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Topological nodal line states in three-dimensional ball-and-stick sonic crystals
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Nodal line states in electronic systems are the extended band crossings in three-dimensional (3D) momentum
space, which recently has been widely explored in classical systems in analogs. With the Dirac cones in two-
dimensional (2D) hexagonal lattices, the linear degeneracy points in the stacking 2D hexagonal lattices (3D
lattices) are elongated into degeneracy lines in the momentum space. In this work, we show that by coupling the
stacked hexagonal lattices with the time-reversal symmetry and inversion symmetry protected, degeneracy points
will form a closed nodal ring in the momentum space in the strong coupling regime. We observe flat drumhead
dispersion surfaces in the band gaps, which verifies the existence of the intriguing nodal line states. Based on
full-wave simulations, we show the field confinement at the truncated surface and the field enhancement due to
the large density of states in flat bands. Furthermore, topological robustness of the drumhead surface states is
investigated against various randomly distributed defects, such as site disorders and hopping disorders. Our work
may serve as the platform of the sonic-crystal based semimetal for versatile applications like sound trapping,
vibration isolation, and absorption.
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I. INTRODUCTION

Topological nontrivial phases have attracted considerable
interests in various systems [1,2] for their novel physics, such
as the notable quantum Hall effect [3,4] and quantum spin-
Hall effect [5,6]. In the past decade, the paradigm of topolog-
ical phase transition in electronic systems has been success-
fully shifted to classical systems [7,8] to bring forward the
optical and acoustic analogs of the Chern insulators [9–12],
spin-Hall-like topological insulators [13–17], and valley-Hall-
like topological insulators [18–21]. Recently, the gapless
topological phases, firstly discovered in semimetals [22–28]
where the conduction and valence bands coincide at robust
degenerate points (either discrete points [23–26] or continuum
lines [22,27,28]), have also motivated widespread attention in
optics [29–35] and acoustics [36–48]. For example, the Weyl
sonic crystals featured with the robust one-way surface states
have been experimentally realized in chiral artificial structures
with broken inversion symmetries [37,38]. Different from the
Weyl sonic crystals that require the protection of translation
lattice symmetry, the nodal line sonic crystals with full line
degeneracies require an additional protection of the crystalline
symmetries [49]. The previous nodal line semimetals can be
categorized into three groups either in electronic systems or
in classical systems: (1) the lattices with the mirror reflection
symmetry [32,41,50,51]; (2) the lattices with the time-reversal
and inversion symmetries [52–56]; and (3) the lattices with the
nonsymmorphic symmetry [33,34,39,57].
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Acoustic wave, as the intrinsic longitudinal wave with-
out complex interactions to the propagation medium, can
be regarded as a good candidate to explore the properties
of the nodal line states. In this work, we show that the
three-dimensional (3D) ball-and-stick sonic crystals with both
the time-reversal and inversion symmetry can have closed
nodal lines (or nodal rings) in the momentum space. When
the nodal ring is projected onto the Brillouin-zone surface,
one can map out the drumhead surface states according
to the bulk-boundary correspondence. Here the flat nodal
lines are distinctly isolated from the bulk bands, where the
surface localized states can be easily excited at the degenerate
frequency. The proposed ball-and-stick sonic crystal is also a
good candidate for the tight-binding model, where the effec-
tive Hamiltonian is derived to show the nontrivial properties of
nodal rings and drumhead surface states. Finally, we impose
different randomly distributed defects in the 3D lattice, such
as site disorders, intralayer- and interlayer hopping disorders,
which verifies the robustness of drumhead states against
weak-strength perturbations. Our work will push forward the
exploration of acoustic nodal line semimetals.

This work is organized as follows. In Sec. II, we study the
nodal line states and the Weyl states in 3D momentum space
of the ball-and-stick sonic crystal. A tight-binding model is
introduced to derive the effective Hamiltonian and analyze the
requirements for the dispersionless nodal rings. In Sec. III, we
show the properties of the propagating Tamm-like states and
the localized nodal line states (or the drumhead surface states),
and reveal their inherent differences. In addition, different
randomly distributed bulk disorders are introduced in the
nodal line sonic crystals to verify the stability of the surface
localized states under topological protection. We also investi-
gate the cases of intrinsic and nonintrinsic source excitations
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FIG. 1. A side view of one layer of the ball-and-stick sonic
crystal. The hollow-sphere cavities and cylindrical channels are
assembled into an acoustic network that is filled with air (density
1.25 kg/m3 and speed of sound 340 m/s). The right panel shows
an enlarged unit cell with the structural parameters marked. The
cavities A and B locate at inequivalent lattice sites. The blue and
yellow channels represent intralayer and interlayer acoustic couplers
with the coupling strengths denoted by t1 and t2, respectively. Lattice
vectors are a1, a2, and a3.

in the nodal line sonic crystals. Finally, we summarize the
results in Sec. IV.

