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Nonlinear optical effects in inversion-symmetry-breaking superconductors

Tianrui Xu,1,2 Takahiro Morimoto,3 and Joel E. Moore1,2

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan

(Received 5 September 2019; published 4 December 2019)

We study nonlinear optical responses in superconducting systems with inversion- (I) symmetry-breaking
order parameters. We first show that any superconducting system with I and time-reversal (T ) symmetries
requires an I-breaking order parameter to support optical transitions between particle-hole pair bands. We then
use a one-dimensional (1D) toy model of an I-breaking superconductor to numerically calculate linear and
nonlinear conductivities, including shift current and second-harmonic generation (SHG) responses. We find that
the magnitude of the signal is significantly larger in shift current/SHG response than in the linear response due
to the matrix element effect. We also present various scaling behaviors of the SHG signal, which may be relevant
to the recent experimental observation of SHG in cuprates [L. Zhao, C. A. Belvin, R. Liang, D. A. Bonn, W.
N. Hardy, N. P. Armitage, and D. Hsieh, Nat. Phys. 13, 250 (2016)]. Finally, we confirm the generality of our
observations regarding nonlinear responses of I-breaking superconductors, by analyzing other models including
a 1D three-band model and 2D square lattice model.
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Introduction. A wide variety of optical measurements are
used to give insight into complex ordered states of quantum
materials [1,2]. Measurements of linear optical conductivity
in cuprate superconductors, for example, have been used to
probe spectral weight transfer [3] and universal dissipation
rates [4]. Optical measurements beyond the linear regime can
be divided between conventional nonlinear optics [5], which
can be analyzed theoretically using perturbation theory and
is the subject of the present work, and far-from-equilibrium
pump-probe measurements [6,7].

Recently, there have been experimental efforts on non-
linear optical effects of cuprates in pseudogap phases [8,9].
Such experiments have shown that the symmetry of quantum
phases, or lack thereof, can be accessed by nonlinear optical
measurements, because second-order optical effects such as
photocurrent and second-harmonic generation require broken
inversion (I) symmetry. A theoretical analysis was recently
carried out of third-order nonlinear response [10]; the third-
order susceptibility is generally nonzero in all solids but its
frequency dependence can probe excitations such as the Higgs
mode of a superconductor [11–13].

In this Rapid Communication, we study how I symme-
try breaking in the superconducting state affects linear and
nonlinear optical conductivities (shift current and second-
harmonic generations (SHGs) [14–18]). The nonlinear con-
sequences of I breaking in such systems are stronger and
onset more rapidly near the superconducting transition than
the linear ones. To show this, we consider a superconducting
system described by Bogoliubov–de Gennes (BdG) formal-
ism, with I-symmetry-preserved electronic structure. We first
review how if such a system preserves both time-reversal
(T ) symmetry and I symmetry, there will be no first- and
second-order optical transitions between particle-hole bands

at the gap energy, then show how such transitions become
possible with broken I.

We then show numerical simulations of the linear and
nonlinear optical conductivities for a one-dimensional (1D)
toy model of I-breaking superconductors. For simplicity, we
consider singlet pairing terms in our models and assume that
T remains a good symmetry; the (linear) Kerr effect created
in a T -breaking superconductor has been actively studied for
many years [19]. We first consider a 1D chain with alter-
nating hopping (essentially the Su-Schrieffer-Heeger model
of polyacetylene [20]) and an I-breaking superconducting
order parameter. We show how optical conductivities scale
with I breaking, and find that the scaling is stronger for
nonlinear optical conductivities when I breaking is small.
We also show the temperature dependence of SHG signals at
an experimentally accessible region, which is consistent with
recent experimental observations [8].

In closing, because tight-binding models with two bands
can be misleading or special in some cases because the upper
band is essentially determined by orthogonality to the lower
band, we show that the nonlinear optical effects from I break-
ing persist in other models such as a 1D three-band model and
a 2D minimal model of the cuprate band structure [21].

