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Nonreciprocal transport of a super-Ohmic quantum ratchet
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Nonreciprocal transport, which refers to directional transport, is known to occur in noncentrosymmetric
systems with broken time-reversal symmetry. In this paper, we study the nonreciprocal motion of a super-Ohmic
dissipative particle—with a quadratic spectral density function of the environment (s = 2)—in an asymmetric
periodic potential. Using the Keldysh formalism, we derive general expressions for the perturbative corrections
to finite-frequency mobility up to third order in potential strength. We find from numerical integration that as
a function of temperature, second-order mobility in the low-frequency limit scales exponentially in the low-
temperature region, μ

(3)
2 (T ; ω1, ω2) ∼ exp(−b/T ), (b > 0) and scales as a power law in the high-temperature

region, μ
(3)
2 (T ; ω1, ω2) ∼ T −3. As a function of frequency, we show that second-order mobility scales according

to μ
(3)
2 (ω1, ω2; T ) ∼ i(ω log(ω/ωc ))−3 for the s = 2 case, but scales as a power law, μ

(3)
2 (ω1, ω2; T ) ∼ iω−3, for

s � 3, (s ∈ Z+).

DOI: 10.1103/PhysRevB.100.224301

I. INTRODUCTION

Nonreciprocal transport refers to directional transport. For
example, in a one-dimensional system, charge transport is
nonreciprocal if transport properties change when current is
reversed or, to be precise, when second-order conductivity
is finite. The two necessary conditions for nonreciprocal
transport are noncentrosymmetry and broken time-reversal
symmetry. Time-reversal symmetry can be broken in two
ways: microscopically using an external magnetic field or
by the irreversibility of dissipative effects [1]. When it is
broken by a magnetic field, nonreciprocal transport known as
magnetochiral anisotropy is known to occur in noncentrosym-
metric systems [2]. When it is broken by both a magnetic
field and dissipative effects, nonreciprocal spin currents can
be generated in noncentrosymmetric systems with spin-orbit
coupling [3–6]. However, in this paper, we focus solely on
the latter case when time-reversal symmetry is broken only by
dissipation, and we study nonreciprocal transport in an open
system.

To study nonreciprocal transport induced by dissipative
effects, we consider a dissipative particle in an asymmetric
periodic potential. This problem has been extensively studied
in the past for the case of Ohmic dissipation when the potential
is symmetric [7–12], but when the potential is asymmetric,
the motion of the dissipative particle becomes nonreciprocal
under the influence of an external force. We call this model the
ratchet model. The classical dynamics of the ratchet model has
been researched extensively [13–17], but when studying the
ratchet model at low temperatures, it becomes necessary to
include quantum effects—namely quantum fluctuations. The
quantum ratchet model that incorporates quantum effects into
the ratchet model has been studied theoretically in the strong
and weak potential limit for the case of Ohmic dissipation
[18–21]. Experimentally, the quantum ratchet effect has been
observed in artificially fabricated nanostructures [22–24] and

possibly in MoS2, a chiral two-dimensional (2D) supercon-
ductor [20,25].

All previous theoretical works on the quantum ratchet
model, including our recent work [20], have been limited to
the case of Ohmic dissipation, but the super-Ohmic case is
also of general interest. For example, acoustic polarons which
can be found in clean metals with few impurities are super-
Ohmic [26]. In the area of quantum information, super-Ohmic
baths are also important when studying the coherence trapping
of qubits [27,28].

In general, the spectral density of the environment has the
form

J (ω) ∝ ωs , ω � ωc, (1)

where s is the exponent of the frequency dependence. In this
paper, we study the quantum ratchet model for the s = 2
super-Ohmic case:

J (ω) = η
ω2

ωph
�(ωc − ω), (2)

where �(·) is the Heaviside step function, ωc is a cutoff
frequency, and ωph is an arbitrary constant introduced to
fix the dimension of the dissipation strength η. We use the
sharp cutoff function since it is the most convenient function
when calculating the Green’s functions that will be introduced
later. Like our previous work [20], we focus on the weak-
potential limit and calculate velocity perturbatively in powers
of potential strength. When dissipation is super-Ohmic, there
is no quantum phase transition and the periodic potential is
an irrelevant operator for all values of dissipation strength.
Hence, the perturbation is valid even at low temperatures for
all values of dissipation strength, but for the same reason, DC
velocity diverges. Therefore, in this paper, we study finite-
frequency mobility.
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II. KELDYSH APPROACH

The velocity of a dissipative particle in a periodic potential,
V (x) = V (x + a), under a general external force, F (t ), can
be computed using the Keldysh formalism. We begin by
determining the Keldysh action and then derive an expression
for finite-frequency mobility in the low-frequency limit.

