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Pseudogap transition within the superconducting phase in the three-band Hubbard model

S. S. Dash and D. Sénéchal
Département de physique and Institut quantique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

(Received 8 October 2019; revised manuscript received 20 November 2019; published 18 December 2019)

The onset of the pseudogap in high-Tc superconducting cuprates (HTSC) is marked by the T ∗ line in the
doping-temperature phase diagram, which ends at a point p∗ at zero temperature within the superconducting
dome. Although various theoretical and experimental studies indicate a competition between the pseudogap and
superconductivity, there is no general consensus on the effects of the pseudogap within the superconducting
phase. We use cluster dynamical mean-field theory on a three-band Hubbard model for the HTSC to study the
superconducting phase at T = 0, obtained when doping the charge-transfer insulator, for several values of U . We
observe a first-order transition within the superconducting phase, which separates the underdoped and overdoped
solutions. The transition to the underdoped solution is marked by a discontinuous increase in the spectral gap,
and on further underdoping the spectral gap increases while the superconducting order parameter decreases.
We conclude that this is due to the onset of the pseudogap in the underdoped region, which contributes to the
increasing spectral gap; this is further consistent with the appearance of a pole in the normal component of the
self-energy, in the antinodal region, in the underdoped solution. This is accompanied by a change in the source
of the condensation energy from potential energy, in the overdoped region, to kinetic energy in the underdoped
region. Further, we also observe that the d-wave node vanishes smoothly within the superconducting phase at low
values of hole doping, within the underdoped region. We see this as a manifestation of Mott physics operating at
very low doping. Various aspects of the results and their implications are discussed.

DOI: 10.1103/PhysRevB.100.214509

I. INTRODUCTION

One of the most striking effects of strong correlations in
hole-doped high-Tc superconducting cuprates (HTSC) is the
pseudogap (PG). It manifests itself as a loss of density of
states along the antinodal directions at temperatures less than
T ∗ [1]. It has been considered a precursor of superconductiv-
ity, which would emerge on lowering the temperature further,
below Tc [1–3]. However, such a picture has fallen out of favor
since it has been observed that the T ∗ line ends within the
superconducting dome at a doping p∗ [4,5]. This means that
the pseudogap and superconductivity have distinct origins.

Therefore, an important question to consider is whether
the pseudogap coexists with d-wave superconductivity. Var-
ious studies have found evidence for the pseudogap within
the superconducting (SC) phase [6–8]. Although the doping
dependence is not very well understood, one view is that the
magnitude of the gap does not vary much with doping, in the
pseudogap phase below Tc [6,7,9]. On the other hand, Tanaka
et al. [10] report that the antinodal gap, attributed to the
pseudogap, increases with underdoping while the near-nodal
gap, seen as a proxy to the SC gap, decreases. Kondo et al. [11]
observe a similar competition between superconductivity and
the pseudogap. Additionally, there is evidence of a nodeless
SC gap at very low values of hole doping [7,12]; whether it
is related to the pseudogap is not clear. On the theoretical
side, there have been studies indicating strong signatures of
a quantum critical point within the SC state associated with
strong momentum-space differentiation [13,14]. In particular,
Civelli et al. [15] suggest two gap energy scales within the SC
phase. These studies point to an inherent competition between
the pseudogap and superconducting phases.

The relevant physics of HTSC lies mostly in the copper
oxide planes. It has long been thought that the one-band
Hubbard model should capture the basic physics of cuprates
(d-wave superconductivity and the pseudogap), but it is only
since the advent of sophisticated numerical methods that this
could be confirmed [16–19]. A review on the origin of the
pairing interaction in the Hubbard model is given in Ref. [20].
Cluster extensions of DMFT have been particularly successful
in capturing the strong correlation physics in cuprates [16,17].
These methods take into account the short-range correlations,
which are crucial for d-wave superconductivity [21]. How-
ever, the one-band model fails to capture the dynamics of
holes in cuprates, which mostly reside on the oxygen orbitals
[22]. A more accurate model is a three-band Hubbard model
[23–25], which involves the copper 3dx2−y2 orbital and the two
oxygen 2p orbitals in each CuO2 unit cell. A recent work
by Fratino et al. [26] using the three-band Hubbard model
shows that holes are indeed located in the oxygen orbitals
upon doping.