II. MODEL AND THEORY

A. Three-dimensional ball-and-stick sonic crystals

To achieve symmetry-protected nodal lines, we propose a
toy model as shown in Fig. 1. The model is a multilayered
structure stacking along the z direction. In each layer, we have

two triangular sublattices with the lattice constant a. Note that
no spin degree of freedom is considered in this model. In
Fig. 1, the orange ball A and green ball B locate at different
lattice sites. The blue and yellow sticks connect the balls A
and B in each layer and between adjacent layers, respectively.
The projection of the slanted yellow sticks is along the y di-
rection of the x-y plane. Basically, the intralayer and interlayer
couplings are not necessarily the same. The right panel of
Fig. 1 shows a unit cell of the 3D lattice, where there exists an
inversion symmetry between the two inequivalent sublattices.
For acoustic implementation, the balls and sticks are replaced
by hollow-sphere cavities and cylindrical channels. The net-
work is filled with air for sound propagation. For the structural
parameters, the spacing between two adjacent cavities A and
B in plane is L = 10 cm. The in-plane and out-of-plane lattice
constants are a = 17.32 cm and d = 10 cm. Since we set the
equal length of L and d , the tilted angle of the interlayer pipes
is 45◦. The radii of the sphere cavities and in-plane pipes
are rs = 1.5 cm and rr = 0.3 cm, respectively. In this work,
the radius of out-of-plane pipes can be tailored to change the
interlayer coupling strength.

The hexagonal lattice is a two-dimensional (2D) structure
featured with the Dirac cones in the 2D momentum space [58].
By stacking the hexagonal lattices into a 3D structure, it is
intuitive to consider the existence of degenerate nodal lines
in the 3D momentum space. We first discuss a simple case
in which the stacked hexagonal lattices are not coupled with
each other. In this case, the band-crossing points will form
straight nodal lines along the kz direction in the 3D Brillouin

FIG. 2. (a) A series of band-crossing points on a pair of twisted nodal lines in the 3D Brillouin zone in presence of the weak interlayer
coupling. The plane at kz = π/d is highlighted. (b) The band structure in the 2D Brillouin zone at kz = π/d . The six band-crossing points (or
nodal points) are marked by the black circles. (c) A closed nodal ring in the 3D Brillouin zone in presence of the strong interlayer coupling.
(d) The band structure in the 2D Brillouin zone at kz = π/d . The two nodal points are shifted inwardly by the strong interlayer interaction.
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FIG. 3. (a) A schematic of the unit cell with broken inversion symmetry. The on-site energies cA and cB are different, and the interlayer
hopping strengths between A-A and B-B sites tA �= tB, with tB = 0 in this model. (b) The 3D Brillouin zone of the inversion symmetry broken
lattice. The four spheres label the Weyl points. (c) The band structures in the 2D Brillouin zone at kz = 0.82π/d , kz = π/d , kz = 1.18π/d , as
highlighted by the planes in (b). A pair of band-crossing points exist at kz = 0.82π/d and kz = 1.18π/d , respectively.

zone, which is physically equivalent to the 2D system. As
shown in Fig. 1, we can use the slanted pipes to introduce
interlayer interactions without breaking the lattice inversion
symmetry. In Fig. 2, we show the shape of nodal lines
in the weak- and strong interlayer couplings, respectively.
When the interlayer coupling strength is smaller than that of
the intralayer coupling (for example, rm = 0.18 cm and rr =
0.3 cm), the acoustic system operates in the weak-coupling
regime. In this case, the band-crossing point is slightly pushed
away from the K and K ′ points. As shown in Fig. 2(a), the
band-crossing points cover all kz values, denoted by the blue
spheres, which form the nodal lines twisted around the edge
of the 3D hexagonal Brillouin zone. Here we only show two
nodal lines in the vicinity of the K and K ′ points, since the
Brillouin zone is periodic. It should be pointed out that the
nodal line states are dispersionless, that is, the same frequency
for all band-crossing points. In Fig. 2(b), we calculate the two
lowest bands at kz = π/d , where there exist six Dirac cones
nearby the high-symmetric corners of the Brillouin zone, with
the Dirac points locating at around 464 Hz, as marked by the
black circles. In contrast to weak coupling, strong coupling is
generated by enlarging the cross section of interlayer slanted
pipes to ensure that the interlayer coupling strength weighs
more than that of the intralayer coupling. In this work, we
choose rm = 0.55 cm and rr = 0.3 cm. Affected by the strong
interlayer interaction, the nodal lines are heavily deformed
and warped into a closed ring, as shown in Fig. 2(c). The
results show that the enhanced interlayer hopping strength
makes the band-crossing points kz dependent and far from the
high-symmetric points in the 3D Brillouin zone. The closed
nodal ring is centered at the point (0, 0, π

