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Theory of the phonon spectrum in host-guest crystalline solids with avoided crossing
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We develop an analytical model to describe the phonon dispersion relations of host-guest lattices with heavy
guest atoms (rattlers). Crucially, the model also accounts for phonon damping arising from anharmonicity. The
spectrum of low-energy states contains acousticlike and (soft) optical-like modes, which display the typical
avoided crossing, and which can be derived analytically by considering the dynamical coupling between host
lattice and guest rattlers. Inclusion of viscous anharmonic damping in the model allows us to compute the
vibrational density of states (VDOS) and the specific heat, unveiling the presence of a boson peak (BP) linked
to an anharmonicity-smeared van Hove singularity. Upon increasing the coupling strength between the host and
the guest dynamics, and by decreasing the energy of the soft optical modes, the BP anomaly becomes stronger
and it moves towards lower frequencies. Moreover, we find a robust linear correlation between the BP frequency
and the energy of the soft optical-like modes. This framework provides a useful model for tuning the thermal
properties of host-guest lattices by controlling the VDOS, which is crucial for optimizing thermal conductivity
and hence the energy conversion efficiency in these materials.
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In glasses, contrarily to crystalline structures with long-
range order, standard propagating phononic modes with a
ballistic dispersion relation ω = vL,T q, where L, T refer to
longitudinal and transverse modes [1–3], are not the only or
the dominant vibrational excitations. Rather, the breakdown of
continuum elasticity at sufficiently low length scales generates
a proliferation of quasilocalized modes which are character-
ized by diffusivelike propagation due to scattering [2]. Both
dissipationless (“harmonic”) scattering due to static disorder
as well as scattering due to anharmonicity contribute to an
excess of vibrational modes which appears as a peak (the
boson peak) in the vibrational density of states (VDOS) when
normalized by the Debye ∼ω2 law of ballistic phonons. This
observation is the fundamental reason behind the anomalies
observed experimentally in the VDOS, the specific heat, and
the thermal conductivity of amorphous and strongly disor-
dered systems [4,5].

Recently, the observation of glassy, or more precisely
glassylike, anomalies has been extended to systems with min-
imal or orientational disorder and simple crystalline structures
[6–10]. A possible theoretical explanation has been proposed
for these systems [11], in terms of the interplay of elasticity
and ballistic propagation with damping and effective viscos-
ity. Additionally, glassy features (referred as “phonon glass”)
have been observed in thermoelectric host-guest materials
[12–16], such as clathrates, tetrahedrites, and skutterudites
with guest inclusions (rattlers) which display interesting ther-
mal transport features and which could provide important
technological applications [17].

Perhaps the most prominent quality of thermoelectrics is
their ability to conduct electricity efficiently, as a crystalline

solid, and at the same time to conduct heat poorly, as a glass,
i.e., the “phonon glass-electron crystal” paradigm [18,19].
Many of these systems have a perfectly ordered crystalline
(host) lattice but they contain caged (typically heavier) atoms
referred to as “rattlers” (see Fig. 1), which give rise to quasilo-
calized vibrational modes [20–23]. The interactions between
the guest rattlers and the host lattice modes might be crucial
to understand and control the thermal conductivity of these
crystalline materials, although a theory of this effect is still
lacking. Moreover, the presence of the rattlers produces the
avoided-crossing phenomenon [24], which is typical of the
host-guest materials [25,26].

In this Rapid Communication we focus on a specific
framework, known as the soft-mode dynamics theory (SMD)
[27–29], and in particular on the simple theoretical model
proposed by Klinger and Kosevich (KK) in Ref. [30]. In the
original KK framework, the model consists of the usual elasto-
dynamic equation for the displacement field of an elastic solid
with an extra term given by the dynamic (mutual) coupling
to the coordinate of a defect particle (the guest atom). The
dynamics of the latter is governed by a Newton’s equation in
a harmonic force field with likewise an extra term due to the
coupling with the elastic embedding solid.