In this work, we study the SC state appearing when doping
the charge-transfer insulator within the three-band Hubbard
model, using cluster dynamical mean-field theory (CDMFT)
with an exact diagonalization impurity solver at zero temper-
ature. We observe three SC regimes in our computations: (i)
at large hole doping, BCS-like superconductivity with a sym-
metric gap in the density of states (DOS); (ii) at moderate hole
doping, superconductivity coexists with the pseudogap, and
the DOS displays a large, asymmetric gap; this is separated
from the first regime by a first-order transition; (iii) at low
doping, superconductivity becomes fully gapped. Although
our observations seem to be in line with the zero-temperature
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scenario of the trisected SC dome with three distinct phases
proposed by Vishik et al. [7], we observe signatures of only
one discontinuous transition, corresponding to the onset of the
pseudogap, i.e., between (i) and (ii). We ignore the possibility
of magnetic phases, in particular antiferromagnetism, in order
to keep the computations simple.

The paper is organized as follows. In Sec. II, we present
the model and briefly describe the method used. In Sec. III, we
show our results and propose possible interpretations. Broader
implications of our results are discussed in Sec. IV.

II. MODEL AND METHOD

A. Three-band Hubbard model

We use a modified three-band Emery model [25] to de-
scribe the CuO2 planes, consisting of a Cu 3dx2−y2 orbital

and two O 2p orbitals within a unit cell. The Hamiltonian is
expressed as

H = H0 + Ud

∑
i

n(d )
i↑ n(d )

i↓ . (1)

H0 is the noninteracting Hamiltonian. Ud is the on-site
Coulomb repulsion on the Cu 3dx2−y2 orbitals. n(d )

iσ is the
number operator for electrons with spin-σ at the copper
site i. The Coulomb repulsion Up on the O 2p orbitals is
neglected.

The noninteracting Hamiltonian H0 is often expressed as a
hopping matrix in k space:

H0(k) =

⎛
⎜⎝

εd − μ tpd (1 − e−ikx ) tpd (1 − e−iky )

tpd (1 − eikx ) εp − μ + 2tpp′ cos kx tpp(1 − eikx )(1 − e−iky )

tpd (1 − eiky ) tpp(1 − e−ikx )(1 − eiky ) εp − μ + 2tpp′ cos ky

⎞
⎟⎠. (2)

εd and εp are the orbital energies of the 3d and 2p orbitals,
respectively. μ is the chemical potential. tpd is the absolute
value of the first neighbor hopping integral between 3d and
2p orbitals (brown bonds in Fig. 1), tpp is the absolute value
of the first neighbor hopping integral between two 2p orbitals
(green bonds in Fig. 1), and tpp′ is the absolute value of the
hopping integral between two 2p orbitals separated by a Cu
atom (orange bonds in Fig. 1). Note that the Cu orbitals are
not directly connected.

FIG. 1. Sketch of the CuO2 lattice. The signs on the hopping
terms in (2) are indicated and are the result of the combined phase of
the orbitals participating in bonding. The four-site cluster of copper
atoms used in CDMFT is indicated (red box).

We use two sets of parameters in this work. One is taken
from Fratino et al. [26] and provides a simple scenario for
obtaining a charge-transfer gap [27]:

tpp = 1, tpp′ = 1, tpd = 1.5, εd = 0, εp = 7. (3)

The second is more realistic, corresponds to Bi-2212, and is
obtained from ab initio calculations by Weber et al. [28]:

tpp = 1, tpp′ = 0.2, tpd = 2.1, εd = 0, εp = 2.5.