d ) in the momentum
space and tilted a little away from the kz = π/d plane, which

is protected by the time-reversal and inversion symmetries
without involving the spin-orbital coupling. It needs to be
mentioned that the nodal ring will locate right in the kz = π/d
plane, if we further introduce the mirror symmetry along the z
direction into the 3D lattice. We can project the bulk nodal
ring onto the bottom surface (001) of the Brillouin zone,
where the associated surface Brillouin zone is divided into
the outside topological nontrivial region (π Zak phase) and
inside trivial region (0 Zak phase), as will be discussed in
the next section. The closed nodal ring is also dispersionless.
In Fig. 2(d), we calculate the band structure at kz = π/d and
identify two band-crossing points at the degeneracy frequency
of 530 Hz.

As aforementioned, the combination of time-reversal sym-
metry and inversion symmetry protects the nodal ring in the
3D momentum space. Therefore, it is expected that the nodal
ring will gap out and may turn into discrete Weyl points after
breaking the inversion symmetry [29,56]. As an example,
we connect sphere cavities at A-A sites in adjacent layers
with an air channel (the brown stick, radius: rv = 0.49 cm).
In Fig. 3(a), tA represents the interlayer hopping strength
between A-A sites. cA and cB are the on-site energies at A
and B sites, respectively. The radii of sphere cavities at A and
B sites are ra = 2 cm and rb = 1.2 cm, which are different to
introduce an inversion-symmetry breaking into the 3D sonic
crystal. With the breaking of inversion symmetry, gaps are
opened along the nodal ring, except the Weyl points. As
shown in Fig. 3(b), there exist four Weyl points in the 3D
Brillouin zone at kz = 0.82π/d and kz = 1.18π/d . Figure
3(c) further presents the band structures in the 2D Brillouin
zone at kz = 0.82π/d , kz = π/d , and kz = 1.18π/d , which
identifies a pair of band-crossing points at kz = 0.82π/d and
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kz = 1.18π/d , respectively. At other kz, such as kz = π/d , the
nodal ring fully gaps out.

B. The tight-binding model

The effective Hamiltonian for the nodal line states is
derived as follows. For each 2D hexagonal lattice layer, the
translation vectors are

a1 = a

2
(1,

√
3), a2 = a

2
(−1,

√
3), (1)

where a is the in-plane lattice constant. From the lat-
tice vectors, we obtain the corresponding reciprocal lattice
vectors

b1 = 2π

a

(
1,

√
3

3

)
, b2 = 2π

a

(
−1,

√
3

3

)
. (2)

Using these Bloch basis vectors, we will arrive at the
effective Hamiltonian in the following [56,58]:

Heff (k) =
(

0 −t1 − t1eik·(a2−a1 ) − t1e−ik·a1

−t1 − t1eik·(a1−a2 ) − t1eik·a1 0

)
, (3)

where t1 is the intralayer hopping parameter. Reformulating
the 2 × 2 effective Hamiltonian matrix with the Pauli matrices
[41,56,59], we obtain

Heff (k) = dx(k)σx + dy(k)σy. (4)

Based on Eq. (4), we deduce the dx(k) and dy(k) terms,
which are expanded into

dx(k) = −t1 − t1 cos [k · (a1 − a2)] − t1 cos (k · a1), (5)

dy(k) = −t1 sin [k · (a1 − a2)] − t1 sin (k · a1). (6)