A. Keldysh action

The Keldysh action has three parts,

S = S0 + SV + SF , (3)

where SV and SF are contributions from the periodic potential
and external force respectively. Their exact forms are

SV = −
∮
C

dt V (x(t )) = −
∫ ∞

−∞
dt [V (x+(t )) − V (x−(t ))],

(4)

SF =
∮
C

dt F (t )x(t ) =
∫ ∞

−∞
dt F (t )[x+(t ) − x−(t )], (5)

where C is the Keldysh contour from t = −∞ to t = +∞
and back. x+(t ), x−(t ) denote the position variables for the
forward and backward contours, respectively.

The first term in Eq. (3), S0, is the action of the free
dissipative particle and it contains the kinetic energy and
dissipative effects of the particle. We use the Caldeira-Leggett
model [26,27,29,30] to include the effects of dissipation and
assume the system-reservoir coupling is linear in both system
and reservoir coordinates. This model has the advantage of
being quadratic even after tracing out the reservoir. If we
rotate the coordinates,[

x+
x−

]
= 1√

2

[
1 1
1 −1

][
xc

xq

]
, (6)

the action S0 is

S0 =
∫ ∞

−∞
dt dt ′[x+(t ) x−(t )]D−1

0 (t − t ′)
[

x+(t ′)
x−(t ′)

]
, (7)

where D−1
0 (t ) is a 2 × 2 matrix of Green’s functions,

D−1
0 (t − t ′) =

[
0 DA

0 (t − t ′)−1

DR
0 (t − t ′)−1 DK

0 (t − t ′)−1

]
, (8)

where entries

DR
0 (t − t ′) = −iθ (t − t ′)〈[x(t )x(t ′)]〉0, (9a)

DA
0 (t − t ′) = iθ (t ′ − t )〈[x(t )x(t ′)]〉0, (9b)

DK
0 (t − t ′) = −i〈{x(t )x(t ′)}〉0, (9c)

are the retarded, advanced, and Keldysh Green’s functions,
respectively. 〈·〉0 indicates the average is taken with respect to
S0 [31]. These Green’s functions are not independent and they
satisfy

D̃K
0 (ω) = [

D̃R
0 (ω) − D̃A

0 (ω)
]

coth(βω/2), (10a)

D̃R
0 (ω) = D̃A

0 (ω)∗, (10b)

where β = 1/T is inverse temperature. Notice that the tem-
perature dependence of the Keldysh action comes from the
Keldysh Green’s function.

The Heisenberg equation of motion of x(t )—which is the
quantum mechanical Langevin equation—is linear, so using
the Ehrenfest theorem it is clear the quantum mechanical re-
sponse function is identical to the classical response function.
Hence, the retarded Green’s function is

D̃R
0 (ω) = 1

Mω(ω + iγ̃ (ω))
. (11)

The friction kernel is given by [26]

γ (t ) = �(t )
2

Mπ

∫ ∞

0
dω

J (ω)

ω
cos(ωt ). (12)

Hence, using Eqs. (10a), (11), and (12), we can calculate the
free Green’s functions from the spectral density function given
in Eq. (2) and obtain the explicit form of the Keldysh action.

B. Perturbative correction to finite-frequency mobility

Given the Keldysh action, we can perturbatively compute
velocity,

v(t ) = 1

2

∂

∂t
〈x+(t ) + x−(t )〉, (13)

in powers of V and compute finite-frequency mobility. Super-
scripts are used to indicate the order of the correction. To be
precise, nth-order mobility is

μn(�ω(n) ) =
∞∑

m=0

μ(m)
n (�ω(n) ),

(
μ(m)

n ∼ O(V m)
)
, (14)

where �ω(n) ≡ (ω1, . . . , ωn). At zeroth order, mobility is linear,
so

μ
(0)
1 (ω) = iωDR

0 (ω). (15)

First-order corrections vanish, so we begin computing cor-
rections from second order. In the low-frequency limit, the
second-order mobility is

μ
(2)
n:odd(�ω(n) )

≈ (−1)(n−1)/2

(
i

n∑
m=1

ωm

)
DR

0

(
n∑

m=1

ωm

)
n∏

m=1

iωmDR
0 (ωm)

×2
∑

k

kn+1
∣∣Vk

2
∣∣∫ ∞

0
t nexp

[
k2

2
iδDK

0 (t )

]
sin

[
k2

2
DR

0 (t )

]
dt,

(16)

where δDK
0 (t ) ≡ DK

0 (t ) − DK
0 (0) and the summation is over

the reciprocal lattice vectors, k = 2πn/a (n ∈ Z). Note
that the low-frequency limit is convenient because the
temperature-dependent and frequency-dependent factors are
decoupled. The exact expression for second-order correction
is given by Eq. (A16). Second-order correction is finite only
for odd-order responses, so we continue to third-order correc-
tions to find the leading-order contribution to nonreciprocal
response.
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In the low-frequency limit, third-order mobility is

μ
(3)
n:odd(�ω(n) ) ≈ (−1)(n−1)/24

(
i

n∑
m=1

ωm

)
DR

0

(
n∑

m=1

ωm

)
n∏

j=1

iω jD
R
0 (ω j )

∑
k1+k2+k3=0

Re
[
Vk1Vk2Vk3

]

