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There is growing experimental evidence that indicates discrete symmetry-breaking-like time-reversal (T ),
parity (P), and C4 lattice rotation in the pseudogap state of underdoped copper-oxide-based (cuprate) super-
conductors. The discrete symmetry breaking manifests a true phase transition to an ordered state. A detailed
thermodynamic understanding of these orders can answer various puzzles related to the nature of the transition
at the pseudogap temperature T ∗. In this work, we investigate the thermodynamic signature of T -P symmetry
breaking considering superconductivity (SC) and bond-density wave (BDW) as two primary orders. The BDW
can generate both modulating charge and current densities. This framework takes into account an intricate
competition between the ubiquitous charge density wave and SC, which is prominent in various cuprates in
the underdoped regime. We demonstrate that within the mean-field approach of competing BDW and SC orders,
a T -P breaking ground state of coexisting BDW and SC can be stabilized, provided the BDW itself breaks T -P .
But this ground state ceases to occur at higher temperatures. However, we show that fluctuations in SC and BDW
can bring about the emergence of an unusual translational symmetry preserving order due to a preemptive phase
transition by spontaneously breaking T -P at a higher temperature before the primary orders set in. We refer to
this order as magnetoelectric loop current (MELC) order. We present the possible nature of the phase transition
for this incipient MELC order and discuss some experimental relevance.

DOI: 10.1103/PhysRevB.100.214519

I. INTRODUCTION

The various anomalies in the normal-state properties of
the underdoped regime of hole-doped cuprate superconduc-
tors have been a long-standing puzzle in condensed-matter
physics. This peculiar normal state has a partially gapped
Fermi surface and is known as a “pseudogap” (PG) state.
The PG state [1–13] for the underdoped cuprates is usually
set below a characteristic temperature T ∗ well above the
superconducting critical temperature Tc as indicated in several
experiments. Whether the PG state appears through a true
phase transition at T ∗ associated with symmetry breaking
is still a matter of debate. A complete understanding of
the nature of this transition and the corresponding broken
symmetries can unravel the mystery of the PG state.

Several experiments have provided evidence of a true
phase transition at T ∗ and various examples of symmetry
breaking in the PG state. Ultrasound spectroscopy [14] and
magnetic quantum oscillation measurements [15] showed sig-
natures of a thermodynamic phase transition at T ∗. More-
over, recent experiments suggest a breaking of discrete
(Z2) symmetries in the PG state, which makes it intrigu-
ing to associate the discrete symmetry breaking with the
phase transition at T ∗. Angle-resolved photoemission spec-
troscopy (ARPES) with circularly polarized photons for
underdoped Bi2Sr2CaCu2O8+δ (BSCCO) [16] in the PG
state suggested time-reversal symmetry breaking (Fig. 1).
Spin-polarized neutron scattering in YBa2Cu3O6+x (YBCO)
[17,18], HgBa2CuO4+δ [19,20], and Bi2Sr2CaCuO8+δ [21]
have shown evidence of long-range magnetic order at T ∗
with wave-vector �Q = 0. This magnetic order preserves
lattice translational invariance but breaks the time-reversal
symmetry. Another spin polarized neutron scattering [22] in

La2−xSrxCuO4 has reported short-range magnetic order. Op-
tical second-harmonic-generation (OSHG) measurement [23]
suggested breaking of parity symmetry at T ∗ (Fig. 1). Apart
from these, polar Kerr effect measurements showed finite
rotation of linearly polarized light reflected from the sample
within the PG state in a number of underdoped cuprates
[24–26]. The Kerr effect observations were interpreted in
terms of time-reversal symmetry breaking [27] and sometimes
in terms of chiral symmetry breaking [28–30]. Scanning
tunneling microscopy (STM) [31,32], the anomalous Nernst
effect [33], torque magnetometry [34], and polarized neutron
diffraction measurement [35] have also detected nematic order
inside the PG state, which breaks the lattice C4 rotational sym-
metry down to C2, but preserves lattice translational symmetry
and hence is a �Q = 0 order.

Signatures of time-reversal (T ) symmetry breaking from
polarized neutron scattering experiments in different cuprate
compounds [17,19,21,22] motivated several theoretical stud-
ies. Varma et al. [36–39] first proposed the origin of T
breaking �Q = 0 magnetic moments in the polarized neutron
scattering in the PG state due to the existence of intra-unit-
cell (IUC) loop currents. The IUC currents preserve lattice
translational symmetry as they exist inside a single unit cell.
The loop currents additionally break parity (P) symmetry
explaining the features of OSHG experiment [40]. The IUC
loop currents proposed by Varma require a three-band model
of CuO2 planes. The possibility of such currents in three-band
microscopic models was further explored in several theoreti-
cal works [41–46]. However, numerical analysis [47,48] and
quantum variational Monte Carlo study [49] have challenged
the existence and stability of such currents.

Furthermore, a nonsuperconducting �Q = 0 order is not
expected to open a gap on the Fermi surface, as it can either
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FIG. 1. A schematic temperature (T ) hole doping (x) phase dia-
gram of cuprates summarizing experiments. Upon small doping, the
system exhibits a d-wave superconducting phase below the critical
temperature Tc that follows a domelike shape. A mysterious PG state
appears below a temperature T ∗, which is much higher than Tc in
the underdoped region. Different experiments observed time-reversal
and parity symmetry breaking in the PG state. A short-range CO is
seen below TCO, whereas CO becomes long-range upon application
of a magnetic field below temperature T ′

CO.

change the dispersion of the quasiparticle spectrum or it can
simply shift the chemical potential. Additionally, it cannot
explain the presence of various �Q �= 0 orders at low temper-
atures. These indicate that finite �Q orders become imperative
to open a gap on the Fermi surface, and indeed such orders
have been observed in experiments. X-ray diffraction [50–58]
and STM [59–62] ubiquitously detected charge-density-wave
order (CO) for T < TCO (Fig. 1). The CO breaks lattice trans-
lational symmetry and consequently has finite wave vector
( �Q �= 0). There are also experimental indications [32,53,63–
65] that the modulations of the charge density live primarily
on Cu-O-Cu bonds. In the presence of a high magnetic field,
the CO attains a long-range nature in YBCO [66–72] below
T ′

CO (Fig. 1). It is also interesting to note that various exper-
iments [50,54,59,73,74] observed a competition between CO
and SC. More recently, local Josephson scanning tunneling
microscopy provided evidence of a distinct finite �Q electronic
order, namely a pair-density-wave (PDW) [75–77] in BSCCO
[74,78].

Although there are no signatures of long-range finite �Q
orders close to T ∗, experiments hint at the presence of various
fluctuations. This motivated several theoretical proposals on
fluctuations of different order parameters driving the phe-
nomenology of the PG state. Proximity to the Mott localiza-
tion transition [79] inspired scenarios with superconducting
phase fluctuations [80,81] and fluctuating preformed Cooper
pairs [82–84]. On the other hand, the presence of various
competing orders [85,86] in the underdoped region of the
phase diagram led to theories with fluctuations in various

orders such as spin density waves [87,88], staggered flux
phase [89,90], CO [91–93], and PDW [94–97]. There are
also proposals based on fluctuations guided by an emergent
symmetry [91,92,98]. The emergent SU(2) theory describes
some of the phenomenology [99–108] for the PG phase.
Recent experimental signatures of fluctuations in both SC
[109–111] and charge [112] channels in the PG state moti-
vated a theoretical proposal [113] for a pseudogap based on
entangled fluctuating preformed particle-particle and particle-
hole pairs. While particle-particle pairs result in the SC state,
the particle-hole pairs give rise to bond-density-wave (BDW)
order, which can result in both charge-density-wave order and
current-density-wave order.