Model and conductivities. We consider a superconducting
system described by the BdG formalism:

H = 1

2

∑
k

�
†
k

(
H (k) �

�∗ −HT (−k)

)
�k, (1)

where H (k) models the electronic structure, � is the super-
conducting pairing order parameter, and �k is a Nambu spinor
wave function [22–26]. The couplings to external electric
fields are introduced by the minimal coupling prescription:
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H (k) → H (k + eA). In the expansion of H (k + eA) with
respect to A, the second- and third-order terms in A are called
paramagnetic and diamagnetic currents, and are relevant
to the linear and second-order nonlinear responses, respec-
tively. Specifically, one defines the velocity operator and its
derivative:

v̂a(k) = ∂ka H (k)τ0, ŵab(k) = ∂kb∂ka H (k)τz, (2)

where a, b denote directions, and τi is a Pauli matrix acting on
the Nambu space. With these velocity operators and the band
structure, we study linear and nonlinear conductivities σ (1)(ω)
and σ (2)(ω). In two-band systems with T symmetry, the linear
conductivity [27] and nonlinear conductivity via shift current
[14,16] are given by

σ (1),ab(ω) =
∑
i, j

∫
dk

ω
f jiv

a
i jv

b
jiδ(ω − Ei j ) (3)

and

σ
(2),abc
shift (ω) =

∑
i, j

∫
dk

ω2
f jiIm

(
va

i jw
bc
ji

)
δ(ω − Ei j ), (4)

respectively.
Here, we set e = 1, h̄ = 1 for simplicity. For full ex-

pressions for σ (1)(ω) and σ (2)(ω), see [28]; also refer to
[14,16,27,29]. Shift current is a dc current induced by light ir-
radiation in I-broken systems, which originates from nonzero
polarization of photoexcited electron-hole pairs [14–18].
There exists another mechanism for photocurrent, called in-
jection current, which arises from group velocity of pho-
toexcited carriers and grows linearly in time. Since injection
current vanishes for linearly polarized light in the presence
of T symmetry, we focus on shift current in this Rapid
Communication. In the following analysis, unless specified
otherwise, we assume zero temperature.

Absence of optical transitions within a pair. Now we show
that there are no optical transitions between particle-hole
pair bands in a BdG Hamiltonian with T and I symme-
tries. Specifically, we show that the velocity matrix element
connecting particle-hole pair bands in the BdG Hamilto-
nian under these symmetries is identically zero. This fact is
sometimes known as the vanishing linear conductivity at the
superconducting gap in clean superconductors with T and I
symmetries [27]. The absence of optical transitions indicates
that SHG and shift current also vanish at the superconducting
gap, which is natural because the presence of I symmetry
forbids second-order nonlinear optical effects.

To show this, we only need to calculate σ
(2)
shift (ω) and

σ
(2)
SHG(ω) between the two particle-hole pair bands. It turns

out that we only need to calculate v̂a(k) between these two
bands, which gives zero. If we call these two states 1,2, we
can verify directly that the va

12 = 0 for particle-hole pair bands
in the BdG Hamiltonian when the superconductor preserves
T and I, as detailed in [30] (with reference to [31]) for
completeness. We note that I breaking in the normal part
of the Hamiltonian is not sufficient and the I breaking in
the superconducting (SC) order parameter is necessary for
va

12 �= 0. For example, if the gap function is I symmetric as
� = �01N (1N : an identity matrix with the dimension N), the
transition matrix element va

12 identically vanishes even when

(a)

1+δt 1-δt
AAA

(b)

(c) (d)

FIG. 1. Nonlinear optical responses of a 1D, two-band model
[Eq. (5)] with I-breaking SC gaps [Eq. (6)]. (a) Schematic plot of
a 1D two-band model. Different bonds (− and =) indicate different
hopping amplitudes. (b) The band structure. (c) σ

(2)
shift with (blue solid

curve) and without (black dash-dotted curve) I breaking; O(�z )
contribution (orange dotted curve) to σ

(2)
shift with I breaking. The

inset shows linear conductivity, where the x axis of the inset is the
same as those of the main panel. (d) σ

(2)
SHG with (blue solid curve)

and without (black dash-dotted curve) I breaking. In (c) and (d),
we match the peak positions with their corresponding transitions in
the band structure in (b). We identify the transitions in between the
particle-hole pairs that are closest to Fermi surface (blue arrows with
solid lines).

the normal part H (k) breaks I symmetry. In a general setup,
some I breaking in � is expected when the normal part breaks
I symmetry.

This shows that a superconductor within the BdG descrip-
tion [Eq. (1)] has no optical resonance between particle-hole
pair bands as long as I and T symmetries are preserved. Once
I symmetry is broken, there can be nonzero optical resonance
at these pair bands including at the superconducting gap. We
will demonstrate this optical resonance by explicit compu-
tation in several models and draw some general conclusions
about its strength.