(4)

B. Cluster dynamical mean-field theory

In cluster dynamical mean-field theory, the infinite lattice is
tiled into identical clusters, and each cluster’s lattice environ-
ment is replaced by a set of uncorrelated orbitals (the “bath”).
This cluster-bath system defines an Anderson-impurity model,
which must be solved for the Green function Gc(ω) using an
impurity solver. In this work, we use an exact diagonalization
solver at T = 0 and therefore are limited to a small number of
bath orbitals. The cluster self-energy �(ω) is then extracted
using Dyson’s equation

Gc(ω)−1 = ω − tc − �(ω) − �(ω), (5)

where tc is the hopping matrix on the cluster and �(ω) the
hybridization function, which depends on the bath parame-
ters, i.e., the energies of the uncorrelated orbitals and their
hybridization with the cluster. Note that here we have used
the symbol � for the hybridization function, instead of �

which is generally used in the context of DMFT. The cluster
self-energy is then used as an approximation to be the full
lattice self-energy, so that the lattice Green function G(k̃, ω)
is expressed as

G(k̃, ω)−1 = ω − t(k̃) − �(ω), (6)

where k̃, the reduced wave vector, belongs to the Brillouin
zone of the superlattice and t(k̃) is the one-body matrix of the
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model, expressed in a mixed basis of cluster sites and reduced
wave vector k̃. The bath parameters are chosen in such a way
as to minimize the difference between Gc(ω) and the Fourier
transform of G(k̃, ω), i.e., its local version. Details can be
found in Refs. [17,29–31].

In this work, the impurity cluster (red box in Fig. 1)
contains 4 Cu atoms which are connected to the bath. As far
as the CDMFT procedure is concerned, only the copper part
of the lattice Green function GCu(k̃, ω) is taken into account:

GCu(k̃, ω)−1 = ω − tCu(k̃) − �O(k̃, ω) − �(ω), (7)

which contains a fixed hybridization function �O(k̃, ω) com-
ing from the oxygen orbitals. Since the oxygen orbitals are un-
correlated in our model, their effect can be exactly represented
by the hybridization function �O(k̃, ω) [26]. The presence of
�O(k̃, ω) in the lattice Green function ensures that the effect
of the oxygen orbitals is included in the self-energy through
the CDMFT self-consistency procedure.

In this work, the cluster-bath system contains four copper
sites and eight bath orbitals. In order to probe supercon-
ductivity, we include anomalous hybridizations between bath
and cluster, along with regular hybridizations. The Nambu
formalism is used in order to incorporate both the normal and
anomalous components of the Green function into a single
object. The bath parametrization is based on the irreducible
representations of the point group C2v [32,33]. In this bath
parametrization, the bath Hamiltonian is diagonal and each
bath orbital is connected to all cluster sites. Details of the
bath parametrization using the point group C2v can be found
in Foley et al. [32].

The average value of an one-body operator Ô =∑
α,β Oαβd†

αdβ , where diσ annihilates an electron of spin σ

on Copper site i, is obtained from the lattice Green function
(7) as

〈Ô〉 =
∮

dω

2π

∫
d2k̃

(2π )2
tr[O(k̃)GCu(k̃, ω)], (8)

where k̃ is a reciprocal lattice vector of the superlattice.

III. RESULTS

At a filling of five electrons per unit cell, the system is a
charge-transfer insulator (CTI). This is different from a Mott
insulator in the sense that the insulating gap is not between
the two Hubbard bands but between the oxygen band and the
upper Hubbard band. On doping with holes, these primarily
go into the O 2p orbitals, as observed in experiments [22].
This is consistent with our observations and is evident from
the cartoon in Fig. 2. Within our model, this is because the
orbital energy of the O 2p orbitals is higher than that of the Cu
3dx2−y2 orbitals, making it expensive for electrons to reside in
the oxygen orbitals.

Doping the CTI makes it susceptible to d-wave supercon-
ductivity [34]. Figure 3 shows the d-wave order parameter
computed from the lattice Green function obtained from the
converged CDMFT solutions, as a function of hole doping,
for several values of Ud , all beyond the critical value U c

d ,
that is, beyond the metal-insulator transition point. The order
parameter is defined as ψ = 〈	̂〉/Ns, where Ns is the number

FIG. 2. Cartoon of the density of states (DOS) of the three-band
Hubbard model. Ud splits the Copper band (red) into two subbands;
the system is insulating at a filling of five electrons per unit cell when
Ud is large enough to push the upper subband beyond the oxygen
band. Because electrons migrate from the Cu 3d orbitals to the O 2p
as Ud is increased, the insulator formed is called a charge-transfer
insulator (CTI) and the associated gap is called the charge-transfer
gap.