Fluctuating orders can also be considered as possible can-
didates for explaining the antinodal gap on the Fermi surface
in the PG phase. For instance, superconducting fluctuations
can result in Fermi arcs as observed in ARPES for T > Tc

because the nodal quasiparticles are more prone to thermal
fluctuations than the antinodal ones [114]. Within the fluc-
tuation scenarios, therefore, it is of fundamental importance
to investigate discrete symmetry breaking �Q = 0 orders close
to temperature T ∗ and their connection to the PG transition.
Some phenomenological works [93,115] discussed discrete
symmetry breaking in the PG state using composite CO and
PDW fields. But no general consensus as to whether these
theoretical frameworks can consolidate the mechanism of a
pseudogap and discrete symmetry-breaking orders has been
reached so far.

In this paper, we are interested in whether fluctuations
in both SC and BDW hold the key to the T -P symmetry
breaking in the PG state resulting in a phase transition at
T ∗. Toward this end, we first investigate a Ginzburg-Landau
(GL) theory of competing primary BDW and SC orders at
the mean-field level without considering fluctuations. We
notice that T -P symmetry can only be broken in a coexisting
ground state of SC and BDW, where BDW itself breaks T -P
symmetry. Such a ground state has never been observed in
experiments. This immediately raises the possibility of a role
played by the fluctuations in the SC and BDW. To analyze the
effect of fluctuations, we construct a composite PDW order
from higher-order combinations of primary SC and BDW
orders. The composite PDW order has the same wave vector
�Q as that of BDW and has the same charge as SC. The
fluctuations in both SC and BDW lead to the fluctuations in
composite PDW order. Using a Hubbard-Stratonovich (HS)
method with a saddle-point approximation in a GL theory of
fluctuating composite PDW order, we find a nontrivial order
that can break T -P in the PG state. In our phenomenological
treatment, the T -P symmetry breaking order parameter shares
the same symmetry properties as those of the IUC magne-
toelectric loop current (MELC) proposed by Varma. Hence,
we refer to this order parameter as MELC order in the rest
of this paper. However, the MELC order in our theory is an
emergent �Q = 0 order, formed by a higher-order combination
of primary SC and BDW, and thus does not need resorting to
the three-band models.

We organize the rest of the paper as follows. In Sec. II we
define the two primary order parameters, SC and BDW, and
we construct a composite PDW order parameter. We discuss in
detail the symmetry properties of the order parameters in the
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FIG. 2. A schematic representation of the Fermi surface of hole-
doped cuprates. The dotted lines represent the magnetic Brillouin
zone boundary and the solid curved lines denote the Fermi surface.
The Fermi surface intersects the magnetic Brillouin zone boundary at
eight hot-spots, which are shown by red and green dots and numbered
from 1 to 8. As mentioned in the text, we consider the BDW order
parameters with axial wave vectors connecting the nearest hot spots
in the first Brillouin zone. The BDW wave vectors for hot spots 1, 3,
5, and 7 are shown by the arrows. For orthorhombic lattice systems,
BDW order parameters corresponding to only the red hot-spots are
relevant. On the other hand, for tetragonal lattice systems, BDW
order parameters corresponding to both red and green hot spots have
to be considered for writing the free energy.

context of cuprates. In Sec. III we build an auxiliary MELC
order parameter and discuss its symmetry transformation
properties. In Sec. IV we present the mean-field GL theory
of competing SC and BDW and we calculate the analytic
conditions for obtaining the T -P breaking ground state. In
Sec. V we present the HS approach for fluctuations and we
detail the possible nature of the phase transition depending
on parameters through which the preemptive MELC ground
state can appear. In Sec. VI we put forward discussions on
the extensions of the framework and possible relevance to
experimental findings in cuprates. In Sec. VII we conclude
by presenting a summary of our work.

II. ORDER PARAMETERS: SYMMETRY PROPERTIES

In this section, we introduce the Fermi surface (Fig. 2) and
the order parameters of a typical hole-doped cuprate. More
specifically, we discuss here two primary order parameters—
BDW and SC—and the secondary order parameter, composite
PDW, and their symmetry transformation properties.

Underdoped cuprates [91,116] are often described by a
spin-fermion model [117–119] based on antiferromagnetic
fluctuations. Within this scenario, the PG phase is described
by an emergent symmetry between the SC order and a
BDW order with diagonal wave vectors connecting different
“hot-spots” (labeled as 1–8 in Fig. 2), where the Fermi surface
intersects the magnetic Brillouin zone boundary [91]. But

experimentally the CO is observed with wave vectors either
horizontal or vertical to the crystallographic axes [58,120].
The magnitude of the wave vector is found to be very close to
the axial wave vector connecting two neighboring hot-spots
[120]. Theoretically, BDW with axial wave vectors can also
be obtained as one of the competing instabilities in models
with antiferromagnetic fluctuations [93]. The BDW with an
axial wave vector can be enhanced by including fluctua-
tions [93,100,103], considering dynamic exchange interac-
tions [121], or an off-site Coulomb interaction [122] in the
microscopic models. Furthermore, a recent work [113] includ-
ing both antiferromagnetic interactions and off-site Coulomb
repulsion shows that a BDW with an axial wave vector domi-
nates near the hot-spots on the Fermi surface. Motivated by all
these theoretical indications and experimental observations,
we consider the BDW order parameter only at the hot-spots
with axial wave vectors ( �Qx or �Qy) as shown in the Fig. 2.

The complex BDW order parameter χ k
Q with ordering

wave vector �Q at each given momentum (k) is given as∑
σ 〈c†

k+Q,σ
ck,σ 〉. In the special case where χ k

Q describes only
current modulations with Q = (π, π ), the corresponding or-
der parameter is often referred to as d-density waves (dDW)
[123] or staggered flux order parameters [124–126] in the
literature. While the dDW ground state itself breaks T -P
[123], the BDW ground state considered in this paper does
not necessarily break T -P , as we will see in Secs. IV and V
(also see Ref. [93]).

The complex superconducting order parameter � is given
by 〈c†

k,↑c†
−k,↓〉. Next we introduce the PDW order parameter,

which is a composite of χ k
Q and � and can be defined as

�k
Q = χ k

Q�. (1)

We would like to emphasize that the wave vector of the PDW
order �k

Q is the same as that of the BDW wave vector. A dif-
ferent set of theories [94,95,127,128] considered fluctuating
primary PDW, albeit with a different wave vector �P from that
of the CO wave vector.

For tetragonal crystal systems, all the hot-spot pairs (1-2, 3-
4, 5-6, and 7-8) need to be considered because of C4 symmetry
in the system. In this case, there are eight complex BDW order
parameters for each hot-spot point. For orthorhombic systems,
the relevant hot-spot pairs are 1-2 and 5-6 as the C4 symmetry
is now absent and one cannot bring 1-2 and 5-6 pairs to any of
the hot-spot pairs 7-8 or 3-4. Therefore, in the orthorhombic
case, there are four complex order parameters corresponding
to the hot-spot points 1, 2, 5, and 6 (shown with red dots
in Fig. 2). The complex order parameters for orthorhombic
system, corresponding to the primary order manifold, are[

χ1
Qx

, χ2
−Qx

, χ5
−Qx

, χ6
Qx

,�
]
. (2)

To build the Ginzburg-Landau free energy density, the point-
group symmetry transformation properties of these order pa-
rameters are required. For the orthorhombic case, the required
point group symmetries are as follows: three twofold axes of
rotations about the x, y, and z axis, and three mirror planes:
y − z, z − x, and x − y. We are interested only in the parity
and (or) time-reversal symmetry breaking. Thus, we do not
consider any mirror symmetry breaking ground states. As
a result, without any loss of generality, we implement the
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TABLE I. Point-group symmetry transformation of SC, BDW,
and PDW fields in an orthorhombic lattice. Here Rx , Ry, and Rz

represent the action of the twofold (C2) rotations about the x, y,
and z axes, respectively. σx , σy, and σz represent the action of mirror
reflections about the y-z, z-x, and x-y planes, respectively.