Consequently, we have the eigenvalues of the Hamiltonian
E± = ±

√
d2

x (k) + d2
y (k). When dx(k) = dy(k) = 0, a pair of

the Dirac points occur at the K point b1−b2
3 and the K ′ point

b2−b1
3 of the Brillouin zone.
When we consider the 3D lattice by stacking 2D hexagonal

lattices, the translation vectors are changed into

a1 = a

2
(1,

√
3, 0), a2 = a

2
(−1,

√
3, 0), a3 = d (0, 0, 1),

(7)

where d is the out-of-plane lattice constant. Similarly, the corresponding reciprocal lattice vectors are listed as follows:

b1 = 2π

a

(
1,

√
3

3
, 0

)
, b2 = 2π

a

(
−1,

√
3

3
, 0

)
, b3 = 2π

d
(0, 0, 1). (8)

Taking into account the introduced a3 vectors, the effective Hamiltonian for the 3D case can be written in the form

Heff (k) =
(

0 −t1 − t1eik·(a2−a1 ) − t1e−ik·a1 − t2eik·(a3−a1 )

−t1 − t1eik·(a1−a2 ) − t1eik·a1 − t2eik·(a1−a3 ) 0

)
, (9)

where t2 is the interlayer hopping parameter.
For the 3D case, the effective Hamiltonian with the Pauli matrices remains

Heff (k) = dx(k)σx + dy(k)σy. (10)

Similarly, we arrive at the dx(k) and dy(k) terms, and expand them into

dx(k) = −t1 − t1 cos [k · (a1 − a2)] − t1 cos (k · a1) − t2 cos [k · (a1 − a3)], (11)

dy(k) = −t1 sin [k · (a1 − a2)] − t1 sin (k · a1) − t2 sin [k · (a1 − a3)]. (12)

The appearance of band-crossing points requires dx(k) = dy(k) = 0, where the number of arguments (kx, ky, kz) in Eq. (10)
is greater than the number of functions, viz., dx(k) = 0 and dy(k) = 0. Therefore, one can get infinite solutions for k that satisfy
the two functions and form a continuous nodal ring in the Brillouin zone. When the inversion symmetry of the 3D sonic crystal
is broken, an additional dz(k)σz term is introduced into the Hamiltonian [56]:

Heff (k) = dx(k)σx + dy(k)σy + dz(k)σz. (13)

Considering the hopping strengths and on-site energies, the tight-binding Hamiltonian is expressed as

Heff (k) =
(

cA−cB
2 + (tA − tB)(1 − cos (k · a3)) −t1 − t1eik·(a2−a1 ) − t1e−ik·a1 − t2eik·(a3−a1 )

−t1 − t1eik·(a1−a2 ) − t1eik·a1 − t2eik·(a1−a3 ) cB−cA
2 + (tB − tA)(1 − cos (k · a3))

)
, (14)
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where tA and tB represent the interlayer hopping strengths
between A-A sites and B-B sites. cA and cB are the on-site
energies at A and B sites, respectively. We further derive

dz(k) = cA − cB

2
+ (tA − tB)(1 − cos (k · a3)), (15)

with dx(k) and dy(k) in Eqs. (11) and (12) unchanged. In this
case, the existence of band-crossing points requires dx(k) =
dy(k) = dz(k) = 0, where the number of arguments equals
the number of functions. As a result, one will get discrete
solutions for k that satisfy the functions and form the Weyl
points in the Brillouin zone.

In regard to the surface states, the 3D sonic crystal can
be viewed as an arrangement of a series of dimerized chains,
resembling the Su-Schrieffer-Heeger (SSH) model [39,41,56].
The inversion symmetry in the proposed system guarantees
the Zak phase quantized, where the Zak phase only possesses
the values 0 and π that correspond to the trivial and nontrivial
Zak phases, respectively [60]. To demonstrate this point, we
calculate the Zak phase of the one-dimensional (1D) system
parametrized with the in-plane momentum (kx, ky). With the
denotation of k‖ = (kx, ky), we define the Zak phase along kz

direction as θk‖ = ∫
Ak‖dk⊥, where Ak‖ = 〈un,k|i∂kz |un,k〉 is the

Berry connection, with un(k) the normalized eigenfunction of
a Bloch mode in the nth band and k the reduced wave number
of the mode. Finally, we confirm that the Zak phase along the
kz direction equals to π for k‖ outside the nodal ring, whereas
it is zero for k‖ inside the nodal ring [41,54].

