 + H.c.)

+V
N∑

l=1

ĉ†
l ĉl ĉ

†
l+1ĉl+1, (5)

with c(†)
l being the usual fermionic annihilation (creation)

operators on lattice site l . By adjustment of the different
parameters the system can be tuned between a quadratic
Hamiltonian, a Bethe integrable system, and a generic nonin-
tegrable Hamiltonian. For V = 0 the Hamiltonian is quadratic,
irrespective of the value of λ. Any V �= 0 will add interactions
to these fermions, but Ĥ (J, λ = 0,V ) is still integrable in the
sense that it is solvable by the Bethe ansatz [54]. Integrability
is broken if λ and V are both nonzero. In the following we
will fix λ = 0.5 in order to contrast the behavior found in
the nonintegrable model with the quadratic model. While the
focus will be on the quadratic and the nonintegrable cases,
results for the Bethe integrable system Ĥ (J, λ = 0,V �= 0)
are included in Sec. VII.

As an alternative partitioning of the Hilbert space, we
consider the system in momentum space, where

Ĥ (th, λ,V ) = −th
∑

k

[cos(k) + λ cos(2k)]ĉ†
k ĉk

− V

N

∑

k,k′,q

cos(q)ĉ†
k+qĉ†

k′−qĉk ĉk′ , (6)

with ĉkn = N−1/2 ∑
l eiknl ĉl and k = 2nπ/N, n = 0, . . . ,

N − 1.
To obtain the dynamics of tripartite information (4) we

compute numerically the exact time evolution in the full
Hilbert space of systems with up to N = 12 physical lattice

sites, which means 2N = 24 sites in the doubled Hilbert
space introduced in Eq. (3). In order to reach these system
sizes we avoid dealing with the full 22N -dimensional state by
directly computing the reduced density matrices of interest
(see the Appendix for details). We checked our approach
against results for the dynamics obtained with a method based
on matrix product states [55,56] and found good agreement.
However, using that approach, the strongly entangled initial
state renders the simulation of long-time dynamics as required
for the purpose of this work prohibitively expensive if the
system size exceeds N = 12 sites.

In Sec. V we present results for the time evolution of tripar-
tite information in the real and momentum spaces, followed by
a detailed analysis of the asymptotic values at late times and
finite-size effects in Sec. VI. The findings allow us to conclude
that in the limit of infinite system size the delocalization of
information under the dynamics of the nonintegrable model
is compatible with Haar scrambling for all partitionings of
Hilbert space under consideration. For the quadratic model,
instead, information remains more localized at all times, es-
pecially in momentum space, where the dynamics of tripartite
information is trivial. Results for the Bethe integrable system
are presented in Sec. VII.

V. TIME EVOLUTION OF TRIPARTITE INFORMATION

A. Real space

For the system with periodic boundary conditions we con-
sider a partitioning of real space with single-site subsystems
A and D located on diametrically opposing sides of the ring.
In this setting the tripartite information shows characteristic
differences depending on the Hamiltonian parameters, which
is shown for a choice of parameters in Fig. 2(a). In all cases
the existence of a finite butterfly velocity vB in real space is
reflected in the fact that the tripartite information deviates
considerably from the initial value only at time t = l/vB,
where l is the distance between A and D. This feature is
not well resolved in Fig. 2 but will be further discussed in
Sec. V C.

Under time evolution with the quadratic Hamiltonian
H (1, 0.5, 0) the tripartite information shows a distinct signal
for a short time at t ≈ l/vB, which subsequently decays,
before revivals occur at later times. For t > l/vB the dynamics
is characterized by strong oscillations. On average, however,
the tripartite information remains well below the Haar scram-
bled value (dashed line). By contrast, under dynamics of the
interacting model the negative tripartite information rapidly
raises to the Haar scrambled value at t ≈ l/vB and does not
deviate from that in the subsequent evolution.

B. Momentum space

In momentum space the many-body basis can be chosen
as the set of Fock states characterized by momentum mode
occupation numbers. Information is delocalized when it is
distributed over the different modes n. Accordingly, when
computing tripartite information, the external legs of the time-
evolution operator in Fig. 1 correspond to momentum mode
indices. Note that the time-evolution operator in momentum
space has an additional block structure due to the conservation
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FIG. 2. Time evolution of the negative tripartite information in a
chain of N = 12 sites for λ = 0.5 and different values of the interac-
tion V . (a) In real space, where A and D are single-site subsystems
on diametrically opposing sides of the ring. (b) In momentum space,
where A is the mode n = 0 and D is the mode n = 11. The dashed
lines indicate the Haar scrambled value of the tripartite information.

of total momentum, which needs to be taken into account in
the corresponding Haar random unitary.