Point-group Primary orders Composite orders

operations χ k
Q χ−k

−Q � �k
Q �−k

−Q

Rx: χ k
Q χ−k

−Q � �k
Q �−k

−Q

Ry: χ−k
−Q χ k

Q � �−k
−Q �k

Q

Rz: χ−k
−Q χ k

Q � �−k
−Q �k

Q

σx: χ−k
−Q χ k

Q � �−k
−Q �k

Q

σy: χ k
Q χ−k

−Q � �k
Q �−k

−Q

σz: χ k
Q χ−k

−Q � �k
Q �−k

−Q

following two equalities:

χ1
Qx

= χ6
Qx

≡ χ1
Q,

χ5
−Qx

= χ2
−Qx

≡ χ5
−Q. (3)

Subsequently, the order parameter space is further reduced to
a smaller subset, [

χ1
Q, χ5

−Q,�
]
. (4)

Rewriting χ1
Q and χ5

−Q as χ k
Q and χ−k

−Q, respectively, the order
parameter manifold becomes[

χ k
Q, χ−k

−Q,�
]
. (5)

Finally, we summarize the point group symmetry transfor-
mation of the BDW, SC, and composite PDW in Table I. The
order parameter manifold for the tetragonal lattice systems
will be larger than in Eq. (4) and the number of possible
ground states will be increased. While we explicitly show the
order parameter manifold and discuss the case for tetragonal
systems in Sec. VI A, we will restrict the analysis in the
rest of this paper to orthorhombic lattice systems with no
mirror symmetry breaking order parameters in order to have
analytical control in a reduced parameter space.

Under parity and time-reversal, the BDW and the compos-
ite PDW transform as follows:

χ k
Q

P−→ χ−k
−Q,

χ k
Q

T−→ χ
†−k
−Q ,

�k
Q

P−→ �−k
−Q,

�k
Q

T−→ �
†−k
−Q . (6)

For convenience from now on we will suppress the k index
from the BDW order parameters. For example, we will use
χQ and χ−Q for χ k

Q and χ−k
−Q respectively. The same notation

will also be applied to the composite PDW.

III. LOOP CURRENT ORDER

Our goal in this work is to study T -P symmetry breaking
due to the emergence of an order in the PG state. Here, we
define such an order parameter, referred to as MELC order,

which is translationally invariant ( �Q = 0). Within our theoreti-
cal framework, this order appears to be an auxiliary order. The
concept of auxiliary orders has been introduced previously in
several contexts [46,85,93,115,129], and sometimes they are
referred to as “vestigial” or “secondary” orders.

In a similar spirit, we construct the MELC order parameter
� from the primary BDW and SC order parameters, and it is
given by the following equation:

� = |χQ�|2 − |χ−Q�|2. (7)

Equivalently, � can be written in terms of the composite PDW
order parameters using Eq. (1) as follows:

� = |�Q|2 − |�−Q|2. (8)

Upon time-reversal and parity transformation, the BDW and
composite PDW transform as given by Eq. (6). Using Eq. (6),
� transforms under time-reversal and parity as

�
T−→ −�, �

P−→ −�, �
T P−→ �. (9)

This shows that the order parameter � breaks the time-reversal
parity but preserves their product. Under a spatial translation
by �R, χQ and �Q transform as χQ → ei �Q· �RχQ and �Q →
ei �Q· �R�Q, respectively. Hence � remains invariant under a
spatial translation �R and therefore is a �Q = 0 order. Magneto-
electric IUC loop currents proposed by Varma [36] also have
similar transformation properties under time-reversal, parity,
and spatial translation.

IV. MEAN-FIELD GINZBURG-LANDAU THEORY OF
SC AND BDW

This section aims to investigate the formation of the MELC
order by constructing a mean-field Ginzburg-Landau theory of
competing BDW and SC orders. The GL free energy density
functional for a spatially homogeneous case, which remains
invariant under translations, time-reversal, parity, gauge sym-
metries, as well as all the point group symmetry operations of
the orthorhombic system, is given as follows:

F = αd |�|2 + α(|χQ|2 + |χ−Q|2)

+ β1

2
(|χQ|4 + |χ−Q|4) + βd

2
|�|4

+β2(|χQ|2|�|2 + |χ−Q|2|�|2) + β3(|χQ|2|χ−Q|2)

+β4[χQχ−Q|�|2 + |�|2(χQχ−Q)∗]. (10)

In the free energy Eq. (10), β2 gives the coupling between
BDW field χQ or χ−Q and superconducting field �. β3 repre-
sents coupling between χQ and χ−Q. And lastly, β4 gives the
mutual coupling between the three fields χQ, χ−Q, and �. In
this work, we are particularly interested in a ground state that
spontaneously breaks only T -P symmetry and can sustain a
MELC. Subsequently we replace β4 = 0 in the free energy
density for simplification, which excludes the possibilities of
pure imaginary ground states.

A. All possible ground states

We now discuss the possible mean-field ground states of
SC and BDW orders from the free energy Eq. (10). The
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TABLE II. Properties of all possible mean-field ground states. The nonzero values of χQ and χ−Q in the first two columns are the same as
the free energy density Eq. (10) is invariant under χQ � χ−Q. The fourth column shows the symmetries broken by the corresponding ground
state of the primary orders. The fifth column gives the free energy for each state. The last three columns show the composite PDW order and
the MELC order constructed from the primary orders. Only states (a, 0, b) and (0, a, b) can sustain a nonzero value of the MELC order.

Primary orders Broken symmetry Free energy Composite PDW MELC

χQ χ−Q � in the ground state �Q �−Q �

a 0 b U (1) × U (1) × Z2 F (a, 0, b) = [2ααd β2−α2
d β1−α2βd ]

2[β1βd −β2
2 ]

ab 0 a2b2

0 a b U (1) × U (1) × Z2 F (0, a, b) = [2ααd β2−α2
d β1−α2βd ]

2[β1βd −β2
2 ]

0 ab −a2b2

a a b U (1) × U (1) F (a, a, b) = 4ααd β2−α2
d (β1+β3 )−2α2βd

2βd (β1+β3 )−4β2
2

ab ab 0

a 0 0 U (1) × Z2 F (a, 0, 0) = −α2

2β1
0 0 0

0 a 0 U (1) × Z2 F (0, a, 0) = −α2

2β1
0 0 0

0 0 b U (1) F (0, 0, b) = −α2
d

2βd
0 0 0

a a 0 U (1) F (a, a, 0) = −α2

(β1+β3 ) 0 0 0

calculations to obtain the solutions for the ground states by
minimizing the free energy Eq. (10) and the resulting free
energy of the respective ground states are shown in Appendix.
Table II summarizes the seven possible mean-field ground
states of the free energy Eq. (10) and the free energy for
each ground state. For α < 0 and β1 > 0, the state (a, 0, 0)
becomes a minimum, where the field χQ condenses with χQ �=
0. The superconducting state (0, 0, b) becomes a minimum
with � �= 0 when αd < 0, and βd > 0. We note that there can
be another BDW state (a, a, 0) present, when both χQ and χ−Q

are nonzero and superconducting order parameter is absent.
These two fields condense when α < 0 and (β1 + β3) > 0.