III. TOPOLOGICAL NODAL LINE STATES

A. Drumhead surface states

In this section, we start from the projected band structure
of a perfect supercell slab that is periodic in the x-y plane
and truncated in the z direction with 30 unit cells. Figure
4(a) shows the profile of nodal surface dispersion in the kx-ky

momentum space. The degenerate dispersions appear outside
the projected nodal ring. In Fig. 4(a), the surface Brillouin
zone is divided into two regions with trivial and nontrivial Zak
phases by the projection of the nodal ring. The blue region
outside the projection of the nodal line has the nontrivial
π Zak phase, while the gray region inside the nodal line
projection has a trivial Zak phase of 0. The nontrivial Zak
phase is the topological invariant behind the nodal surface
band. To show the band feature, we calculate the projected
band structure on the (001) surface at ky = 0, as shown in
Fig. 4(b). The gray lines denote the projected bulk bands. The
degenerate blue lines are the nodal surface dispersions, which
span from 451 to 503 Hz. In order to check the eigenfield
distribution of the surface modes, we choose two eigenstates 1
and 2, as marked by the circles in Fig. 4(b). Figure 4(c) shows
that the nodal surface states are well confined at the truncated
surface and render a field polarization with the sound pressure
distributed in only one sublattice. When we alter the size of
sphere cavities on the surface, the nodal surface bands could
become nearly dispersionless with a large density of states
outside the projected nodal ring, in analogy to the vibration
of a drum surface [49,53], which is also termed as drumhead
surface dispersion. In the calculation, the radius of sphere
cavities on the surface is 1.29 cm, different from the radius

FIG. 4. (a) The nodal surface bands from the band-structure
calculation of a perfect supercell slab. Upper panel: The Zak phase
distribution. (b) The projected band structure at ky = 0. The nodal
line dispersions are denoted by the blue lines. The green stars
represent the band-crossing points. (c) Pressure-field distributions of
the eigenmodes at 1, 2 points marked by black circles in (b).

of sphere cavities in the bulk 1.5 cm. The sphere cavities
with size modulation can be viewed as effective defects,
which contributes to the correction of the on-site energy near
the surface [41]. Figure 5(a) shows the profile of drumhead

FIG. 5. (a) The drumhead surface-state bands. A drumhead pro-
file is formed by calculating the band structure of a supercell slab
with the surface cavities fine-tuned. Upper panel: The Zak phase dis-
tribution. (b) The projected band structure at ky = 0. The drumhead
surface states and the Tamm-like surface states at higher frequencies
are denoted by the blue and red lines. The green stars are the band-
crossing points. (c) Pressure-field distributions of the eigenmodes at
1, 2, 3, 4 points marked by the black circles in (b). The pressure fields
are normalized by the maximum. The frequency of drumhead surface
states is 529 Hz.
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FIG. 6. (a) The projected band structure of a supercell slab at ky = 0. The supercell consists of ten unit cells along the z direction. The
drumhead modes appear nearby 523 Hz (blue lines). (b) Pressure distribution in a 3D lattice (7 × 7 × 10 unit cells) at 523 Hz. The yellow
star labels the source position. The zoom-in inset exhibits distinct sublattice polarization, where the pressure field locates in one sublattice. (c)
Pressure distribution in the 3D lattice at 826 Hz. The zoom-in inset shows no sublattice polarization. (d) Pressure amplitudes of surface states
along the dashed lines in the x direction for the cases of (b) and (c). (e) Pressure amplitudes of surface states along the dashed lines in the z
direction for the cases of (b) and (c).

surface dispersion in the kx−ky momentum space of a dressed
supercell slab. The projected band structure on the (001) sur-
face at ky = 0 is shown in Fig. 5(b). The degenerate blue solid
lines denote the nearly flat drumhead surface dispersions, with
the frequencies spanning from 528.3 to 529 Hz. Noticeably,
drumhead surface states have no overlap with bulk bands,
which indicates that the flat surface states can be exclusively
excited. Since the size of sphere cavities on the surface is
altered, the Tamm-like surface states will emerge, as denoted
by the red lines at higher frequencies in Fig. 5(b). Here, the
drumhead surface states stem from the projection of nodal
lines on the (001) surface, which are topologically nontrivial
with a strong energy localization on the surface. The Tamm-
like surface states are topologically trivial, since they arise
from the surface defects [61]. Since drumhead surface states
possess vanishing group velocities, it is expected that there
exists a strong localization of sound due to the large density
of states. We optionally choose four eigenstates 1, 2, 3, and
4, as marked by the circles in Fig. 5(b). The results show that
the surface states are well confined at the truncated surface
and decay exponentially into the bulk, as shown in Fig. 5(c).
Except for the field polarization, the drumhead surface states
1 and 2 render a stronger energy localization on the surface
due to the nontrivial π Zak phase, similar to the end states in
1D SSH models.