FIG. 3. d-wave order parameter vs doping at different values of
Ud , higher than the critical value for the metal-insulator transition
at a filling of five electrons in the unit cell, for (a) parameters (3)
and (b) parameters (4). The critical value of Ud is around 11.7 for
parameters (3) and around 9.2 for parameters (4).
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of sites in the lattice and

	̂ =
∑
〈i j〉x

(di,↑d j,↓ − di,↓d j,↑)

−
∑
〈i j〉y

(di,↑d j,↓ − di,↓d j,↑) + H.c., (9)

where 〈i j〉x indicates a sum over nearest-neighbor copper sites
in the x direction, and likewise for the y direction. In practice,
it is computed from the anomalous part of the Green function
(the Gor’kov function).

For all values of Ud , except Ud = 18 with parameters (3),
the order parameter reveals the existence of two solutions,
which we label “underdoped” and “overdoped.” In particular,
a hysteresis in the value of the order parameter is observed for
Ud = 12 and parameters (3) [Fig. 3(a)], as well as for Ud = 10
and parameters (4) [Fig. 3(b)]. This indicates a first-order
transition between the two solutions. For higher values of
Ud [Ud > 12 for parameters (3) and Ud > 10 for parameters
(4)], there is a range of chemical potential μ between the
overdoped and underdoped solutions in which the CDMFT
procedure does not converge, which indicates a fundamentally
unstable region that cannot be probed with our discrete bath
framework. We assume this to be fundamentally similar to the
first-order transitions seen at lower values of Ud , since both
situations share the same physics across the discontinuity as
we discuss later. The on-site Coulomb interaction Ud tends
to suppress the order parameter. Furthermore, the underdoped
solution with parameters (3) has disappeared at Ud = 18
[Fig. 3(a)].

The slightly negative hole doping seen in Fig. 3 is due
to our use of the lattice average of electron density, as per
Eq. (8), instead of the average computed from the impurity
model ground state. The latter cannot be used since the oxygen
orbitals are not contained in the impurity model.

Let us note that our system is in no way biased towards
d-wave superconductivity except for the fact that the bath
parametrization is based on the irreducible representations of
the point group C2v , which is compatible with the d-wave
symmetry. In principle, we could also find extended s-wave
superconductivity, which is also compatible with the C2v point
group, but the corresponding order parameter vanishes in our
solutions.

The onset of superconductivity opens up a d-wave gap
in the spectrum [35,36], which results in a partial gapping
out of the DOS at low energy. We can get some insight into
the nature of the underdoped and overdoped solutions by
looking at the DOS close to the Fermi energy (Fig. 4). The
superconducting (SC) gap, both in the underdoped and over-
doped CDMFT solutions, is compared to the SC gap within
a mean-field model with Hamiltonian HMF = H0 + 		̂. The
d-wave mean-field 	 and the chemical potential in H0 are
adjusted so that the order parameter and the electron density
match the corresponding CDMFT solution.

The mean-field DOS obtained from HMF (red curves in
Fig. 4) contains the pure d-wave gap, in contrast with the
SC gap arising from strong correlation effects in our CDMFT
solutions (blue curves). In the overdoped solution [Fig. 4(a)],
the SC gap is qualitatively similar in shape to that of the
pure d-wave mean-field SC gap. However, in the underdoped

FIG. 4. DOS of the CDMFT solution for parameters (3) at Ud =
12 (in blue) compared with the mean-field DOS (in red), for both
(a) overdoped and (b) underdoped solutions. The parameters of the
mean-field Hamiltonian are adjusted to yield the same order parame-
ter and density as those of the corresponding CDMFT solution. Note
that the background of the gap in the CDMFT solutions is entirely
different than that in the mean-field solutions, indicating a nontrivial
redistribution of quasiparticle weight compared to the uncorrelated
dispersion.

solution [Fig. 4(b)], the gap is strikingly different from the
corresponding mean-field gap as well as from the gap in the
overdoped solution: it is asymmetric and noticeably wider.
This reveals the nontrivial effects of strong correlations in the
underdoped solution. Hence there is a fundamental difference
in the nature of the underdoped and overdoped solutions.