We note in Table II that the two states (a, 0, b) and (0, a, b),
where |χQ| �= |χ−Q|, have a Z2 degeneracy as their free ener-
gies are equal. This degeneracy can be lifted by spontaneously
breaking the T -P symmetry, and such a state will sustain a
finite MELC, as can be seen from the last column of the table.
No other states can sustain a finite MELC, which can also be
seen from the table. Henceforth, we analyze the conditions on
the GL parameters for the state (a, 0, b) to be the most stable
ground state.

B. Stability conditions for the (a, 0, b) ground state

Now we analyze the stability for the state (a, 0, b). The
ground state (a, 0, b) has a free energy,

F (a, 0, b) =
[
2ααdβ2 − α2

dβ1 − α2βd
]

2
[
β1βd − β2

2

] . (11)

The stability conditions are essentially the conditions for
which the state (a, 0, b) is a global minimum. These condi-
tions are given by

F (a, 0, b) − F (a, a, b) < 0, (12a)

F (a, 0, b) − F (a, 0, 0) < 0, (12b)

F (a, 0, b) − F (0, 0, b) < 0, (12c)

F (a, 0, b) − F (a, a, 0) < 0. (12d)

Thus the stable ground state is achieved by the simulta-
neous fulfillment of the above conditions provided all the

other minima of the GL free energy exist. The minimum
requirements for the existence of all the minima are α < 0,
αd < 0, β1 > 0, β1 + β3 > 0, and βd > 0, which we derived
in Sec. IV A. These conditions for the parameters will be valid
for the rest of the discussion in this section.

A close inspection of the comparison of free energies
[Eqs. (12a), (12b), (12c), and (12d)] will also provide insight
on the strength of relative couplings between various fields.
Toward this end, we first evaluate the condition for which
Eq. (12b) holds. This imposes the following additional con-
straint on the coupling constant β2:(

β2
2 − β1βd

)
< 0 (13)

and it imposes two more conditions on the masses:

β2αd > αβd (14)

and

αβ2 > αdβ1. (15)

From Eq. (12c), we get the same criteria as those of Eqs. (14)
and (15). The condition Eq. (12d) gives

2(β1 + β3)
(
2ααdβ2 − α2

dβ1 − α2βd
)

> 2α2
(
β1βd − β2

2

)
.

(16)

Finally, we investigate the stability criteria Eq. (12a). The free
energy density for the state (a, a, b) is given by

F (a, a, b) = 4ααdβ2 − α2
d (β1 + β3) − 2α2βd

2βd (β1 + β3) − 4β2
2

. (17)

We notice from the free energy density Eq. (17) that there
are two conditions for the state (a, a, b) to become one of the
possible minima, i.e., F (a, a, b) < 0. The two conditions are
given by the following equations:

2βd (β1 + β3) − 4β2
2 < 0, (18a)

4ααdβ2 − α2
d (β1 + β3) − 2α2βd > 0, (18b)
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FIG. 3. Phase diagrams showing the parameter regimes for the occurrence of a MELC ground state obtained from the mean-field solutions
of the GL free energy Eq. (10). (a) Illustration of different phases in the parameter space of α and αd : We choose β2

2 < β1βd as it is a necessary
condition for the coexistence of SC and BDW orders. For any positive values of both α and αd , the system is in a disordered state (0, 0, 0). If
αd < 0 and α > 0, the only possible ground state is an SC state (0, 0, b). If αd > 0 and α < 0, the possible ground states are (a, a, 0), (a, 0, 0),
and (0, a, 0), where SC order vanishes and only BDW orders exist. When both αd < 0 and α < 0, coexistent states of SC and BDW orders
emerge as indicated by the gray-colored region. This region of coexistence is bounded by two lines obtained from Eqs. (14) and (15). There are
three possible coexistent states: (a, 0, b), (0, a, b), and (a, a, b). However, only (a, 0, b) or (0, a, b) support a MELC order. (b) Role of the GL
parameter β3: With a choice of α = αd < 0 [inside the gray region in (a)], the MELC ground state is found to be bounded below by β3 = β1.
It is also seen that when β3 < β1, the state (a, a, b) wins over the MELC ground state, as a lower value of β3 favors the existence of two BDW
orders χQ and χ−Q. Also the existence of state (a, a, 0) is found from comparing free energies of state (a, a, b) and (a, a, 0). In the parameter
regime of β2 >

√
β1βd , no coexistence of BDW and SC orders can be found.

or

2βd (β1 + β3) − 4β2
2 > 0, (19a)

4ααdβ2 − α2
d (β1 + β3) − 2α2βd < 0. (19b)

For the state (a, 0, b) to become more stable than the state
(a, a, b), the condition Eq. (12a) has to be satisfied. This poses
an additional constraint,

2
(
β1βd − β2

2

)[
4ααdβ2 − α2

d (β1 + β3) − 2α2βd
]

<
[
2(β1 + β3)βd − 4β2

2

](
2ααdβ2 − α2

dβ1 − α2βd
)
, (20)

on the masses and coupling constants in the free energy
Eq. (10).

In Fig. 3, we present phase diagrams showing all the
possible ground states and highlight the parameter regime
where a ground state sustaining the MELC order is stable.
As already indicated earlier in this section, only a state with
coexisting SC and BDW fields can give rise to the MELC
order. From Eq. (13), such a state is allowed only when
β2

2 < β1βd . Restricting β2 in this regime, in Fig. 3(a) we
plot the phase diagram in the parameter space of α and αd .
The three possible coexistent states—(a, 0, b), (0, a, b), and
(a, a, b)—are stable only in the gray region as shown in
Fig. 3(a). But as we saw in Table II, � can have a nonzero
value only for (a, 0, b) and (0, a, b). This imposes a further
condition on other GL parameters. To further illustrate, we
consider a particular line α = αd < 0 in the gray region
of Fig. 3(a) and we investigate the GL parameter β3 in
Fig. 3(b). We find that (a, 0, b) and (0, a, b) are stable when
β3 > β1.

However, the two states (a, 0, b) and (0, a, b) have a Z2 de-
generacy due to the presence of T -P symmetry. Subsequently,

the ground states of composite PDW also have the same Z2

degeneracy. This degeneracy can be lifted if the BDW itself
spontaneously breaks T -P symmetry. As a consequence, the
T -P broken ground state will have a finite MELC order, as
can be seen from Eq. (7).

V. FLUCTUATING ORDERS AND PREEMPTIVE
MELC ORDER

The T -P breaking mean-field BDW ground state, which
we discussed in Sec. IV, has not yet been observed, and
such a ground state cannot persist at higher temperatures.
This raises the possibility of a role played by fluctuations in
T -P breaking. In this section, we therefore analyze fluctu-
ation effects of BDW and SC on T -P breaking in the PG
state.