Figure 2(b) displays the dynamics of the tripartite infor-
mation in momentum space for different interaction strengths
V . For the quadratic Hamiltonian with V = 0 the tripartite
information remains zero for all times. This is due to the fact
that in this case the initial product structure is preserved in
|U (t )〉; the state remains a product of maximally entangled
pairs at all times, leaving tripartite information unchanged.

By contrast, the tripartite information under evolution with
the interacting Hamiltonian quickly approaches a stationary
value close to but below that obtained when evolving with a
random unitary. The stationary value attained at late times in
the presence of interactions is clearly distinct from the Haar
scrambling value indicated by the dashed line. However, in
Sec. VI we include a finite-size analysis indicating that in the
thermodynamic limit the asymptotic value is compatible with
the Haar scrambling value.

We find that there is no butterfly velocity in momentum
space as the tripartite information starts to deviate from
the initial value immediately, irrespective of the choice of
subsystems, because the Hamiltonian in momentum space
(6) has no notion of neighborhood. Instead, we find that
the timescale for the increase of −I3 is proportional to the
interaction parameter V .

C. Butterfly velocity and wave front broadening

In real space the tripartite information shows a clear signa-
ture of a light cone as the separation between the subsystems A
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T
im
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FIG. 3. Dynamics of tripartite information in the space-time
plane. The plot shows the time evolution of the tripartite information
with varying distance between subsystems A and D for a system
of N = 12 lattice sites in the nonintegrable regime, λ = 0.5 and
V = 0.5th. The crosses mark the points at which −I3 = 0.031, and
the dashed line is a linear fit to these points, yielding a butterfly
velocity of vB ≈ 1.97th.

and D is varied. The corresponding characteristic velocity has
been dubbed butterfly velocity. In Fig. 3 we show exemplarily
the time evolution of the tripartite information with varying
distance between subsystems A and D for a system of N = 12
lattice sites in the nonintegrable regime, λ = 0.5 and V =
0.5th. The crosses mark the points at which the tripartite
information grows beyond the threshold of −I3 = 0.031, and
a linear fit to these points yields a butterfly velocity of vB ≈
1.97th. We considered different values for the threshold and
chose this particular one because the deviation from linearity
was minimal with this value.

The dynamics of OTOCs exhibits a diffusive broaden-
ing of the wave front; that is, the time window between
the first deviation of the OTOC from the initial value
and the approach to the final value increases as the square
root of time [38,39,45,48,49]. Our results for the tripartite
information are compatible with an analogous behavior. In
Fig. 4 we show the evolution of the tripartite information
for different separations d between the subsystems, where
the time axis is rescaled as τ = (t − d/vB)/

√
t . After this

rescaling, the data for all distances coincide very well for
τ � 1/

√
th. The agreement gets worse at later times, which is

due to the finite system size. Boundary effects that propagate
into the bulk impede the collapse of the data. These effects
impact subsystems close to the boundary earlier, which is the
reason why only distances 3 � d � 8 are shown. Note that
only for the analysis of the butterfly effect have the periodic
boundary conditions been replaced with an open boundary,
which allows larger distances between subsystems A and D.

VI. FINITE-SIZE EFFECTS AND SENSITIVITY TO THE
BREAKING OF INTEGRABILITY

The results presented in the previous section raise ques-
tions about the asymptotic values attained by the tripartite
information at late times. In this section we include a careful
analysis of the dependence of these late-time values on the
interaction parameter V and the system size N .
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FIG. 4. Broadening of the wave front for the same parameters
as in Fig. 3. The data obtained for the dynamics of the tripartite
information with different distances d between subsystems coincide
after shifting according to the butterfly velocity vB and a rescaling by
t−1/2 to account for diffusive broadening. The inset shows the same
data without a rescaling of the time axis for comparison.