×
∫ ∞

0
dt1

∫ ∞

0
dt2 k1(k1t1 − k2t2)n sin

[
k1k2

2
DR

0 (t1 + t2) + k2k3

2
DR

0 (t2)

]
sin

[
k1k3

2
DR

0 (t1)

]

× exp

{
− i

2

[
k1k2δDK

0 (t1 + t2) + k2k3δDK
0 (t2) + k1k3δDK

0 (t1)
]}

, (17)

μ(3)
n:even(�ω(n) ) ≈ (−1)n/24

(
i

n∑
m=1

ωm

)
DR

0

(
n∑

m=1

ωm

)
n∏

j=1

iω jD
R
0 (ω j )

∑
k1+k2+k3=0

Im
[
Vk1Vk2Vk3

]

×
∫ ∞

0
dt1

∫ ∞

0
dt2 k1(k1t1 − k2t2)n sin

[
k1k2

2
DR

0 (t1 + t2) + k2k3

2
DR

0 (t2)

]
sin

[
k1k3

2
DR

0 (t1)

]

× exp

{
− i

2

[
k1k2δDK

0 (t1 + t2) + k2k3δDK
0 (t2) + k1k3δDK

0 (t1)
]}

. (18)

Third-order corrections to even-order mobility is finite if
Im[Vk1Vk2Vk3 ] �= 0, which is true if the potential is asymmetric
[19,20]. Like second-order correction, third-order corrections
have a decoupled frequency- and temperature-dependent part
in the low-frequency limit. The exact expressions of the third-
order corrections of odd- and even-order responses are given
by Eqs. (A18) and (A19).

If we assume the periodic potential has the asymmetric
form,

V (x) = V1 cos

(
2πx

a

)
+ V2 sin

(
4πx

a

)
, (19)

the summation over reciprocal lattice vectors in the third-
order corrections are over permutations of (k1, k2, k3) =
±2π/a(1, 1,−2), and we can define the functions

O(2)
n (T ) =

∫ ∞

0
exp

[
k2

2
iδDK

0 (t ; T )

]
sin

[
k2

2
DR

0 (t )

]
t n dt,

(20)

O(3)
n (T ) =

∑
k1+k2+k3=0

∫ ∞

0
dt1

∫ ∞

0
dt2 k1(k1t1 − k2t2)n

× sin

[
k1k2

2
DR

0 (t1 + t2) + k2k3

2
DR

0 (t2)

]

× sin

[
k1k3

2
DR

0 (t1)

]
exp

{
− i

2

[
k1k2δDK

0 (t1 + t2; T )

+ k2k3δDK
0 (t2; T ) + k1k3δDK

0 (t1; T )
]}

, (21)

that give us the temperature dependence of the perturbative
corrections in the low-frequency limit. In this paper, we focus
on examining the behavior of Eqs. (20) and (21).

III. RESULTS

To calculate the second-order and third-order corrections
to mobility, which were derived in the previous section for the
s = 2 super-Ohmic case, we first compute the retarded and
Keldysh Green’s functions.

A. Green’s functions

From the definition of the friction kernel, Eq. (12), and the
specified spectral density function, Eq. (2), we have

γ̃ (ω) = −i
γ2

πωph
ω log

(
1 − ω2

c

ω2

)
. (22)

Using Eq. (11), the Fourier transform of the retarded Green’s
function can be trivially obtained. If we take the branch cut
of the complex log to lie along the negative real axis, it is
easy to determine that the Fourier transform of the retarded
Green’s function has two simple poles at ±ω0, (ω0 > ωc) and
a branch cut connecting branch points located at ω = ±ωc.
When computing the inverse Fourier transform, we push the
simple poles and branch cut below the real axis to guarantee
the causality of the retarded Green’s function. Then, by de-
forming the contour integral to go around the simple poles
and branch cut, we have

DR
0 (t ) = − 1

Mωcα

exp(−1/α)√
1 − e−1/α

sin(ω0t )

− 2α

M

∫ ωc

0

dω

ω2

sin(ωt )[
1 + α log

(ω2
c

ω2 − 1
)]2 + π2α2

.

(23)

We defined the dimensionless dissipation strength, α =
η/(πMωph ) = γ /(πωph), where γ = η/M is the character-
istic frequency of dissipation. The Keldysh Green’s function
can be determined from Eq. (10a), and we have

δDK
0 (t ) =i

2α

M

∫ ωc

0

dω

ω2

coth
(

ωβ

2

)
[1 − cos(ωt )][

1 + α log
(ω2

c
ω2 − 1

)]2 + π2α2
. (24)

The retarded Green’s function, Eq. (23), has a term that
oscillates with constant amplitude. This contribution, which
comes from the residue of the simple poles, makes the nu-
merical integration of Eqs. (20) and (21) computationally
time consuming. Luckily, it can be discarded when studying
the temperature dependence of the perturbative corrections.
The justification for this is as follows. Numerically, Eqs. (20)
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FIG. 1. Temperature dependence of second-order finite-frequency mobility in the low-frequency limit given by Eq. (21) evaluated for
the dimensionless dissipation strengths, α = 0.6, 0.8, 1, 1.2. As temperature decreases, the convergence of the oscillating integrand becomes
slower. At very low temperatures, the round-off error becomes too large. Hence, the data were extrapolated to present a clear picture of
the low-temperature behavior; the extrapolated data are represented by the dotted lines. (a) Log-log plot of O(3)