The fluctuations in both BDW and SC introduce gradient
terms of both SC and BDW orders in the GL free energy
Eq. (10). This gives rise to additional parameters in the
free energy Eq. (10). As a result, it becomes more complex
to study the free energy analytically. But, we recall from
Sec. III that the MELC order parameter is defined as � =
|χQ�|2 − |χ−Q�|2, where the χQ� and χ−Q� are simply
two composite PDW fields �Q and �−Q, respectively. Hence
to investigate the T -P breaking, alternatively we can write
the free energy in terms of fluctuating composite PDW order
parameters. This allows us to perform a systematic analytical
study of the T -P symmetry breaking in the PG state. The free
energy in terms of fluctuating PDW orders will have the same
symmetry properties as that of free energy in terms of SC and
BDW in Sec. IV, as PDW and BDW transform in the exact
same fashion under all symmetry transformations discussed
in Sec. II.
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Before considering the fluctuations, we write the GL free
energy for the composite PDW in a homogeneous system,
incorporating all the symmetries for a disordered normal state
of the system. The corresponding free energy is given by

F0[�Q,�−Q] = αφ (|�Q|2 + |�−Q|2) + β�(|�Q|4 + |�−Q|4)

+ 2β|�Q|2|�−Q|2, (21)

where β and β� are positive. Next rescaling the parameters
and rearranging the terms in the free energy Eq. (21), we get

F0[�Q,�−Q] = α′(|�Q|2 + |�−Q|2) + 1

2
(|�Q|2 + |�−Q|2)2

− β�

2
(|�Q|2| − |�−Q|2)2, (22)

where α′ = αφ/(β� + β ) and β� = (β − β� )/(β� + β ). β� is
the self-interaction of both the fields �Q and �−Q, and β

denotes the strength of the competition between the two
fields. The rescaled parameter β� decides the nature of the
PDW ground state. If β < β� (i.e., β� < 0), the free energy
in Eq. (21) favors a coexisting ground state with (�Q �=
0,�−Q �= 0). On the other hand, β > β� (i.e., β� > 0) al-
lows for a ground state with (�Q �= 0,�−Q = 0) or (�−Q �=
0,�Q = 0). These two states have a Z2 degeneracy due
to T -P symmetry, which is the same Z2 symmetry in the
primary BDW order.

Now, we add the gradient terms in F0 [Eq. (22)] to account
for the thermal fluctuations of the composite PDW field in a
2D system, and we arrive at the following GL free energy:

F [�Q,�−Q] = α′(|�Q|2 + |�−Q|2) + 1

2
(|�Q|2 + |�−Q|2)2

− β�

2
(|�Q|2 − |�−Q|2)2

+ (|∇�Q|2 + |∇�−Q|2). (23)

Incorporating the fluctuations in �Q and �−Q through
Hubbard-Stratonovich transformations of the GL free energy
Eq. (23) and using the saddle-point approximation, we study
the possibility of the appearance of T -P symmetry breaking
without any requirement of T -P symmetry breaking in the
PDW ground state.

A. HS transformations and effective free energy

The partition function corresponding to the free
energy Eq. (23) can be written as Z[�Q,�−Q] ∝∫

d�Qd�−Q exp(−F [�Q,�−Q]). We make a HS
transformation of the partition function Z[�Q,�−Q] to
arrive at an effective partition function in terms of the HS
fields. To this end, we introduce two conjugate HS fields as
follows:

� ≡ i(|�Q|2 + |�−Q|2),

� ≡ (|�Q|2 − |�−Q|2). (24)

The HS field � describes a “preemptive” MELC order. �

gives the Gaussian correction to susceptibility due to fluctu-
ation. Now we make the following HS transformations in the

partition function Z[�Q,�−Q]:

exp

[
−

N∑
i=1

(|�Q,i|2 + |�−Q,i|2)2/2N

]

=
√

N/2π

∫
d�e

−N�2

2 exp

[
i�

N∑
i=1

(|�Q,i|2 + |�−Q,i|2)

]
,

exp

[
N∑

i=1

β�(|�Q,i|2 − |�−Q,i|2)2/2N

]

=
√

N/2π

∫
d�e

−N�2

2β� exp

[
�

N∑
i=1

(|�Q,i|2 − |�−Q,i|2)

]
,

where we have assumed that the PDW fields have N com-
ponents, where N � 1. Next we take the limit N ∼ 1, where
the qualitative results for HS transformation are not expected
to change [93,130]. Using the above HS transformations with
N = 1 in the partition function Z[�Q,�−Q], and integrating
over �Q and �−Q, we obtain an effective partition function in
terms of the HS fields � and �. The new effective partition can
be written in terms of HS fields as

Zeff[�, �] ∝
∫

d� d� exp

[
−�2

2
− �2

2β�

]

exp

[
−

∫
d2q

4π2
ln[(α′ + q2 − i�)2 − �2]

]
.

As the effective partition function can be written as
Zeff[�, �] ∝ ∫

d� d� exp(−Feff[�, �]), the effective free en-
ergy Feff[�, �] is given by

Feff[�, �] = �2

2
+ �2

2β�

+
∫

d2q

4π2
ln[(α′ + q2 − i�)2 − �2].

(25)

B. Saddle-point analysis of the effective free energy

We consider that the fluctuations in the preemptive MELC
order � around the saddle-point solutions are small. Therefore,
we continue with the saddle-point approximation for the free
energy in terms of the MELC order parameter and closely
follow the theoretical framework in Refs. [93,129].

The saddle point solutions are obtained by minimizing the
free energy Feff[�, �] with respect to � and �. These give the
following equations for � and �:

∂Feff

∂�
= 0

⇒ � = 2i
∫

d2q

4π2

(α′ + q2 − i�)

(α′ + q2 − i�)2 − �2
(26)

and,

∂Feff

∂�
= 0

⇒ � = 2β�

∫
d2q

4π2

�

(α′ + q2 − i�)2 − �2
. (27)
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After performing the integration in Eqs. (26) and (27), we get
the following two coupled equations for r and �:

r = α′ + 1

4π
[ln(�2 − �2) − ln(r2 − �2)],

� = β�

2π
coth−1

( r

�

)
, (28)

where r = α′ − i� and � is the upper momentum cutoff. We
note that the solution of Eq. (26) exists only for imaginary �,
hence we replace � by i�0 where � is real. So, � = 0 cannot
be a solution. But � = 0 is an allowed solution. Therefore,
we consider the following two cases: � = 0, � �= 0 and � �=
0, � �= 0.

1. Case: � = 0, � �= 0

For the case � = 0, � �= 0, the solution for r can be rewrit-
ten from Eq. (28) as

r = α′ + 1

2π
ln

(
�

r

)
.

To find the stability of the solution, we need to analyze the
condition for ∂2Feff[�,�]

∂�2 |�=i�0,�=0 and ∂2Feff[�,�]
∂�2 |�=i�0,�=0 to be

positive. We get the second derivatives to be as follows:

∂2Feff[�, �]

∂�2

∣∣∣∣
�=0

= 1 + 2i
∫

d2q

4π2

−i

(α′ + q2 − i�)2
(29)

and

∂2Feff[�, �]

∂�2
= 1

β�

− 2
∫

d2q

4π2

[
1

(α′ + q2 − i�)2 − �2

− 2�2

[(α′ + q2 − i�)2 − �2]2

]
. (30)

Next plugging � = i�0 in Eq. (29) and performing the
integration gives ∂2Feff[�,�]

∂�2 |�=i�0,�=0 = (1 + 1
2πr ). Here, we

used r = α′ + �0. The sign of r is always positive un-
less the PDW fields become ordered. Hence the value of
(1 + 1

2πr ) is always positive. Again, performing the inte-
gration and plugging in the limits � = i�0 and � = 0 in
Eq. (30), we get ∂2Feff[�,�]

∂�2 |�=i�0,�=0 = 1
β�

(1 − β�

2πr ). Now to

hold ∂2Feff[�,�]
∂�2 |�=i�0,�=0 > 0, we need (1 − β�

2πr ) > 0 or r >
β�

2π
. This condition, along with Eq. (28) for r, yields

α′ � β�

2π
− 1

2π
ln

(
2π�

β�

)
.