A. Tripartite information at late times

In Fig. 5(a) we show averages of the tripartite information
for the same real-space partitioning as in Fig. 2(a) over certain
intervals [t0, t0 + 	t] at late times t0. These averages give
an estimate of the stationary values attained in the long-time
limit. We find that when tuning to the interacting model with
V > 0 the tripartite information quickly attains a new station-
ary value. Considering the small system sizes we study, this
means that tripartite information is extraordinarily sensitive
to the presence of interactions. Notice that the transition to
the Haar value occurs at smaller V as t0 is increased. We
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FIG. 5. Averages of −I3 taken over different intervals [t0, t0 +
	t] as a function of the interaction parameter V for λ = 0.5. (a) In
real space, where A and D are single-site subsystems on diametrically
opposing sides of the ring. (b) In momentum space, where A is the
mode n = 0 and D is the mode n = 11. Here N = 12, and the dashed
line indicates the Haar scrambled value.
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FIG. 6. Averages of −I3 at late times (t > 2000) for different
inverse system sizes N−1 for λ = 0.5. The A and D subsystems are
of minimal size again but were averaged over all possible choices
of sites and momentum modes, which causes the larger errors in the
momentum data. The dashed line indicates the Haar scrambled value.

conjecture that the nonuniversal behavior for small V is a
finite-system-size effect and that for any nonvanishing V the
tripartite information will approach the Haar scrambled value
for t → ∞ in the thermodynamic limit.

Figure 5(b) shows the dependence of tripartite information
in momentum space on the interaction parameter V . The
behavior is similar, but larger values of V are needed for
considerable deviations from zero. As already discussed in
the previous section, the asymptotic value never reaches the
Haar scrambling value. However, in the following section we
present a systematic finite-size analysis that is compatible
with convergence to the Haar scrambling value in the ther-
modynamic limit for both V � th and V � th.

B. Finite-size analysis

The results presented so far show that information in
momentum space is not as effectively scrambled as in position
space because the asymptotic values of the tripartite infor-
mation in momentum space remains below the corresponding
Haar scrambling value.

In Fig. 6 we show asymptotic values of the tripartite
information at late times that were estimated in the same
way as in the previous section. The error bars reflect the
fluctuations of the tripartite information on the time interval
that is averaged over, as well as the dependence of the
tripartite information on the choice of subsystems, which
dominates in the momentum case. The data include two
different values of the interaction parameter V for tripartite
information in momentum space. In both cases we see that
with increasing system size the late-time values systematically
approach the Haar scrambling value. Hence, given the system
sizes that are accessible with our computational resources, we
can conclude that the evolution of tripartite information in
momentum space is compatible with Haar scrambling in the
thermodynamic limit.

By contrast, the late-time value found in real space is
already, for small finite systems, close to the Haar scrambling
value. We attribute this difference between real space and
momentum space to the presence of an additional block
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FIG. 7. Time evolution of the negative tripartite information in
a chain of N = 12 sites in the integrable regime with λ = 0 for
different values of the interaction V . (a) In real space, where A and
D are single-site subsystems on diametrically opposing sides of the
ring. (b) In momentum space, where A is the mode n = 0 and D is the
mode n = 11. The dashed lines indicate the Haar scrambled value of
the tripartite information.

structure of the time-evolution operator in the momentum
basis, namely, total momentum blocks, which effectively re-
duces the degree of scrambling achievable in a finite system.

VII. TRIPARTITE INFORMATION IN THE BETHE
INTEGRABLE SYSTEM

In Fig. 7 we show the dynamics of the tripartite information
in real space and momentum space for different interaction
strengths V with λ = 0. Due to the absence of next-nearest-
neighbor hopping the systems are integrable for all values of
V .

In momentum space [Fig. 7(b)], we find that the dynamics
is very similar to the dynamics obtained with λ = 0.5, shown
in Fig. 2(b). The reason is that in momentum space the
deviation of I3 from zero is due to the scattering term in the
Hamiltonian, which is unaffected by the range of hopping [see
Eq. (6)].

However, in comparison to the result for the nonintegrable
system [Fig. 2(a)], the tripartite information in real space
shown in Fig. 7(a) deviates much more strongly from the Haar
scrambled value also at late times.

It is possible that finite-size effects play a more impor-
tant role in the Bethe integrable model and that by inves-
tigating larger systems one would find behavior closer to
the nonintegrable model. However, notice that for the inte-
grable model even in the thermodynamic limit we expect
that information is not scrambled with respect to partition-

ings constructed from the quasiparticle basis because in this
basis scattering leads to only the permutation of rapidities,
which is insufficient for the scrambling of information. The
corresponding analysis is, however, beyond the scope of this
work.