2 plotted against temperature.
(b) Lin-log plot of O(3)

2 plotted against inverse temperature.

and (21) approximately evaluate to the same value and ex-
hibit the same qualitative temperature dependence when the
residue contribution is included and excluded as confirmed
for the α = 1 case. Analytically, the dominant contribution
to the integrals come from the long-time region (ti > ω−1

c )
of the integration region and from low-frequency variations
(ω � ω−1

c ) of the integrand, but the residue term oscillates
at the frequency ω0 > ωc, which implies the residue term is
essentially canceled out. At high temperatures, the dominant
contribution to the integrals come from the short-time region,
t < ω−1

c , where both the residue contribution and branch-cut
contribution are linear in time, so there is no qualitative dif-
ference when the residue contribution is discarded. Physically,
the residue contribution from the simple poles is an artifact of
the artificial sharp frequency cutoff. It does not represent an
essential feature of super-Ohmic dissipation, and we expect
it to disappear for a different choice of a cutoff function.
Therefore, it is safe to ignore the contribution from the simple
poles and simply evaluate the retarded Green’s function using
the branch-cut integral.

B. Numerical calculation of O(3)
2

The numerical calculation of O(3)
2 , the temperature depen-

dence of second-order finite frequency, is shown in Fig. 1.
At high temperatures, O(3)

2 is linear with the same slope for
different α in the log-log plot, so it clearly decays according
to a power law with an exponent that is independent of α.
In fact, numerical analysis of our results and an analytic
derivation gives us the result, O(3)

2 ∼ T −3. Details of the an-
alytic derivation of the exponent is presented in Appendix B.
On the other hand, at low temperatures, O(3)

2 is linear in the
linear-log plot, so it clearly decays exponentially as a function
of inverse temperature, i.e., O(3)

2 ∼ exp(−b/T ), where b > 0
is a constant that is dependent on α. It is clear from Fig. 1(b)
that the constant b > 0 is a monotonically decreasing function
of α. In other words, second-order mobility vanishes more
rapidly as temperature decreases for weaker dissipation.

Note that there is a crossover temperature at T ∼ ωc that
divides the low-temperature and high-temperature behavior
of O(3)

2 . The power-law behavior of O(3)
2 occurs for T � ωc;

on the other hand, for T � ωc, the temperature dependence

of second-order mobility exhibits a sign change and decays
exponentially as temperature decreases.

Hence, to summarize, the temperature dependence of
second-order finite frequency is

∣∣O(3)
2

∣∣ ∼
{

exp(−b/T ), T � ωc,

T −3, T � ωc.
(25)

For the case of Ohmic dissipation, the second-order mobil-
ity vanishes as a power law of T instead of an exponential
decay [20]. To understand this difference, note that super-
Ohmic dissipation is, in a sense, weak dissipation. This can
be readily understood by considering the following example.
Consider a free dissipative particle and assume we apply a
constant force F starting at t = 0. Then the velocity of this
particle is v = −FDR

0 (t ). The limit of the Green’s function as
t → ∞ is

DR
0 (t ) →

{−η, s = 1 (Ohmic)
−∞, s > 1 (super-Ohmic) (t → ∞). (26)

Hence, it is clear that friction for the super-Ohmic case is
weaker than the Ohmic case, and as temperature decreases and
quantum fluctuations become dominant, we expect second-
order mobility to vanish more quickly for the super-Ohmic
case than the Ohmic case. This argument gives a rough
explanation for why finite-frequency second-order mobility
decays exponentially as T → 0 for the s = 2 super-Ohmic
dissipation case.

On the other hand, second-order mobility vanishes accord-
ing to a power law as T → +∞. In this regime, thermal
fluctuations are dominant and the mechanism for particle
transport comes from thermal hopping instead of quantum
tunneling, which is why mobility does not decay exponen-
tially like in the low-temperature limit. Regardless, the high-
temperature behavior of mobility is not universal like the low-
temperature limit. As discussed in our previous work [20], the
exponent of the power law is dependent on the choice of the
cutoff function. In our case, we chose a sharp cutoff function,
while in our previous work we chose the exponential cutoff
function function, so we cannot compare the exponents of the
power-law decay of the two cases.