This stability condition for r put a constraint on the mass
term α′ as

α′ � α′
0, (31)

with

α′
0 = β�

2π
− 1

2π
ln

(
2π�

β�

)
. (32)

2. Case: � �= 0, � �= 0

Here we analyze the state in which � �= 0 and � �= 0, i.e.,
a state with preemptive MELC order. Eliminating r from

FIG. 4. Plots of g(�′) [defined in Eq. (36)] representing the LHS
of Eq. (35), which gives the solution for the rescaled MELC order
�′ [defined in Eq. (34)] for four different values of β�. In the range
0 < β� < 0.5, g(�′) shows only one minimum at �′ = 0. On the other
hand, in the range 0 < β� < 0.5, g(�′) acquires two minima for �′ �=
0, symmetric about �′ = 0.

Eq. (28), we arrive at the following equation for �′:

β�

2π
�′ coth �′ − 1

2π
ln

(
2π�

β�

)
+ 1

2π
ln

(
�′

sinh �′

)
= α′,

(33)

where

�′ = 2π�

β�

. (34)

Substituting α′
0 from Eq. (32) in Eq. (33) and rearranging we

get

1 − �′

tanh �′ + 1

β�

ln

(
sinh �′

�′

)
= 2π

β�

(α′
0 − α′). (35)

The above equation gives the solution for �′. We define the left
hand side (LHS) of Eq. (35) as g(�′), i.e.,

g(�′) = 1 − �′

tanh �′ + 1

β�

ln

(
sinh �′

�′

)
. (36)

We plot g(�′) in Fig. 4 for different values of βl . We notice
that for �′ > 0 and for β� < 0.5, the function f (�′) is mono-
tonically increasing, whereas for 1 > β� > 0.5, the function is
not monotonically increasing. These are also true for �′ < 0.
We will show that the MELC order �′ can appear through two
types of phase transitions depending on the parameter regime
0.5 > β� > 0 and 1 > β� > 0.5.

Second-order phase transition (0.5 > β� > 0). First we
discuss the case 0.5 > β� > 0. The right hand side (RHS) of
Eq. (35) can be rewritten as 2π

β�
α′

0(1 − α′/α′
0), where α′

0 is
also a function of β� and we consider α′

0 > 0. Hence Eq. (35)
becomes [using Eq. (36)]

g(�′) = 2πα′
0

β�

(1 − α′/α′
0). (37)

The plot in Fig. 5(a) represents a graphical representation of
both sides of Eq. (37) for β� = 0.2 and three different values
of α′/α′

0. We notice that for α′ < α′
0, the equation sustains
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FIG. 5. Graphical analysis illustrating the nature of phase transitions of the preemptive MELC order. In (a) and (d), the LHS and RHS of
the Eq. (37) is shown as solid and dashed lines, respectively. Intersections of the solid and dashed lines give the solutions of �′, where �′ is the
rescaled MELC order as given in Eq. (34). The stability of the solutions is analyzed by looking at g′(�′) along with g(�′) as shown in (b) and
(e). The allowed stable solutions of �′ are plotted in (c) and (f). The case of the second-order phase transition is shown in (a)–(c) with a choice
β� = 0.2. �′ continuously goes to zero at α′/α′

0 = 1 [the corresponding temperature is defined as T0 in the Eq. (40)]. With the parametrization
of α′ in Eq. (39), α′ = 0 corresponds to T = TPDW, the mean-field transition temperature of the PDW field. The appearance of �′ at T0 (> TPDW)
shows that �′ is a preemptive order. The case of the first-order phase transition is shown in (d)–(f) with a representative β� = 0.7. In contrast to
the second-order case, in this case, solutions of �′ also exist for α′/α′

0 > 1. Although there exists a parameter regime in which there are four �′

values, a closer investigation at g′(�′) in (e) shows that the solutions in the range −�′
c < �′ < �′

c are not stable, hence they are not allowed. This
creates a discontinuity in the allowed values of �′. For the parameters considered in this plot, the discontinuous jump in �′ occurs at a value
α′/α′

0 = 1.1 > 1 (the corresponding temperature is T ′
0 and is also greater than TPDW). In all the plots, we have taken πα′

0 = 1 for simplicity.

nonzero values for �′, while for α′ = α′
0, �′ becomes zero, and

for α′ > α′
0, Eq. (37) has no solution. So, the order �′ appears

first at α′ = α′
0 and then increases as α′/α′

0 gets smaller.
Whether the state with the values of �′, obtained from solution
of Eq. (37), is stable or not can be seen by analyzing the sec-
ond derivative of the effective free energy. The corresponding
condition is g′(�′)|�′=�0,−�0 = ∂g(�′ )

∂�′ |�′=�0,−�0 > 0, where �0 is a
solution of Eq. (37). To analyze this condition, we determine
g′(�′)|�′=�0 and g′(�′)|�′=−�0 , which are given by the following
equations:

g′(�′)|�′=�0 = 1

β�

[
1

tanh �0
− 1

�0

]
−

[
1

tanh �0
− �0

sinh2 �0

]
,

g′(�′)|�′=−�0 = 1

β�

[ −1

tanh �0
+ 1

�0

]
−

[ −1

tanh �0
+ �0

sinh2 �0

]
.

(38)

g′(�′) and g(�′) for β� = 0.2 are plotted in Fig. 5(b). We
observe that in this case, g′(�′) > 0 for all �′. Hence all the
solutions of �′ from Eq. (37) are allowed and correspond to
the minima of the effective free energy.

The allowed values of �′ are plotted as a function of
α′/α′

0 for β� = 0.2 in Fig. 5(c). We notice that value
of �′ continuously decreases to zero as α′/α′

0 approaches

1. This indicates a second-order phase transition in the
MELC order �′.

First-order phase transition (1 > β� > 0.5). Here we dis-
cuss the case in which 1 > β� > 0.5. Again, we vary α′/α′

0
to find the solution of Eq. (37). We plot the LHS and RHS of
Eq. (37) for β� = 0.7 in Fig. 5(d). We observe that in this case,
as α′/α′

0 is increased from 0 to 1, the value of �′ is nonzero,
and it decreases as in the case of β� < 0.5. But Eq. (37) also
has a solution for α′/α′

0 > 1.0, which is in striking contrast
to the β� < 0.5 case. We also notice that for α′/α′

0 > 1.0,
Eq. (37) has two solutions. To analyze whether both solutions
are stable, we plot g′(�′) and g(�′) in Fig. 5(e) for the case
β� = 0.7. We observe that for �′ > �′

c, as indicated by the
red dotted line, g′(�′) > 0, whereas for �′ < �′

c, g′(�′) < 0.
This implies that all the values of �′ > �′

c are stable and
therefore correspond to minima of the free energy. Hence, for
the case 1 > β� > 0.5, the allowed values of �′ remain finite
from α′/α′

0 = 0 until a certain value of α′/α′
0(> 1), and then

suddenly they jump to zero as beyond that particular α′/α′
0

there exists no solution to Eq. (37).
In Fig. 5(f), we plot the allowed values of �′ as a function

of α′/α′
0. We notice the discontinuous jump in �′ at a certain

value of α′/α′
0(>1). This discontinuous change in �′ suggests

a first-order phase transition.
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Temperature dependence of �′: Preemptive MELC order.
To study the temperature dependence of �′, we parametrize α′
as

α′ = M ′(T − TPDW), (39)

where M ′ is a positive constant. The parametrization of α′ is
chosen in such a way that there is a mean-field phase transition
at temperature T = TPDW to a composite PDW order, i.e.,
when α′ = 0. Therefore, α′ corresponding to some arbitrary
temperature T0 can be written as