I-breaking induced conductivities in a two-band system.
We study linear and nonlinear conductivities in a 1D chain
with alternating hopping and an I-breaking superconducting
gap, which is the simplest model of superconductors with
broken I symmetry while the normal (nonsuperconducting)
part of the electronic structure preserves I. Specifically, we
consider Eq. (1) with the Hamiltonian

H (k) = cos kσx + δt sin kσy − μ, (5)

where σi’s are the Pauli matrices, δt, μ ∈ R. This model
corresponds to the Su-Schrieffer-Heeger model [20], or the
Rice-Mele model [32] with its on-site staggered potential
m being zero. We show a schematic plot of this model in
Fig. 1(a).
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FIG. 2. Frequency dependence of both shift current (orange,
dashed curve) and SHG (blue, solid curve) at ω � 3.6 eV using
realistic parameters: t = 1 eV (the hopping amplitude in front of σx),
δt = 0.1 eV, � = 10 meV, and �z = 2 meV. Black dashed curve
shows fitting. The peak corresponds to the energy difference of the
two farthest bands at k = 0. Inset shows the band structure, with a
red arrow indicating this transition. Note that the “a” in the unit of
σ (2) is lattice constant.

We introduce the I-breaking effect of � by adding a small
symmetry-breaking term, �zσz:

� = �0σ0 + �zσz, (6)

where �0,�z ∈ R.
We numerically study σ

(2)
shift and σ

(2)
SHG of this model. We

show the band structure and optical conductivity for this
model in Fig. 1, panels (b)–(d). We show shift current with
(solid lines) and without (dash-dotted lines) I breaking,
which indeed shows signals at ω � 2�0 (shift current) and
ω � �0, 2�0 (SHG) in the presence of I breaking, i.e.,
�z �= 0. We match the σ (2) peaks with their corresponding
transitions in the band structure panel. We also show lin-
ear conductivity calculations in the inset of Fig. 1(c). This
indicates that I breaking of � also causes nonzero linear
effect.

Next, we study the frequency dependence of σ
(2)
shift and σ

(2)
SHG

of calculations with realistic parameters in Fig. 2. Figure 2
indicates that one gets σ (2) signals not only at ω ∼ �, but also
at higher energies such as 3.6 eV as shown. The value of this
frequency comes from the energy differences between the two
bands that are the farthest away from Fermi level at k = 0.

We also indicate this transition with a red arrow in the inset
of Fig. 2. The exponent 0.44 that we obtained for the scaling
of the peak structure is close to 1/2, and can be explained by
the quadratic band dispersion at the band edge.

Now, we examine how conductivities scale with �z by
examining the scaling between �z and the local extrema of
σ ’s at ω ∼ 2�. Figure 3(a) shows that such scaling is linear
for σ

(2)
shift/SHG and quadratic for σ (1) with respect to �z. This

indicates that I symmetry breaking generally gives rise to
a stronger signal in the nonlinear conductivity σ (2)’s than
that in σ (1). The stronger effect of I breaking on nonlinear
conductivity can be understood by perturbative expansion
with respect to �z. We obtain the lowest-order effect of �z by
expanding v̂i j to linear in �z, and expanding ŵi j to constant

(a) (b)

FIG. 3. (a) Scalings of local extrema at ω � 2� of σ (1) (dots),
σ

(2)
shift (crosses), and σ

(2)
SHG (pluses) with respect to I-breaking SC order

�z, fitted to lines in log-log scale. Parameters of the left panel: δt =
0.5, μ = 0.8, � = 0.1. (b) Temperature dependences of SHG peaks
at around 2 eV of our model, with �1(T ) (dashed curve with cross
markers) and �2(T ) (solid curve with dotted markers). Parameters
of the right panel: δt = 0.1 eV, �0 = 10 meV, r = 0.2, and �z =
2 meV.

[33]. This allows us to derive an analytic expression for σ
(2)
shift

for the transition between the two low-energy bands as

σ
(2)
shift � δt��z

4μ

∫
dk

E1(k)3

[
1 − δt2

μξ 3
k

]
δ(ω − 2|E1(k)|)

+ O
(
�2

z

)
, (7)

where ξk is the dispersion and E1(k) is the energy of the state
just below Fermi surface.