B. Excitation of surface states

For simplicity, we employ a reduced model with ten layers
along the z direction to investigate the properties of surface
states. Figure 6(a) shows the projected band structure of the
supercell slab. Due to the finite-size effect of the supercell,
dispersion curves are redshifted in the spectrum. For example,

in Fig. 6(a), the drumhead surface states span from 523.2
to 526.6 Hz (<530 Hz in Fig. 2), while the high-frequency
surface dispersions span from 712 to 844 Hz. The pointlike
source excitation is imposed in a 3D sonic crystal with the
dimensions of 7 × 7 × 10 unit cells, without using a particular
wave form or a fixed momentum. We conduct full-wave
simulations in the pressure acoustic module of the commercial
finite-element solver COMSOL MULTIPHYSICS. The top and
bottom surfaces are rigid, while side surfaces are perfectly
matched with absorbers. In Fig. 6(b), a monopole source,
denoted by a yellow star, is placed on the top surface at the
operation frequency of 523 Hz. The pressure-field distribution
indicates that acoustic waves are not only localized on the top
surface but also have little penetration normal to the surface,
which benefits from the large density of drumhead states.
Note that the operation wavelength λ ≈ 3.8a, where a, as
aforementioned, is the in-plane lattice constant. Therefore,
the 3D sound trapping is a bulk property instead of the local
resonance of sphere cavities. Figure 6(c) shows the pressure-
field distribution of high-frequency surface states at 826 Hz
with a nontrivial group velocity in reference to Fig. 6(a).
Note that a clear sublattice polarization can also be observed
in the present model. As shown in the insets of Figs. 6(b)
and 6(c), the pressure field of drumhead surface states is
distributed in one sublattice, while the pressure field of Tamm-
like surface states resides in both sublattices. Quantitative
analyses are displayed in Figs. 6(d) and 6(e), which describe
the pressure-amplitude distributions along the dashed lines
as marked in Figs. 6(b) and 6(c). The result in Fig. 6(d)
reveals that high-frequency surface states in the x-y plane
manifest no field localization in comparison with the drum-
head states. From Fig. 6(e), we also find that in the direction
normal to the surface (z axis), drumhead states are more
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FIG. 7. (a) The band-structure evolution in the presence of site disorders with different strengths. (b) The band-structure evolution in
the presence of intralayer hopping disorders with different strengths. (c) The band-structure evolution in the presence of interlayer hopping
disorders with different strengths. The disorder strengths are set to be below, at, and above the threshold for each case.

confined than the high-frequency surface states with a larger
Q factor.

C. Robustness of surface states

Protected by the inherent topology (nontrivial topological
invariant), the drumhead surface states are supposed to be ro-
bust against structural disorders. In this section, a uniform ran-
dom function is employed to set the structural parameters via
the finite-element solver COMSOL MULTIPHYSICS 5.3tm linked
with MATLAB. In the calculation, the supercell slab satisfies
the Floquet periodic conditions along the x and y directions,
with the random disorders taken within a certain range around
the exact values and introduced along the z direction. This
simplified approach is also adopted in previous work [41]. The
3D ball-and-stick sonic crystal can be regarded as comprising
three basic elements, viz., sphere cavities, in-plane connecting
channels, and out-of-plane connecting channels. Therefore,
we impose three types of disorders (site disorders, intralayer
hopping disorders, and interlayer hopping disorders) to test
the robustness of drumhead surface states against the disorder
strength. In Fig. 7, we calculate the band structure of the
supercell slab with 30 unit cells in the z direction in the