α′|T =T0 ≡ α′
0 = M ′(T0 − TPDW). (40)

This leads to

T0 = TPDW + α′
0

M ′ . (41)

We note that α′ > α′
0 corresponds to temperature T > T0

and α′ < α′
0 to temperature T < T0. Since α′

0 > 0, we observe
that T0 is always larger than TPDW, which is the condensation
temperature for the PDW fields. The MELC order appears
through a continuous second-order phase transition for 0.5 >

β� > 0, at temperature T0, which is higher than TPDW. This
indicates that the order �′ preempts the PDW order, hence the
MELC order appears as a preemptive order in our analysis.
As noted in Eq. (39), α′/α′

0 is directly proportional to the tem-
perature. Consequently, for the first-order phase transition for
1.0 > β� > 0.5, the MELC order appears at a temperature T ′

0 .
T ′

0 is even higher than the second-order transition temperature
T0 and certainly greater than TPDW [see Eq. (41)]. Thus, the
MELC order preempts TPDW even in this case of a first-order
phase transition. Within our theoretical framework, the PDW
order is a composite order of SC and BDW. Hence it becomes
long-range only when both the primary orders SC and BDW
become long-range. This suggests that the MELC order also
preempts the primary SC and BDW orders. It is important to
note that T -P symmetry breaking has been experimentally
observed at the pseudogap temperature T ∗ in the underdoped
cuprates. The temperature T0 can also be T ∗. However, to
establish whether the temperature T0 is equal to T ∗ is beyond
the scope of this work.

For the case of second-order transition, we extract the
temperature dependence of �′ by obtaining the solutions of �′
in Fig. 5(c) and using the temperature parametrization of α′ in
Eq. (39). In Fig. 6, we plot the temperature dependence of �′
for β� = 0.2. Close to the transition, an analytical temperature
dependence of �′ can be obtained. If we expand the LHS of
Eq. (37) for small values of �′, we find that

�′2

6β�

= 2πα′
0

β�

(1 − α′/α′
0). (42)

This gives

�′2 = 12π (α′
0 − α′) (43)

or using Eqs. (39) and (40),

�′ ∝ (T0 − T )1/2. (44)

Since we have only obtained the solutions for �′ within
a HS saddle-point analysis, the fluctuations in �′ are not

FIG. 6. A phase diagram of preemptive MELC order (�′) [de-
fined in Eq. (34)] with scaled temperature T/T0 for the case
of second-order phase transition. Values of �′ are obtained from
Fig. 5(c) and the temperature dependence is calculated using the
parametrization of α′ in Eq. (39). To plot this phase diagram, we
have taken T0 = 1 and TPDW/T0 = 0.5 and β� = 0.2. The plot shows
�′ continuously changes across TPDW where α′ changes its sign.
This indicates that the preemptive MELC order first emerges at
temperature T = T0 and can survive down to low temperatures. The
inset shows a fit of the values of �′ in the main panel close to T = T0

with a function A(1 − T/T0 )ν . The fitting parameter ν is found to
be ≈0.5, close to the mean-field critical exponent in the Ising-like
transition. A similar temperature dependence can be found directly
from a low-order expansion of �′ in Eq. (35), which yields Eq. (44).

captured in our formalism. Thus, the critical exponent ob-
tained here behaves similar to a mean-field Ising-like transi-
tion. Fluctuations of �′ can be considered within an alternate
method such as the renormalization-group approach. Such an
analysis to obtain a non-mean-field-like exponent is not a part
of this study.

In the inset of Fig. 6, we show the temperature dependence
of �′ close to the transition. Note that the points in this inset
are obtained from the main panel and thus satisfy Eq. (35).
As an independent check, we fit �′ for temperatures close to
T0 with a function A(1 − T/T0)ν , where A and ν are fitting
parameters. The value of ν obtained from the fit is consistent
with the analytic expression of the temperature dependence in
Eq. (44).

VI. DISCUSSIONS

A. Extension to tetragonal lattice systems

To construct the GL theory (see Secs. IV and V), we restrict
ourselves to lattice systems having orthorhombic symmetry
to simplify the analytic calculations. However, the GL frame-
work presented in this paper can be extended to a larger order
parameter manifold, relevant to lattice structure with higher
symmetries.

To demonstrate, we construct the order parameter mani-
fold and MELC order for tetragonal lattice systems with C4
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symmetry. For an orthorhombic system, the number of rel-
evant hot-spots are two (numbered as 1 and 5 in Fig. 2) as
described in Sec I. The order-parameter manifold is given in
Eq. (4). We need seven unknown GL parameters to write down
the corresponding free energy in Eq. (10) for this reduced
order-parameter manifold. For a tetragonal crystal system, due
to the presence of C4 symmetry, the relevant hot-spots are 1, 3,
5, and 7. The order-parameter manifold in this case becomes[

χ1
Qx

, χ3
Qy

, χ5
−Qx

, χ7
−Qy

,�
]
. (45)

The GL free energy in this case can be written following a
similar procedure to that in Sec. IV as

F = αd |�|2 + α
(∣∣χ1

Qx

∣∣2 + ∣∣χ3
Qy

∣∣2 + ∣∣χ5
−Qx

∣∣2 + ∣∣χ7
−Qy

∣∣2)
+β1

(∣∣χ1
Qx

∣∣4 + ∣∣χ3
Qy

∣∣4 + ∣∣χ5
−Qx

∣∣4 + ∣∣χ7
−Qy

∣∣4)
+βd |�|4 + β2

(∣∣χ1
Qx

∣∣2|�|2 + ∣∣χ5
−Qx

∣∣2|�|2 + ∣∣χ3
Qy

∣∣2|�|2

+ ∣∣χ7
−Qy

∣∣2|�|2) + β3
(∣∣χ1

Qx

∣∣2∣∣χ5
−Qx

∣∣2 + ∣∣χ3
Qy

∣∣2∣∣χ7
−Qy

∣∣2)
+β5

(∣∣χ1
Qx

∣∣2∣∣χ3
Qy

∣∣2 + ∣∣χ5
−Qx

∣∣2∣∣χ7
−Qy

∣∣2 + ∣∣χ3
Qy

∣∣2∣∣χ5
−Qx

∣∣2

+ ∣∣χ1
Qx

∣∣2∣∣χ7
−Qy

∣∣2)
. (46)

Here also, we notice that the free energy Eq. (46) remains
invariant under all point group operations of tetragonal sys-
tem, parity, time-reversal, translation, and gauge symmetry
transformations. While writing the free energy in Eq. (46), we
have not shown the terms that give rise to purely imaginary
BDW ground states for simplicity. An enhanced number of
BDW order parameters in the manifold [Eq. (45)] for the
tetragonal case gives an increased number of possible mean-
field solutions compared to the orthorhombic case. Further-
more, the number of unknown GL parameters is also increased
in Eq. (46). So, the analysis of even the various mean-field
solutions of Eq. (46) becomes analytically cumbersome.

B. Possible relevance to experiments

In this section, we present possible outcomes of our analy-
sis in connection to experimental observations in underdoped
cuprates. Though our analysis of T -P symmetry breaking
is based on phenomenological motivations drawn from ex-
periments in underdoped cuprates, here we focus only on
qualitative relevance to experiments due to the simplistic
nature of the crystal structure considered in this paper.