In order to understand the origin of the large gap in the
underdoped solution and its relation with superconductivity,
we show a plot of the magnitude of the gap in the DOS, along
with the SC order parameter, as a function of hole doping
(Fig. 5). In the overdoped solution, the spectral gap and the
SC order parameter both increase towards zero doping. This
indicates that the primary source of the gap in this solution
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FIG. 5. Momentum-integrated spectral gap (red curve) and d-
wave order parameter (blue curve) within the SC state, as a function
of hole doping, for parameters (3) and Ud = 12. The gap in the DOS
N (ω) is calculated as the distance between the two points above and
below the Fermi level where d2N (ω)/dω2 = 0.
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is d-wave superconductivity, although correlations make it
wider than the mean-field gap [Fig. 4(a)]. In contrast, the
gap in the underdoped solution increases while the order pa-
rameter decreases [17]. Hence it is evident that the dominant
source of the gap in the underdoped solution is not d-wave
superconductivity but something else.

Let us place our observations in the context of the phe-
nomenology of cuprates. The onset of the pseudogap in hole-
doped cuprates is marked by the T ∗ line [37]. It was long
thought that the SC gap might emerge from the normal state
pseudogap [38]. However, it has been shown that, in the nor-
mal state, the T ∗ line ends within the SC dome at a point called
p∗ [4,5,39], indicating that superconductivity and the pseudo-
gap are not directly related. Within this context, the first-order
transition between the overdoped and underdoped solutions
could be understood in terms of a pseudogap transition. This
could explain the increase of the gap magnitude even when
the order parameter is decreasing in the underdoped solution
(Fig. 5), and also the large asymmetric gap [Fig. 4(b)]. Within
the normal state, the onset of the pseudogap leads to the
destruction of the Fermi surface into Fermi arcs, essentially
partially gapping the Fermi surface [1] starting from the antin-
odal region in the Brillouin zone. Within a SC state, where
we already have a d-wave gap [37,40], it is difficult to find a
signature of the onset of the pseudogap in A(k, 0). Hence, as
discussed earlier, we look at the momentum-integrated gap to
find the signature of the pseudogap.

The pseudogap is a normal state property, and we indeed
see its signatures in the normal state CDMFT solutions as
well, namely the appearance of Fermi arcs, for Ud = 12
and parameters (3) (not shown). The normal state CDMFT
solutions, obtained with ED as the impurity solver, have a
limitation that there is a first-order transition corresponding
to a particle number change in the impurity model. Therefore,
although we see a first-order transition corresponding to the
onset of the pseudogap in the normal state, we cannot defi-
nitely connect it to the first-order transition in the SC state,
since the transition in our normal state is also accompanied by
a particle number change in the impurity model.

Hence we instead look at the normal component of the
cluster self-energy at the antinode (Fig. 6) to look for a signa-
ture of the pseudogap. The first order transition seen in Fig. 3
occurs between the red and green curves in Fig. 6 (they have
the same doping value because of a hysteresis between the
overdoped and underdoped solutions). The green curve, which
belongs to the underdoped solution, displays a peak (marked
by the green dotted line), absent from the overdoped solution
(red and maroon curves). This peak grows with underdoping
and leads to the insulating gap at zero doping (light blue
curve). The pseudogap is generated by such a pole close to
the Fermi level as discussed in Refs. [41–43]. This is also
consistent with the fact that the pseudogap originates from
Mott physics [44,45], and hence strengthens our interpretation
of the underdoped solution as the pseudogap state.