The main result of the KK theory is a polaritonlike phonon
spectrum with the coexistence of acousticlike and soft optical-
like modes separated by a characteristic avoided-crossing
feature, due to dynamical coupling of the defects to the
elastic lattice matrix. The two branches display a distinctive
avoided-crossing feature. Furthermore, they provide a close
approximation for the phononics of thermoelectric materials
such as, e.g., Ba8Ga16Ge30 [26] as well as clathrate hydrates
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FIG. 1. A pictorial representation of guest-host interplay asso-
ciated with the presence of quasilocalized rattler modes. The host-
guest lattice is approximated by a finite concentration of caged
guest atoms or “defects” (typically, heavier atoms compared to the
host lattice atoms). Each defect consists of a caged guest atom
with a single localized soft mode with energy E = h̄ω0 � h̄ωD,
where ω0 is the energy of the optical-like modes and ωD is the
Debye frequency. Upon increasing the concentration c of the caged
guest atoms, the glassy phonon features become more and more
pronounced.

[25] and tetrahedrites [22]. A representation of the avoided
crossing phenomenon is provided in Fig. 2. Moreover, the
typical energy of the gapped soft optical modes ω0 has been
claimed to be related to the Ioffe-Regel energy scale ωIR,
which is connected with the frequency ωBP of the so-called
boson peak anomaly (excess of Debye’s law ∼ω2) measured
in the vibrational spectrum of glasses [30].

However, the KK model has remained rather limited in its
applicability for predictions of thermal properties of materials,
because in its previous formulation it cannot provide access
to the vibrational density of states (VDOS). The latter is the
key quantity which enters the integrals that yield the specific
heat and the thermal conductivity of a material. Furthermore,
also the original speculation by Klinger and Kosevich that the
soft-mode coupled dynamics in the KK model could lead to
a boson peak in the VDOS, and its relation to a Ioffe-Regel
crossover, have not been verified.

In this Rapid Communication we provide a working an-
swer to all these questions, by extending the KK model
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FIG. 2. The two branches of low-energy modes present in the KK
model of Ref. [30]. The avoided crossing is determined by an energy
separation �ω which is physically controlled by the concentration of
defects c.

to realistic crystalline lattices where both wave propagation
through the lattice as well as the rattler motion are damped
by anharmonicity. This extension allows us to evaluate the
VDOS analytically for host-guest lattices. The calculation
reveals the presence of a boson peak in the VDOS, at a
frequency which is close to the frequency of the van Hove
peak occurring as the group velocity dω/dq = 0. This effect
results in a peak in the specific heat as well. Such an analytical
model, which gives access to the VDOS as a function of key
structural parameters such as defect density c and the dynamic
coupling between the defect and matrix, may play a crucial
role for the understanding and design of host-guest materials
where thermal conductivity is controlled by the features of the
VDOS.

Let us briefly summarize the setup used for our derivations;
for more details, see Ref. [31]. In particular, we generalize
the KK model [30] by introducing finite anharmonic damping
contributions for both the dynamics of the host lattice matrix
(which becomes effectively a visceolastic medium) and the
dynamics of the guest defect atom. The resulting equations
read as [30]{

ρ ∂2u
∂2t � ρs2

0 � u + cβ ∂x
∂R + γ1

∂
�

u
∂t ,

μ∂2x
∂t2 � −μω2

0x − βε(R) + γ2
∂x
∂t ,

(1)

where ρ is the density of the embedding viscoelastic matrix
and μ is an effective mass parameter of the “soft-mode”
guest atom. Furthermore, we defined the elastic displacement
vector u, the scalar strain parameter ε ≡ div u, the location
of the defect site R, and the soft-mode dynamical (scalar)
coordinate x, such that U = 1

2μω0x2 is the potential energy
of the soft mode, while Uint = βεx is the coupling energy
between the soft mode and the host matrix. The coupling
strength is controlled by the parameter β while the density
of defects is given by c. The bare speed of sound is indicated
with s0 and the natural oscillation frequency of the soft mode
with ω0.