We demonstrated in Sec. V that the preemptive MELC
order can appear through two types of phase transitions.
First, it can appear through a continuous second-order phase
transition at a temperature higher than TPDW. Importantly,
the phase transition temperatures can also be equal to T ∗.
The signatures of the appearance of IUC magnetism break-
ing T -P symmetry at T ∗ through a second-order transition
have been reported in some spin-polarized neutron diffraction
experiments [131–134]. Second, the MELC order can also
appear through a discontinuous first-order phase transition
at a temperature that is again higher than TPDW and even
higher than the second-order phase transition temperature.
To the best of our knowledge, there has been no experiment
indicating a first-order phase transition to a T -P broken state.

Spin-polarized neutron scattering experiments measure the
magnetic neutron intensity to describe the �Q = 0 magnetism
in the PG phase of cuprates. The observations [18,20,131]
allowed the authors to deduce a critical exponent correspond-
ing to the temperature dependence of the magnetic scattering
intensity, although varying in a wide range of values from 0.25
to 0.5. Within our framework, in the case of the second-order
phase transition in Sec. V B, the temperature dependence of
the preemptive MELC order �′ close to the phase transition
is obtained as �′ ∼ (T0 − T )1/2 [Eq. (44)]. This yields a
critical exponent of �′ to be 0.5. But it must be noted that a
quantitative comparison of the exponents would require more
accuracy in experimental results and also the consideration
of fluctuations in �′ using other theoretical tools like the
renormalization-group treatment.

For T < TPDW, the GL parameter α′ < 0 as seen from
Eq. (39). Remarkably even for α′ < 0, Eq. (37) has allowed
solutions for both the cases 0.5 > β� > 0 and 1 > β� > 0.5.
Therefore, the MELC order �′ has a nonzero value for α′ <

0 and continuously changes when α′ becomes greater than
zero. This shows that the preemptive MELC order persists
below the temperature TPDW. Figure 6 shows the existence
of MELC order at low temperatures for the second-order
phase transition. This is also true for the first-order phase
transition, although no signature of MELC order has been
reported at low temperatures in the superconducting state for
technical issues so far. This will motivate further experiments
investigating T -P symmetry breaking at low temperatures in
the superconducting state.

It is also interesting to discuss the effects of the impu-
rities on the MELC state. Strong substitutional impurities
like Zn destroys the superconducting order parameter locally.
The local MELC order parameter is given as � ∝ |�i|2 ∝
|�i j |2|χi j |2, where �i j and χi j are superconducting and BDW
order parameters, respectively. The MELC order parameter is
thus suppressed close to the impurities. As a result, the MELC
order parameter is reduced with an increase in Zn concentra-
tion. This might explain the reduction in the intensity of the
IUC signal in polarized neutron diffraction measurement with
Zn doping [135].

VII. CONCLUSION

Considering SC and BDW as primary orders, in this paper
we explored possibility of T -P symmetry breaking in the
PG state of underdoped cuprates. We found that the thermal
fluctuations of SC and BDW fields and consequently the
fluctuations in the composite PDW fields result in a T -P
symmetry-breaking preemptive MELC ground state.

As a first step, within the GL mean-field theory of compet-
ing primary BDW and SC orders, we explored the existence of
the MELC order in various parameter regimes and presented
the conditions for the stability of the mean-field MELC state.
We showed that the mean-field MELC order can emerge
only in a phase where SC and BDW coexist. This mean-
field MELC order is restricted to a situation in which the
BDW ground state itself breaks T -P . However, there is no
experimental evidence of such a BDW ground state.

We then considered the fluctuations of the SC and BDW
fields in the free energy. We notice that fluctuations in SC
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and BDW fields lead to fluctuations in composite PDW
fields. Treating the thermal fluctuations of the PDW fields
in a Hubbard-Stratonovich approach, we then showed that
a nontrivial MELC order preempts at a temperature above
TPDW, the mean-field PDW transition temperature. The anal-
ysis showed that the T -P symmetry is spontaneously broken
in the preemptive MELC state even though the PDW ground
states preserve the symmetry. This also suggests that the BDW
ground state does not need to break T -P symmetry. We de-
scribed that, depending on parameter regime, the preemptive
MELC order can emerge through both second- and first-order
phase transition.
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APPENDIX: DETAILS OF MEAN-FIELD GL THEORY

In this Appendix, we analytically calculate the mean-field
solutions of the free energy density Eq. (10) for competing
BDW and SC. The possible ground states for the primary or-
der parameters (χQ, χ−Q,�) manifold are shown in Table II.
For each ground state, we calculate the mean-field free energy,
which enables us to find the stability criteria of the ground
state sustaining a nonzero MELC order.

1. Ground state (a, 0, b)

The free energy density functional for this state can be
obtained from Eq. (10) and is given by

F = αd |�|2 + α|χQ|2 + β1

2
|χQ|4 + βd

2
|�|4 + β2|χQ|2|�|2.

(A1)
Minimization of the free energy with respect to χQ and �

leads to the following two mean-field equations:

α + β1|χQ|2 + β2|�|2 = 0 (A2)

and

αd + βd |�|2 + β2|χQ|2 = 0. (A3)

The above two equations give the mean-field values of χQ and
� to be

χ2
Q = β2αd − αβd

β1βd − β2
2

,

�2 = αβ2 − αdβ1

β1βd − β2
2

. (A4)

Substituting the above solution in the mean-field free en-
ergy, we get

F (a, 0, b) =
[
2ααdβ2 − α2

dβ1 − α2βd
]

2
[
β1βd − β2

2

] . (A5)

2. Ground state (a, a, b)

The free energy density functional in this case can be
written from Eq. (10) as

F = αd |�|2 + 2α|χQ|2 + β1|χQ|4 + βd

2
|�|4

+ 2β2|χQ|2|�|2 + β3|χQ|4 + 2β4|χQ|2|�|2. (A6)

Minimizing the free energy Eq. (A6) with respect to χQ and
� gives

α + χ2
Q(β1 + β3) + �2(β2 + β4) = 0 (A7)

and

αd + 2(β2 + β4)χ2
Q + βd�

2 = 0. (A8)

The above two equations give the mean-field solution as

χ2
Q = αd (β2 + β4) − αβd

βd (β1 + β3) − 2(β2 + β4)2
,

�2 = 2α(β2 + β4) − αd (β1 + β3)

βd (β1 + β3) − 2(β2 + β4)2
. (A9)

The mean-field free energy corresponding to this solution is

F (a, a, b) = 4ααd (β2 + β4) − α2
d (β1 + β3) − 2α2βd

2βd (β1 + β3) − 4(β2 + β4)2
.

(A10)

3. Ground state (a, 0, 0)

The free energy density Eq. (10) in this state can be
written as

F = α|χQ|2 + β1

2
|χQ|4. (A11)

Minimizing the above free energy with respect to χQ gives

χ2
Q = −α

β1
. (A12)

The mean-field free energy corresponding to this state is
given by

F (a, 0, 0) = −α2

2β1
. (A13)

4. Ground state (0, 0, b)

The free energy Eq. (10) in this state is given by

F = αd |�|2 + βd

2
|�|4. (A14)

Minimizing the above free energy with respect to � gives

�2 = −αd

βd
. (A15)
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The corresponding mean-field free energy for the ground
state is

F (0, 0, b) = −α2
d

2βd
. (A16)

5. Ground state (a, a, 0)

Finally we consider the case in which only BDW is
nonzero and no SC is present.

The free energy in Eq. (10) becomes

F = 2α|χQ|2 + β1|χQ|4 + β3|χQ|4. (A17)

Minimizing the free energy with respect to χQ gives

χ2
Q = −α

(β1 + β3)
. (A18)

The mean-field free energy for this ground state is

F (a, a, 0) = −α2

(β1 + β3)
. (A19)
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