It is known that the nature of superconductivity changes
from being driven by potential energy in the weakly inter-
acting limit to being driven by kinetic energy in the strong
interaction limit. Previous studies have reported this crossover
as a function of interaction across the Mott transition [46],
as well as of hole doping [47] across the finite-doping Mott

FIG. 6. Imaginary part of the normal component of the cluster
self-energy is shown at the antinodal momentum [k = (π, 0)] as a
function of frequency ω, for several values of doping. Parameters (3)
are used and Ud = 12. The underdoped curves (marked as UD) show
a peak corresponding to the pole in the self-energy close to the Fermi
level (marked by dotted lines), which is absent from the overdoped
curves (marked as OD).

transition [48]. Figure 7 shows the potential and kinetic energy
gains in our CDMFT SC solutions (relative to the normal
state CDMFT solutions) as a function of doping. It shows that

FIG. 7. Differences in kinetic and potential energies between the
superconducting state and the normal state as a function of doping
for parameters (3) and Ud = 12. Superconductivity in underdoped
and overdoped solutions is driven by kinetic energy and potential
energy, respectively. The normal state CDMFT solution is obtained
with conserved particle number and spin, as opposed to the supercon-
ducting state which is obtained with conserved spin only. The normal
state sees a transition corresponding to a particle number change
accompanied by a jump in hole doping; hence we do not have the
normal state solutions for a range of hole doping. We use a linear
interpolation of the energy differences in that region, shown here by
dotted lines.
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FIG. 8. Spectral function A(k, ω) along the path (0, 0) →
(π, 0) → (π, π ) → (0, 0) in the Brillouin zone at Ud = 10, for the
SC state with parameters (4) (a) with node and (b) without node.
(c) Gap at the node as a function of hole doping. The spectral function
is obtained from the periodized Green function [49]. The nodal gap is
measured from the Fermi level to the point below it where the slope
of A(k, ω) first vanishes, i.e., at a peak.

superconductivity is stabilized mostly by potential energy in
the overdoped region, as in BCS, and by kinetic energy in the
underdoped region. This indicates the effect of strong correla-
tion physics in the underdoped solution and is consistent with
the interpretation of the underdoped solution as the pseudogap
state [44,48].

Additionally, we observe a second, small hysteresis in the
underdoped solutions for Ud = 12 and parameters (3) as well
as for Ud = 10, 12 and parameters (4) (Fig. 3). We do not
see any qualitative physical consequences of this, except for
a small readjustment of the average values; we assume this to
be just an effect of the discrete bath and hence consider it to
be unphysical. The effect of this small hysteresis can also be
seen in the condensation energy (Fig. 7) at 2% doping, but it
does not change the physics of the solutions, i.e., the source
of the condensation energy. This reinforces the fact that such
an effect can be considered as an unphysical artifact of the
method.

Another interesting feature of our results is the gradual
disappearance of the nodes in the zero-frequency spectral
function A(k, 0) along the diagonal direction. These nodes, a
hallmark of d-wave superconductivity, disappear at a doping
lower than the pseudogap transition (Fig. 8), while the SC
order parameter is still finite, leading to an unusual scenario
of nodeless d-wave superconductivity. In this regime, the
low-energy DOS develops a full gap (not shown), which we
understand as an effect of strong correlations gapping the
quasiparticles within the SC state. It occurs at a doping higher
than the unphysical hysteresis in Fig. 3; hence we think it is

not related to that. Such a nodeless superconducting regime
has also been observed with ARPES [7], where it is identified
as a distinct phase. However, we do not observe any signs of a
sharp transition leading to this nodeless superconductivity: no
new long-range order appears across this transition. Rather, it
appears as a continuous change.

IV. DISCUSSION AND CONCLUSION

Theoretical studies using the one-band Hubbard model
have observed a crossover between the overdoped and under-
doped solutions identified with different doping dependencies
of the nodal and antinodal gaps [14,15]. In our calculations
with the three-band Hubbard model, we observe a first-order
transition clearly marking the transition from the overdoped
solution, in which the d-wave order parameter increases with
the gap in the DOS, to the underdoped solution in which the
d-wave order parameter decreases as the DOS gap increases.
The onset of such a large, increasing gap, after the transition,
on the underdoped side further indicates that this corresponds
to the pseudogap (PG) transition. This is further accompanied
by the appearance of a pole in the normal self-energy at the
antinodal region, which is known to generate the pseudogap
[41,42]. Thus the three-band model captures a richer correla-
tion physics than the one-band model.