224301-4



NONRECIPROCAL TRANSPORT OF A SUPER- … PHYSICAL REVIEW B 100, 224301 (2019)

C. General super-Ohmic case (s > 1)

To understand the general super-Ohmic case, we also con-
sider the s = 3 super-Ohmic case. If we define the spectral
density function

J3(ω) = η3
ω3

ω2
ph

�(ωc − ω), (27)

where the subscripted numeral 3 serves to differentiate the
constants from the s = 2 case, the corresponding retarded and
Keldysh Green’s functions are

DR
0 (t ) = − t

M(1 + 2α)
+ 2

(
ω2

0,3 − ω2
c

)
Mω0,3

[
ω2

0,3 − ω2
c

(
1 + 2α3

)]
× sin(ω0,3t ) − 2α3

Mωc

∫ ωc

0

dω

ω

× sin(ωt ){
1 + α3

[
2 − ω

ωc
ln

(
ωc+ω
ωc−ω

)]}2 + (
πα3ω
ωc

)2 , (28)

and

δDK
0 (t ) = i

2α3

Mωc

∫ ωc

0

dω

ω

× coth
(

ωβ

2

)
[1 − cos(ωt )]{

1 + α3
[
2 − ω

ωc
ln

(
ωc+ω
ωc−ω

)]}2 + (
πα3ω
ωc

)2 , (29)

where α3 = η3ωc/Mπω2
ph and ω0,3 > 0 is the positive solu-

tion to

ω0,3 = ωc

2α3

1 + 2α3

tanh−1
(

ωc
ω0,3

) . (30)

The numerical integration of O(3)
2 (T ) for the s = 3 case cannot

be performed because the integrand oscillates rapidly and
round-off error becomes significant. However, computation of
O(2)

1 (T ) is possible, and the numerical results indicate that it
also decays exponentially as function of inverse temperature
as T → 0.

Therefore, given this result for the s = 3 case and our
previous generalized argument on how super-Ohmic dissi-
pation corresponds to weak dissipation, we speculate that
the exponential decay, O(3)

2 ∼ exp(−b/T ), as T → 0 is a
qualitative feature that occurs for all super-Ohmic cases.

D. Frequency dependence of second-order mobility

Lastly, we comment on the frequency dependence of mo-
bility. An important thing to keep in mind is that the results
in Sec. III and the discussion presented in this section are
limited to the low-frequency case where ωi � min(ωc, β

−1).
Notice that the frequency dependence of the perturbative
correction to mobility comes from products of the factors,
iωD̃R

0 (ω) = i/M(ω + iγ̃ (ω)). The leading-order behavior of
γ̃ (ω) is already known for different exponents of the spectral
density function [26]. The leading-order behavior is

iωD̃R
0 (ω) ≈

{
1/Mγ̃ (ω), s � 2

i/ω(M + �Ms), s > 2
(ω → 0+),

(31)

where �Ms = (2/π )(s − 2)(ωc/ωph)s−1(ηs/ωc) is the mass
renormalization term. For the s = 2 super-Ohmic case, we
have

iωD̃R
0 (ω) ≈ −i

2αω log(ω/ωc)
(ω → 0+). (32)

Second-harmonic mobility, μ2(ω,ω), should scale as a func-
tion of frequency according to

μ2(ω,ω) ∼ i

ω3 log(ω/ωc)3
. (33)

For other super-Ohmic cases, s > 2, second-harmonic mobil-
ity scales as

μ2(ω,ω) ∼ i

ω3
. (34)

Hence, second-harmonic mobility typically scales as an in-
verse cube of frequency but has a logarithmic multiplicative
correction for the s = 2 case.

IV. SUMMARY

In this paper, we studied the nonreciprocal motion of a
super-Ohmic dissipative particle in an asymmetric periodic
potential. By perturbative expansions in powers of the poten-
tial strength, we derived general expressions for second-order
and third-order corrections to finite-frequency mobility and
numerically calculated their temperature dependence in the
low-frequency limit for the case when the spectral density
function of the environment has a quadratic frequency depen-
dence (s = 2). In the low-temperature limit, the corrections
vanished exponentially, and in the high-temperature limit they
decayed as a power law. We argued that this is the qualitative
behavior for the general super-Ohmic case (s � 2, s ∈ Z+).
We also derived the frequency dependence of first-order and
second-order mobility in the low-frequency limit, which di-
verge in the DC limit. The main results are summarized in
Table I and compared with the results for the case of Ohmic
dissipation [20].

It has been shown that the classical-quantum crossover
as the temperature is lowered reflects itself as the non-
monotonous temperature dependence of the nonreciprocal
nonlinear mobility μ2. Namely, the quantum mechanical wave
does not show nonreciprocal response as the temperature, T ,
goes to 0. This conclusion is similar to the case of Ohmic
dissipation, where the main difference is that T dependence is
exponentially activated type at low temperature even though
the spectrum of the environment is gapless. This prediction
can be tested in a polaron system in noncentrosymmetric
crystals, where the phonon heat bath corresponds to s = d .
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TABLE I. Temperature dependence and frequency dependence of linear mobility, μ1(T, ω), and second-harmonic mobility, μ2(T, ω, ω),
in the low-frequency (ω → 0) and low-temperature (T → 0) limit to leading order for the Ohmic [20] and super-Ohmic dissipative cases.