presence of disorders. We first study the influence of site
disorders by varying the radii of all lattice cavities, as shown
in Fig. 7(a). Here η is employed to represent the strength
of disorders, where the radii of cavities are uniformly taken
in the range from (1 − η)rS to (1 + η)rS . For the selected
strength of disorders, we calculate the band structure for 20
times with different randomly distributed disorders in the z
direction, to obtain the distribution trends of surface modes
in the band gap, where the modes at kx = 4π/(3a) and ky =
0 are chosen for demonstration. When the strength of site
disorders is small (η = 0.05), we can distinguish the surface
modes (blue spheres) from the bulk modes (gray dots) in
the band structure, as shown by the left panel of Fig. 7(a).
As the strength of site disorders is enhanced to a certain
value [η = 0.12, the middle panel of Fig. 7(a)], the surface
modes begin to merge with the bulk modes, which can be
regarded as the threshold. Over the threshold, for example η =
0.25, more surface modes are mixing with the bulk modes,
as shown by the right panel of Fig. 7(a). Figures 7(b) and
7(c) present influences of intralayer hopping disorders and
interlayer hopping disorders by varying the cross sections
of in-plane and out-of-plane channels. The results show the
thresholds for these two cases locate at η = 0.3 and η = 0.5,
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FIG. 8. The evolution of drumhead surface bands and the associated DDOS via the structural disorders. (a) The case without structural
disorders (η = 0). (b) The case of site disorders below threshold (η = 0.05, N = 3). (c) The case of site disorders at the threshold (η = 0.12,
N = 19). (d) The case of site disorders above threshold (η = 0.25, N = 9). The cases in (b)–(d) correspond to the selected ones marked by the
dashed boxes in Fig. 7(a).

respectively. It is worth nothing that the drumhead surface
states are more robust against the hopping disorders than the
site disorders. The reasons lie in the fact that the site disor-
ders will cause a nontrivial dz(k)σz term in the Hamiltonian,
which makes the nodal ring gap out. However, the hopping
disorders by changing coupling strengths t1 and t2 lead to
the alterations of dx(k)σx and dy(k)σy in the Hamiltonian
[41], with the dz(k)σz term trivial. Therefore, the nodal ring
and drumhead surface states are robust against the hopping
disorders.

We also show the evolution of drumhead bands and the
associated directional density of states (DDOS) via the struc-
tural disorders, for example, the site disorders with different
strengths as shown in Fig. 8. Here the DDOS at a certain
frequency f0 describes the number of modes inside an interval
[ f0, f0 + � f ] [62]. In our case, the equivalent frequency
interval is set at � f = 0.5 Hz and the DDOS is normalized
with the maximum. For comparison, we firstly show the band
structure and DDOS of drumhead surface bands in the absence
of disorders in Fig. 8(a). Obviously, the nearly dispersionless
dispersions correspond to a very large DDOS featured with a
distinctive sharp peak at the degenerate frequencies. When we
introduce site disorders of weak strength below threshold into
the lattice, for example, η = 0.05 and N = 3 in Fig. 8(b), the
drumhead bands are distorted and all degeneracies are lifted.
However, the DDOS is still localized in the central region of
the frequency range (515.7 ∼ 522.7 Hz). As the strength of
site disorders is enhanced to reach the threshold, the bands
are repelled to form a band gap with DDOS being zero, as
shown in Fig. 8(c). Above the threshold, Fig. 8(d) shows that
the bands are merging together again to form trivial bulk

bands, where DDOS is not localized in the frequency range
of interest.

To verify the robustness of drumhead surface states against
disorders, we present the pressure-field distributions in the
whole 3D sonic crystal with dimensions of 7 × 7 × 10 unit
cells in the presence of site disorders, intralayer hopping dis-
orders, and interlayer hopping disorders, respectively. Figure
9(a) shows the field distribution of bulk states at 350 Hz, as
a comparison to characterize the degree of field localization.
Figures 9(b)–9(d) present the field distributions of surface
states in the 3D lattices with those three types of disorders at
the strength η = 0.05, which shows that the drumhead states
are robust against weak-strength disorders. To quantitatively
investigate these disorder effects, we extract the pressure
amplitudes along the x and z directions, as shown by the
dashed lines in Figs. 9(a)–9(d), and plot them in Figs. 9(e) and
9(f), respectively. From Figs. 9(e) and 9(f), we find out that
different from the bulk states that are obviously extended into
the interior region, the surface states are much more localized
on the top surface even on the existence of site and hopping
disorders.

In addition, we study the influence of the number of
disorders on the robustness of nodal-ring states via band-
structure evolution. As an example, we impose interlayer
hopping disorders to test the robustness of drumhead states
against the number of disorders. In Fig. 10, we calculate
the band structure of the supercell slab with 30 unit cells in
the z direction in the presence of disorders at kx = 4π/(3a)
and ky = 0. The strength of interlayer hopping disorders is
η = 0.6, which is above the threshold for the bulk disorder
case in Fig. 7(c). In the supercell slab, the interlayer hopping
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FIG. 9. (a) Pressure distribution of bulk states in the 3D lattice (7 × 7 × 10 unit cells) at 350 Hz. (b) Pressure distribution of surface states
in the 3D lattice with site disorders. The operation frequency is 505 Hz. (c) Pressure distribution in the 3D lattice with intralayer hopping
disorders. (d) Pressure distribution in the 3D lattice with interlayer hopping disorders. The operation frequency in (c) and (d) is 523 Hz. We
excite the surface states by using a pointlike source with the pressure amplitude 1 Pa. (e) Pressure amplitudes along the x direction in the cases
of (a)–(d) and Fig. 6(b). (f) Pressure amplitudes along the z direction in the cases of (a)–(d) and Fig. 6(b).