VIII. DISCUSSION

In this work we emphasize the importance of study-
ing scrambling with respect to different partitionings of the
Hilbert space, H = HA ⊗ HB = HC ⊗ HD. A system should
be considered a scrambler only if it scrambles informa-
tion with respect to any physically relevant partitioning of
the Hilbert space. A physically relevant partitioning is one
where experimentally accessible observables can be con-
structed which act exclusively on the individual factors of
the partitioned space; these are the meaningful partitionings
because any information that is localized in the correspond-
ing subsystems can, in practice, be accessed only via such
observables. Clearly, for any numerical study this notion
of scrambling allows for only falsification. The observation
of scrambling with respect to a specific choice of Hilbert
space partitionings is necessary, but not sufficient, for genuine
scrambling.

The numerical results presented in this work show that
noninteracting fermions in one dimension do not scramble; in
particular, in momentum space information is not distributed
at all. By contrast, the behavior of I3 obtained for interacting
systems is compatible with scrambling.

Our data also indicates that in the thermodynamic limit
generic (meaning nonintegrable) interacting systems at long
times scramble as effectively as Haar random unitaries. For
interacting Bethe ansatz integrable models we are unable to
address this question due to stronger finite-size effects.

The results presented in this work show that tripartite
information, which goes beyond OTOCs in that it directly
quantifies the distribution of information, is an insightful
measure for scrambling; for example, a sharp distinction of
system characteristics was revealed within the dynamics of I3.
As such, tripartite information should be further explored in
future research to enhance the understanding of scrambling,
including, e.g., the role of temperature.
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APPENDIX: NUMERICAL APPROACH

For the analysis of the tripartite information at infinite
temperature the entanglement entropies SAC and SAD of state
|U (t )〉 in the doubled Hilbert space are needed. A straight-
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forward way to obtain these would be to compute the full
time-evolved state |U (t )〉, form the corresponding density
matrix ρ̂(t ) = |U (t )〉 〈U (t )|, and trace out the respective com-
plements to obtain the reduced density matrices and, from
these, the entropies. However, with this approach computing
resources restrict the feasible sizes of the physical system to
N � 7, i.e., a doubled system with 2N � 14 sites. In order to
obtain the data for N = 12 presented in the main text we chose
an alternative approach.

In our approach we individually compute the contributions
to the reduced density matrix, for which it is sufficient to
evolve states in the physical system and not the doubled
system. The time-evolved state in the doubled system is

|U (t )〉 =
∑

i

|i〉AB ⊗ Û (t ) |i〉CD . (A1)

It is then convenient to think of the corresponding density
matrix ρ̂(t ) as a matrix of dimension 2N × 2N , where every
entry ρi j is the corresponding matrix |i(t )〉 〈 j(t )| obtained
from the time-evolved basis states |i(t )〉 = Û (t ) |i〉. Using
this form of ρ̂(t ), the contributions to the reduced density
matrices of interest are easily determined, and they can be
computed exactly based on the time-evolved basis states of
the physical system |i(t )〉 without ever dealing with the full
density matrix |U (t )〉 〈U (t )|.

We also pursued an approach based on a matrix product
state (MPS) representation of the infinite-temperature state
with subsequent time evolution. Within this real-space ansatz
class there is direct access to the entanglement spectrum
for any single cut bipartition of the physical system. To
be able to also treat embedded subsystems we developed a
permutation scheme based on exact matrix product operator
representations of permutation operators. With this method
we were able to confirm the exact calculations with lattice
sizes of N = 10 and N = 12, where we kept a maximum
number of χ = 1000 states. However, extending the sim-
ulation to larger systems turns out to be very challenging
due to the fact that the initial state of the time evolution
has a volume law of the entanglement entropy. Even though
this volume law can be hidden in the particular choice of
the initial state, rendering the time evolution tractable, the
calculation of the required permutations yields subsystems
in which the scaling of the entropy with the volume of the
subsystem reenters the calculations. In detail we calculated for
N = 14 the time evolution of −I3 with a maximal number of
kept states χ = 1000, 1500, 2000, 2500 but were not able to
obtain a well-converged result. We want to point out that with
different initial states, e.g., finite-temperature states, these
calculations may be doable and the benefits of the MPS
representation can be exploited.
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