Ohmic (s = 1) super-Ohmic (s > 1, s ∈ Z+)

Quantum phase
transition

{
delocalized, α < 1
localized, α > 1

None

Linear mobility
(T →0, ω→0)

μ1(T ) ≈
{ 1

η
− CT 2/α−2 + O(V 3), α < 1

C′T 2α−2 + O(V 3), α > 1
μ1(T, ω) ≈

⎧⎪⎨
⎪⎩

1
iω log ω

ωc

(
1 − C1,s (α)

iω log ω
ωc

e−C2,s (α)/T
)

+O(V 3), s = 2
1
iω

(
1 − C1,s (α)

iω e−C2,s (α)/T
) + O(V 3), s � 3

Second-order mobility
(T → 0, ω → 0)

μ2(T ) ∼
{

T 6/α−3 + O(V 4), α < 1

T 2α−2 + O(V 4), α > 1
μ2(T, ω, ω) ≈

⎧⎪⎪⎨
⎪⎪⎩

C′
1,s (α)(

iω log ω
ωc

)3 e−C′
2,s (α)/T + O(V 4), s = 2

C′
1,s (α)

(iω)3 e−C′
2,s (α)/T + O(V 4), s � 3

APPENDIX A: DERIVATION OF
FINITE-FREQUENCY MOBILITY

In this Appendix, we provide an outline for the derivation
of the expressions for second-order and third-order perturba-
tive corrections to finite-frequency mobility.

Before we dive in, we express the action, SV , SF , defined
in Eqs. (5) and (4) using the rotated coordinates xc(t ), xq(t )
defined by Eq. (6):

SV = −
∑
δ=±1

∑
k

Vkδ

∫ ∞

−∞
dt exp

{
i

k√
2

[xc(t ) + δxq(t )]

}
,

(A1)

SF =
√

2
∫ ∞

−∞
dtF (t )xq(t ). (A2)

Here, we used the Fourier series representation of the periodic
potential: V (x + a) = V (x) ⇒ V (x) = ∑

k Vkeikx, where k =
2πn/a and n ∈ Z.

1. Velocity

The velocity of the particle is

v(t ) = ∂

∂t
〈x(t )〉 = 1

2

∂

∂t
〈x+(t ) + x−(t )〉

= 1√
2

∂

∂t
〈xc(t )〉. (A3)

If we define the following generating functional,

Z[η] =
∫

D(xc, xq )eiS[xc,xq]+i
∫

dt ′η(t ′ )xc (t ′ ), (A4)

velocity is

v(t ) = −i
∂

∂t

(
δZ[η]

δη(t )

∣∣∣∣
η=0

)
. (A5)

We then calculate this functional derivative using a procedure
similar to the one given in Ref. [9]. It is straightforward to find

v(t ) = −∂t

∫ ∞

−∞
dt ′DR

0 (t − t ′)
[

F (t ′) + 1√
2

Tr{ρq(t ′)G[F ]}
]
,

(A6)

where Tr{·} is defined as

Tr{·} ≡
∞∑

n=0

(−i)n

n!

∑
δ1···δn=±1

∑
k1···kn

n∏
i=1

Vkiδi

∫
dti{·}. (A7)

Notice that the nth term of the overall summation is the
nth-order perturbative correction to velocity. To simplify cal-
culations, we introduced the charge densities, ρ (n)

c and ρ (n)
q ,

where the superscript denotes the order of perturbation they
belong to. For nth-order perturbation, there are n charges and
the charge densities are defined as

ρ (n)
c (t ) = 1√

2

n∑
j=1

k jδ(t − t j ), (A8a)

ρ (n)
q (t ) = 1√

2

n∑
j=1

k jδ jδ(t − t j ). (A8b)

The trace simply sums over all possible configurations of
these charge densities. The functional, G[F ], is defined,

G(n)[F ] = exp

⎧⎨
⎩− i

4

∑
i, j

kik j
[
DK

0 (ti − t j ) + 2δiD
R
0 (t j − ti )

]

− i
∑

i

ki

∫
dt ′F (t ′)DR

0 (ti − t ′)

⎫⎬
⎭. (A9)

Now that we have an expression for velocity, v(t ), we
define finite-frequency mobility in the following way:

v(t )[F ] =
∫

μ1(t − t1)F (t1)dt1

+ 1

2!

∫
μ2(t − t1, t − t2)F (t1)F (t2)dt1 dt2

+ · · · (A10)

=
∞∑

n=1

1

n!

∫
dt1 . . . dtnμn(t − t1, . . . , t − tn)

× F (t1) . . . F (tn) (A11)
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=
∞∑

n=1

1

n!

∫
dω1

2π
. . .

dωn

2π
e−i(ω1+···+ωn )t

×μ(ω1, . . . , ωn)F (ω1) . . . F (ωn). (A12)

The kernels of the integrals are response functions which we
define as the finite-frequency mobilities. The nth-order mo-
bility can be obtained from velocity by a functional derivative
with respect to the external force,

μn(�ω(n) ) = (2π )n δn

δF (ω1) . . . δF (ωn)
v(t = 0)|F=0, (A13)

where �ω(n) ≡ (ω1, . . . , ωn).