disorders are introduced from outside layers to the interior
ones. In the left panel of Fig. 10, when the disorders are
imposed in the two surface layers, the surface states are stable
in the band structure. As the distributed disorders expand
to the outside six layers (the middle panel of Fig. 10), the
surface states begin to merge with bulk states, which can be
regarded as a threshold. Above the threshold, for example, the
outside 18 layers disturbed by disorders, more surface states
are mixing with bulk states, as shown in the right panel of
Fig. 10. The results show that the number of strong-strength
disorders can change the robustness of drumhead states.

D. Intrinsic and nonintrinsic excitation

In the end, we explore the pressure-field distributions
at intrinsic and nonintrinsic excitations, namely the sources

positioned on the surface and in the bulk, respectively. Here
we focus on a thicker 3D sonic crystal with the dimensions
of 7 × 7 × 30 unit cells. Since the finite-size effect is much
suppressed, the frequency of drumhead surface states is 529
Hz, very close to the degeneracy frequency of nodal lines
in Fig. 2 (530 Hz). We first study the intrinsic excitation
with the sound source at 529 Hz placed on the top surface,
as shown in Fig. 11(a). The result shows the formation of
drumhead states that are well localized on the top surface in
terms of the flat surface dispersions and nontrivial topological
property (π Zak phase). For comparison, we also show the
case of nonintrinsic excitation in Fig. 11(b), where the source
at 529 Hz is inserted into the bulk. In this case, the source
cannot excite the drumhead states but operate in the band-
gap region of the lattice. Therefore, sound waves from the

FIG. 10. The band-structure evolution in the presence of interlayer hopping disorders. The disorders are imposed in (a) the 2 surface
layers, (b) the outside 6 layers, and (c) the outside 18 layers. The strength of interlayer hopping disorders is η = 0.6. The schematics show the
distribution of disorders.
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FIG. 11. (a) Pressure distribution for the intrinsic excitation on the surface of the 3D lattice (7 × 7 × 30 unit cells) at 529 Hz. (b) Pressure
distribution for the nonintrinsic excitation in the bulk. In (a) and (b), the yellow star marks the source position. (c) Pressure amplitudes along
the x direction (dashed lines) in (a) and (b). (d) Pressure amplitudes along the z direction (dashed lines) in (a) and (b). Here we use a pointlike
sound source with the pressure amplitude 1 Pa for the intrinsic and nonintrinsic excitations.

source are completely reflected by the 3D periodic structure
due to absolute band gaps of the sonic crystal. Quantitative
studies are shown in Figs. 11(c) and 11(d), where the pressure
amplitudes along the dashed lines in Figs. 11(a) and 11(b)
are plotted. Evidently, the pressure fields are localized on the
surface for the intrinsic excitation and trapped in the bulk for
the nonintrinsic excitation.

IV. CONCLUSION

To summarize, we present a scheme for the implementation
of topological nodal line states in 3D ball-and-stick sonic
crystals that are protected by the time-reversal and inversion
symmetries. We show that a closed nodal ring is formed
in the 3D momentum space on condition that the interlayer
coupling strength is above a threshold (>the in-plane coupling
strength). Outside the projection of the nodal ring on the
(001) surface of the Brillouin zone, we find the existence of
flat drumhead surface states with the nontrivial Zak phase
of π . A tight-binding model is proposed to illustrate the
nodal lines and flat drumhead surface states. The drumhead
states are featured with strong field localization on the surface

with sublattice polarization, which is robust even on vari-
ous imperfect conditions, such as site disorders, intralayer
hopping disorders, and interlayer hopping disorders. Based
on the evolution of supercell band structures and DDOS,
we demonstrate the robustness of drumhead states against
weak-strength disorder strengths and the number of surface
defects/disorders, respectively. This intriguing property can be
further exploited for versatile applications of sound trapping
or frequency filtering. Our findings may also advance the
current knowledge of topological acoustics and enrich the
nodal line physics in 3D sonic crystals.
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