The experimental doping value at which the PG ends at
zero temperature, p∗ ≈ 0.2, is much higher than the doping
at which we observe the PG transition. It is even off by
around 0.1 for parameters (4) which correspond to Bi-2212. In
experiments, the doping values are mostly determined using
the universal relation Tc/T max

c = 1 − 82.6(p − 0.16)2, which
is verified to hold for most of the cuprate families [50]. The
origin of the mismatch between the experimental p∗ and
the value we observe in our computations is not clear. For
example, the exact value of the band parameters can depend
on the particular downfolding method used from the ab initio
band structure. It may also be that the value of p∗ is affected
by the suppression of superconductivity in the experiments.

Also, the optimal doping observed in experiments is lower
than the p∗ point [7,51]. Optimal doping is defined in terms
of the maximum SC critical temperature Tc. At doping lower
than the PG transition, the SC order parameter decreases in
our CDMFT solutions. This is in an apparent contradiction
with experiments if we assume that Tc somehow indicates the
strength of the order parameter. However, there seems to be
no monotonic relation between Tc and the order parameter
[26,47].

The PG transition appears as a first-order transition in the
SC state at zero temperature. We observe the transition as a
jump in the value of the order parameter across a region of
hole doping (represented schematically by the gray regions in
Fig. 9). An important question is the fate of this transition at
finite temperature. Our first assumption is that the transition
would follow the T ∗ line since we associate it with the onset
of the PG. We can expect the transition to end at a critical
point (say Tp), above which it exists as a crossover. There are
three possible scenarios regarding where Tp lies: (a) below
Tc [Fig. 9(a)], (b) above Tc [Fig. 9(b)], or (c) exactly at Tc

[Fig. 9(c)]. In the finite-temperature CDMFT study of the
three-band model by Fratino et al. [26] with continuous-time
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FIG. 9. Three scenarios are possible for the finite temperature
behavior of the pseudogap (PG) transition depending upon the value
of the PG critical point Tp relative to the superconducting (SC)
critical temperature Tc: (a) Tp < Tc; (b) Tp > Tc; (c) Tp = Tc

quantum Monte Carlo (CTQMC) as the impurity solver, no
transition is seen within the SC phase. Since low temperatures
are difficult to reach in CTQMC, it might be that Tp lies below
the lowest temperature they could probe. It could also be that
their resolution in doping is too low to observe the transition,
even if Tp were higher. Moreover, they observe the finite-
doping Mott transition [48] in the normal state, whose high-
temperature precursor is the T ∗ line. It seems reasonable that
the first-order transition we observe is a manifestation of the
finite-doping Mott transition, within the SC phase.

One limitation of the present study is the small size of our
impurity model (four cluster sites and eight bath sites). The
spatial fluctuations in our calculations are restricted by the
four cluster sites. And typically two bath sites per correlated
site is considered [52] to adequately capture the dynamical
fluctuations; hence the size of the bath depends on the size

of the cluster. It is possible that increasing the size of the
impurity model, which is very difficult to do at the moment at
zero temperature, could decrease the range of the first-order
transition; it could eventually become second order, i.e., a
quantum critical point, in the thermodynamic limit. However,
a recent slave-boson calculation with the t-J model also shows
indication of a first-order pseudogap transition [53].

To summarize, we applied cluster dynamical mean-field
theory to the three-band Hubbard model for the cuprates
at zero temperature. We found two distinct superconducting
solutions, separated by a first-order transition as a function
of hole doping. We interpret the underdoped solution as a
manifestation of the pseudogap below Tc, as shown by an
associated jump in the spectral gap, along with the appearance
of a pole in the antinodal self-energy, and a change in the
nature of the condensation energy (potential vs kinetic). In
addition, within the underdoped solution, the d-wave nodes
smoothly disappear very close to the insulating state. These
results are compatible with the sharp changes in the spectral
gap observed as a function of doping in ARPES [7,10].
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