2. Momentum conservation

Before we perturbatively expand the expression for ve-
locity given in Eq. (A6), we prove that only

∑n
j=1 k j = 0

configurations contribute to the trace defined in Eq. (A7).
First, note that the Keldysh Green’s function diverges as a

result of a nonintegrable divergence in the integrand at zero
frequency and goes to DK

0 (t ) → −i∞. However, δDK
0 (t ) ≡

DK
0 (t ) − DK

0 (0) converges nicely. From this result, we can
derive the condition of momentum conservation,

∑n
i=1 ki = 0.

Note that G(n)[F ] contains the factor exp[− i
4

∑
i, j kik jDK

0 (ti −
t j )]. Rearranging the terms of the argument gives us

∑
l, j

kl k j iD
K
0 (tl − t j )

=
∑
l �= j

kl k j iδDK
0 (tl − t j ) +

( ∑
j

k j

)2

iDK
0 (0)

=
{

+∞,
∑

j k j �= 0

0,
∑

j k j = 0
. (A14)

Therefore, G(n)[F ] vanishes if the sum of the momentum
is nonzero, i.e.,

∑
j k j �= 0, and so the only contribution to

Eq. (A6) comes from configurations that conserve momen-
tum. We refer to this condition as momentum conservation
and heavily use it to derive the exact expression of finite-
frequency mobility.

3. Second-order perturbative correction

In this subsection, we compute the second-order perturba-
tive correction to velocity and mobility. We begin with com-
puting the trace in Eq. (A6). From the definitions, Eqs. (A7)
and (A9),

1√
2

Tr{ρq(t ′)G[F ]}(2)

= (−i)2

2!
√

2

∑
δ1,δ2=±1

∑
k1+k2=0

Vk1Vk2δ1δ2

×
∫∫

dt1 dt2 ρq(t ′)G(2)[F ]

= 2
∑

k

k
∣∣Vk

2
∣∣ ∫ ∞

0
ds exp

[
k2

2
iδDK

0 (s)

]
sin

[
k2

2
DR

0 (s)

]

× sin

[
k
∫

dω′

2π
DR

0 (ω′)F (ω′)e−iω′t ′
(eiω′s − 1)

]
,

(A15)

where the last equality was obtained after substituting the
definitions of ρq and G(2)[F ] and rearranging some terms.
Next, after substituting this into the definition of velocity,
Eq. (A6), and using the definition of mobility, Eq. (A13), we
have

μ
(2)
n:odd(�ω(n) ) = (−1)(n−1)/22

(
i

n∑
m=1

ωm

)
DR

0

(
n∑

m=1

ωm

)

×
n∏

m=1

DR
0 (ωm)

∑
k

kn+1
∣∣Vk

2
∣∣

×
∫ ∞

0
dt exp

[
k2

2
iδDK

0 (t )

]

× sin

[
k2

2
DR

0 (t )

] n∏
m=1

(eiωmt − 1), (A16)

where �ω(n) ≡ (ω1, . . . , ωn). The low-frequency limit of this
equation is given by Eq. (16) in the main text of this paper.

4. Third-order perturbative correction

Next, we compute the third-order perturbative correction to
velocity and mobility. The steps are the same for the second-
order correction but each step is more involved. The trace in
the definition of velocity, Eq. (A6), is

1√
2

Tr{ρq(t ′)G[F ]}(3)

= (−i)3

3!
√

2

∑
δ1,δ2,δ3=±1

∑
k1+k2+k3=0

Vk1Vk2Vk3δ1δ2δ3

∫∫∫
dt1 dt2 dt1 ρq(t ′)G(3)[F ]

= −4
∑

k1+k2+k3=0

k1Re
[
Vk1Vk2Vk3

] ∫ ∞

0
dt1

∫ ∞

0
dt2 sin

[∫
dω′

2π
F (ω′)DR

0 (ω′)e−iω′t ′(
k1 + k2eiω′(t2+t1 ) + k3eiω′t1

)]

× exp

{
− i

2

[
k1k2δDK

0 (t2 + t1) + k2k3δDK
0 (t2) + k1k3δDK

0 (t1)
]}

sin

[
k1k2

2
DR

0 (t2 + t1) + k2k3

2
DR

0 (t2)

]
sin

[
k1k3

2
DR

0 (t1)

]
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+ 4
∑

k1+k2+k3=0

k1Im
[
Vk1Vk2Vk3

] ∫ ∞

0
dt1

∫ ∞

0
dt2 cos

[∫
dω′

2π
F (ω′)DR

0 (ω′)e−iω′t ′(
k1 + k2eiω′(t2+t1 ) + k3eiω′t1

)]

× exp

{
− i

2

[
k1k2δDK

0 (t2 + t1) + k2k3δDK
0 (t2) + k1k3δDK

0 (t1)
]}

sin

[
k1k2

2
DR

0 (t2 + t1) + k2k3

2
DR

0 (t2)

]
sin

[
k1k3

2
DR

0 (t1)