With respect to the KK model, we introduced a signif-
icant idea in Eq. (1) by adding dissipative coefficients γ1,2

which determine the anharmonic damping of the acousticlike
phonons and of the soft modes. Notice that γ1, the damping of
the acousticlike phonons, is modeled by adding a dissipative
(viscous) term to the overall stress (as done in Ref. [32],
p. 366), which leads to a diffusivelike dependence of the
damping γ1 ∼ q2 on the wave vector q. After some standard
manipulations which involve solving the secular determinant,
and by going to Fourier space, the key equation describing the
vibrational modes of the system is obtained as [31](

ω2 − s2
0q2 + iω

γ1q2

ρ

)(
ω2 − ω2

0 + iω
γ2

μ

)
= cQ2s2

0q2,

(2)

where we defined cQ2 ≡ c β2/ρμs2
0 < ω2

0. An example of
the polaritonlike spectrum ω(q) with anharmonic damping
computed using the above equation is shown in Fig. 2. In the
regime of high defect concentration c, the interaction between
the two types of modes becomes strong near the (avoided)
intersection of the two branches, ω ∼ ω0, thus producing an
avoided-crossing behavior. Notice that the energy separation
�ω is controlled by the strength of the interaction between the
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modes β and by the defect density c. More precisely, neglect-
ing the subleading contributions coming from the damping
coefficients, the energy separation between the two branches

roughly reads as �ω ∼ ω0 −
√

ω2
0 − cQ2.

The main question we want to address here is how the
above features affect the vibrational density of states (VDOS)
and the specific heat of the system. We compute the VDOS
using the standard formula

g(ω) = − 2ω

πq3
D

∫ qD

0
ImG(q, ω)q2dq, (3)

in terms of the Green’s function G(q, ω), which is derived from the Plemelj identity and was already derived and used in a similar
context in Refs. [3,11,33]. For the explicit form of the Green’s function derived in full detail, see the Supplemental Material [31].
Upon implementing it in Eq. (3), we obtain the final semianalytical expression for the reduced VDOS of the host-guest system
lattice,

g(ω)

ω2
= 2

πq3
D

∫ qD

0

−[(
γ1q2

ρ
+ γ2

μ

)
ω2 − (ω2

0γ1q2

ρ
+ s2

0q2γ2

μ

)]
q2[

ω4 − (
s2

0q2 + ω2
0 + γ1q2γ2

ρμ

)
ω2 + s2

0q2
(
ω2

0 − cQ2
)]2 + [(

γ1q2

ρ
+ γ2

μ

)
ω3 − (ω2

0γ1q2

ρ
+ s2

0q2γ2

μ

)
ω

]2
dq, (4)

where the poles of the integrand correspond to the roots of
Eq. (2).

We can then derive the specific heat of the system by
performing the standard integral [34]

C(T ) = kB

∫ ∞

0

(
h̄ω

2kBT

)2

sinh

(
h̄ω

2kBT

)−2

g(ω)dω. (5)

Using formulas (4) and (5), we are now ready to study
in detail the features of the generalized KK model. First, we
analyze the behavior of the system by varying the parameter
c, which controls the density of the guest atoms while keeping
fixed the characteristic energy of the soft mode ω0. Upon
increasing the density of defects we expect the interactions
between the two types of modes to increase, the avoided
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FIG. 3. Left: The dispersion relation of the two branches of modes in the extended KK model with damping [Eq. (1)]. The different colors
correspond to different values of the density of defects, encoded in the parameter c (see legend). In all calculations the damping coefficients
are γ1 = 1, γ2 = 0.1. Right: The corresponding normalized VDOS. Bottom: The normalized specific heat.
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FIG. 4. The evolution of the boson peak frequency ωBP and boson peak temperature TBP as a function of the defect guest atom density c.
The solid lines are empirical fits to power-law functions with power exponent 2.02 for both ωBP and TBP.

crossing to be more pronounced, and the glassy features to
be more evident. The spectrum can be observed in the left
panel of Fig. 3, for some benchmark values of c. As already
mentioned, by increasing this parameter, the avoided crossing
becomes stronger and the energy separation �ω increases.

The reduced VDOS is shown in the right panel of Fig. 3.
Increasing the density of defects c, the boson peak becomes
more pronounced and it shifts towards low energies. The

same phenomenon occurs in the specific heat of the system
normalized by the Debye ∼T 3 contribution (see the bottom
panel of Fig. 3). The positions of the boson peak frequency
and boson peak temperature follow a power-law scaling with
the density of defects c which is apparent in Fig. 4.