We evaluate Eq. (7) numerically and plot the result in
Fig. 1(c) (orange, dotted curve), which lies almost on top of
the numerical σ

(2)
shift result. This shows that the largest, if not

only, contribution to σ
(2)
shift at energy close to 2� is from the

two lowest states of the system.
Now, we study how temperature affects SHG signals by

incorporating the temperature dependence of the supercon-
ducting order parameter. We consider two scenarios for the
I-breaking SC order parameter:

(i) The ratio of I breaking is fixed below Tc as

�1(T ) = C1(Tc − T )�0(σ0 + rσz ). (8)

(ii) The amount of I breaking is fixed below Tc as

�2(T ) = C2(Tc − T )�0σ0 + �zσz. (9)

We study the effect of these two scenarios by examining
the temperature dependence of the SHG signal at around 2 eV
of our model [Eq. (5)], with C1(Tc − T ) = C2(Tc − T ) =√

1 − T/Tc. The optical measurement on cuprate supercon-
ductors found an SHG signal below Tc [8], which shows a
rapid signal drop as T approaches the superconducting transi-
tion temperature Tc. Comparing the experimental signal with
our result shown in Fig. 3(b), we find that the experimental
signal in Ref. [8] may be a result of scenario (ii) for the
inversion-breaking gap function [Eq. (9)].

I-breaking induced conductivities in three-band system.–
To demonstrate that the nonvanishing nonlinear response gen-
erally appears in inversion-broken superconductors beyond
the simplest two-band model, we briefly consider a three-band
system [34]. The model consists of three sites connected with
hoppings such that both bond- and site-centered I symmetry
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FIG. 4. Nonlinear optical responses of a 1D, three-band model
(see [35]), with I-breaking SC gaps [Eq. (6)]. (a) Schematic plot of a
1D, three-band model. Different bonds (− and =) indicate different
hopping amplitudes, and different particle species (A and B) indicate
different on-site potentials. (b) The band structure. (c) σ

(2)
shift (black

and blue curves) and σ
(2)
SHG (green and red curves) with (solid curve)

and without (dash-dotted curve) I breaking. The SHG peak positions
are associated with their corresponding transitions in (b).

are preserved in the normal state. The details of this model
are in [35]. We also show a schematic plot of this model in
Fig. 4(a).

The I symmetry may be broken by setting the supercon-
ducting pairing via

� =

⎛
⎜⎝

�A1 0 0

0 �B 0

0 0 �A2

⎞
⎟⎠, (10)

with �A1 �= �A2 . Note that, for this system, the electronic
part preserves both bond and site inversions, and all the I
breakings are caused by �. We show band structure, together
with shift current and SHG of this system in Figs. 4(b) and
4(c). Our result shows that, as we break the I symmetry, the
optical transitions are indeed induced.

Conclusion. In this work, we have shown the importance
of I-breaking superconductivity in both linear and nonlinear

optical effects in 1D superconducting systems and a 2D
cuprate minimal model (see [21] with reference to [36,37]).
Our results indicate that not only the underlying symmetry of
electronic structure, but also that of superconductivity itself,
may give rise to nontrivial optical effects. The scaling with
respect to the I-breaking order parameter indicates that the
distinctive optical effects are stronger in the second-order
response σ (2) than in linear conductivity σ (1). By computing
nonlinear optical effects with realistic parameters, we show
that such effects can be detected in an experimentally accessi-
ble energy region.

Our analysis also shows a possible explanation of the
observation in Ref. [8] that the temperature dependence of
experimental SHG signals, even at an energy that may be well
above the superconducting gap, may come from I breaking
of the superconducting pairing. Our results also are consistent
with the observation that σ (1) signals are weaker in such
systems, especially when I breaking is small.

The search for new unconventional superconductors is a
major goal of quantum condensed matter physics, but the
determination of the symmetry breaking in the superconduct-
ing state remains challenging. The “gold standard” of phase-
sensitive Josephson tunneling to determine order parameter
symmetry [19] has only been feasible for a small set of ma-
terials. The results presented here show that the signatures of
inversion-symmetry breaking in nonlinear optical quantities
are strong (relative to linear signatures) and persistent over a
range of temperatures, and we hope that these observations
will aid in the characterization of new superconductors.
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