]
(A17)

Notice that there the trace is separated into two terms that are odd and even with respect to the external force, F (ω). To obtain
the third equality, we took advantage of momentum conservation and the causality of the retarded Green’s function. Next, we
use the definition of mobility, Eq. (A13), and find two separate expressions for odd- and even-order mobilities:

μ
(3)
n:odd(�ω(n) ) = (−1)(n−1)/24

(
i

n∑
m=1

ωm

)
DR

0

(
n∑

m=1

ωm

) ∑
k1+k2+k3=0

k1Re
[
Vk1Vk2Vk3

] ∫ ∞

0
dt1

∫ ∞

0
dt2 sin

[
k1k3

2
DR

0 (t1)

]

× sin

[
k1k2

2
DR

0 (t1 + t2) + k2k3

2
DR

0 (t2)

] n∏
j=1

DR
0 (ω j )

[
k2(1 − eiω j (t1+t2 ) ) + k3(1 − eiω j t1 )

]

× exp

{
− i

2

[
k1k2δDK

0 (t1 + t2) + k2k3δDK
0 (t2) + k1k3δDK

0 (t1)
]}

, (A18)

μ(3)
n:even(�ω(n) ) = (−1)n/24

(
i

n∑
m=1

ωm

)
DR

0

(
n∑

m=1

ωm

) ∑
k1+k2+k3=0

k1Im
[
Vk1Vk2Vk3

] ∫ ∞

0
dt1

∫ ∞

0
dt2 sin

[
k1k3

2
DR

0 (t1)

]

× sin

[
k1k2

2
DR

0 (t1 + t2) + k2k3

2
DR

0 (t2)

] n∏
j=1

DR
0 (ω j )

[
k2(1 − eiω j (t1+t2 ) ) + k3(1 − eiω j t1 )

]

× exp

{
− i

2

[
k1k2δDK

0 (t1 + t2) + k2k3δDK
0 (t2) + k1k3δDK

0 (t1)
]}

. (A19)

The low-frequency limit of these two equations are given
by Eqs. (17) and (18) in the main text of this paper. They
were obtained by naively expanding the integrands of the
exact expression to first order in ωi. Roughly speaking, this
approximation is valid because the integrand has a rapidly de-
caying exponential term that cuts off the integration region at
t ∼ max(ω−1

c , β ). Hence, the expressions for the corrections
in the low-frequency limit are valid for ω � min(ωc, β

−1).

APPENDIX B: DERIVATION OF THE POWER-LAW DECAY
OF O(3)

2 IN THE HIGH-TEMPERATURE LIMIT

At high temperatures, T � ωc, the temperature-dependent
part of second-order finite-frequency mobility in the low-
frequency limit is proportional to O(3)

2 (T ) ∼ T −3. This can
be readily observed from our numerical results presented in
Fig. 1. This result can also be derived analytically.

In the high-temperature limit, as T → ∞, short-time or
high-frequency dynamics becomes relevant. Hence, we as-
sume that the largest contribution to the double integral of
O(3)

n comes from the integration region, {(t1, t2) | t1, t2 < ω−1
c }.

In this region, the retarded and Keldysh Green’s function
can clearly be approximated by expanding the integrand to
leading-order in t . This gives us

iδDK
0 (t ) ≈ − t2

β

∫ ωc

0
dω

2α/Mω[
1 + α log

(ω2
c

ω2 − 1
)]2 + π2α2

= − J
t2

β
, (ωct � 1), (B1)

and

DR
0 (t ) ≈ − t

∫ ωc

0
dω

2α/Mω[
1 + α log

(ω2
c

ω2 − 1
)]2 + π2α2

= − Jt , (ωct � 1), (B2)
where J > 0 is a constant. We substitute these approximations
into the integrand of O(3)

n given by Eq. (21). Assuming that
the retarded Green’s function is sufficiently small, the sine
function is expanded to first order. Hence, we have

O(3)
n ∼

∫ ω−1
c

0

∫ ω−1
c

0
dt1 dt2 (k1t1 − k2t2)n

(
k2

2t2 − k1k2t1
)
t1

× exp

{
− J

2β

[
k1k2(t1 + t2)2 + k2k3t2

2 + k1k3t2
1

]}
.

(B3)

Next, we perform the change of coordinates, ui = ti/
√

β,
which produces the factor,

√
β, for each ti,

O(3)
n ∼β (4+n)/2

∫ ω−1
c /

√
β

0

∫ ω−1
c /

√
β

0
du1 du2

× (k1u1 − k2u2)n
(
k2

2u2 − k1k2u1
)
t1

× exp

{
−J

2

[
k1k2(u1 + u2)2 + k2k3u2

2 + k1k3u2
1

]}
.

(B4)

Because of the Gaussian cutoff in the integrand, we assume
we can safely extend the upper limit of the integration region
to infinity, i.e., ω−1

c /
√

β → +∞. This gives us

∴ O(3)
n ∼ T −(4+n)/2 ⇒ O(3)

2 ∼ T −3. (B5)
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