We can now study the behavior as a function of the charac-
teristic energy scale ω0, which corresponds to the energy (or
energy gap) of the optical-like soft modes. Here, we keep the
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FIG. 5. Left: The dispersion relation of the two branches of modes in the extended KK model. The different colors correspond to different
values for the energy of the optical-like mode ω0. Right: The corresponding normalized VDOS. Bottom: The normalized specific heat.
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FIG. 6. The evolution of the boson peak frequency (left panel) and of the boson peak temperature (right panel) as a function of the energy
of the soft modes ω0. The linear correlation is evident as confirmed by empirically fitting the numerical data to a linear relation.

density of defects c constant, such that the energy separation
�ω between the two modes is approximately constant. The
main results are presented in Fig. 5. We observe that the
strength of the boson peak in both the VDOS and the specific
heat becomes weaker upon increasing ω0. In other words,
only soft optical-like modes, whose energy is not too large
compared to the energy scale of the acousticlike modes,
contribute to the low-energy glassylike behavior. Moreover,
increasing the energy of the (no longer) soft modes, the boson
peak moves towards higher energy. In particular, we notice
a direct correlation between the position of the boson peak
and the frequency ω0 of the soft optical-like modes, which is
shown in Fig. 6.

Both the boson peak frequency ωBP and the boson peak
temperature TBP display a very clear linear scaling in terms
of the ω0 energy parameter. Furthermore, it is seen that the
boson peak frequency is very close to the frequency at which
the van Hove singularity occurs, i.e., the frequency at which
band flattening, dω/dq = 0, occurs. This suggests that the
origin of the boson peak in these materials is related to a van
Hove singularity caused by band flattening of the polaritonlike
spectrum, smeared by anharmonicity.

In conclusion, we derived an extended version of the
Klinger-Kosevich model of soft-mode dynamics [30], which
crucially accounts for the viscous damping of vibrational
modes, to predict the vibrational anomalies experimentally
observed in thermoelectric host-guest materials, such as the
boson peak observed in the VDOS [22]. The theory shows,
semianalytically, that the presence of rattlers, associated with
soft-gapped quasilocalized modes, and the avoided-crossing
feature produced by their interactions with the acousticlike
phonons, are the fundamental processes leading to a “boson
peak” in the VDOS caused by a van Hove singularity from
band flattening of the polaritonlike spectrum, smeared out
by anharmonicity. Our results show that, upon increasing the
density of guest atoms, the strength of the boson peak (BP) in
the VDOS becomes larger and the BP moves in a power-law
fashion towards lower frequencies. This result quantitatively

establishes the idea that the VDOS of thermoelectrics can
be tuned by the density of the guest defects, e.g., by the
stoichiometry in tetrahedrites where this BP effect has been
measured experimentally [22]. Additionally, we observe a
strong linear correlation between the position of the BP and
the energy of the optical-like soft modes. This provides a
further confirmation regarding the possible glassylike effects
induced by softly gapped degrees of freedom, such as the soft
optical phonons considered in Ref. [33].

This simple theoretical model successfully explains the
peak in the VDOS observed experimentally in thermoelectric
tetrahedrites [22]. Moreover, together with recent experimen-
tal and theoretical results [7,9,11,18], it opens up a way of
realizing technologically relevant materials with crystal-like
electronic behavior and glasslike phononic behavior, where
the boson peak can be tuned by stoichiometry in order to min-
imize the thermal conductivity of the material possibly with
the aid of more detailed calculations [35]. For example, in
the thermoelectric tetrahedrite materials studied in Ref. [22],
the stoichiometry of the Cu atoms is directly related to the
parameter c used in our model. The presence of these features
seems to be more universal and general than thought before
and presumably tightly connected with anharmonic damping
mechanisms and softly gapped modes.

Our results could have immediate generalizations to the
study of polaritonic systems displaying avoided crossing.
Moreover, they suggest a possible fundamental role of softly
gapped vibrational modes for the onset of nonstandard super-
conductivity.
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