Reentrant pinning of a ³He overlayer in a ³He-⁴He mixture film

Ko Okamura,¹ Junko Taniguchi,¹ Mitsunori Hieda,² and Masaru Suzuki^{1,*}

¹Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan ²College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan

(Received 15 June 2018; revised manuscript received 22 November 2019; published 16 December 2019)

We performed quartz crystal microbalance experiments for a ³He-⁴He mixture film on an exfoliated singlecrystalline graphite using a 32-kHz quartz tuning fork. The decoupled ³He overlayer on the superfluid ⁴He layer shows a reentrant pinning at a certain temperature T_{3d} under a large oscillation amplitude. The pinning state below T_{3d} is metastable. After reducing the oscillation amplitude, the ³He overlayer relaxes to a stable pinning state via a depinning state. It is found that the reentrant pinning is triggered by a structure change of the underlying localized ⁴He layer on the oscillating substrate.

DOI: 10.1103/PhysRevB.100.214508

I. INTRODUCTION

Recently, quartz crystal microbalance (QCM) experiments of ³He-⁴He mixture films were conducted, and new phenomena were reported [1,2]. Finley *et al.* measured these films on a H₂ substrate and found an additional mass decoupling different from the superfluid transition [1]. On the other hand, Oda and Hieda revealed that a ³He overlayer undergoes depinning from an oscillating Au substrate above a certain amplitude [2]. They also pointed out that the superfluidity of the underlying ⁴He layer possibly affects this pinning-depinning transition.

The pinning-depinning transition is commonly observed in various systems, e.g., physisorbed films [3-5], chargedensity waves [6], vortex flow in a superconductor [7,8], and dislocations in a solid [9]. ³He-⁴He mixture films on a graphite substrate, however, have a distinctive feature. As shown in Fig. 1(a), it is known that these films show a threelayer structure at low temperature, i.e., the ³He overlayer, the underlying fluid, and the localized ⁴He layers [10,11]. Because of a strong coupling between these three subsystems, the pinning-depinning transition of the ³He overlayer can be used as a probe for the underlying layers on the oscillating substrate.

As for pure ⁴He films on a graphite substrate, 5-MHz QCM experiments revealed that the mass decoupling due to the depinning of the second atomic layer is observed until the middle of four-atom-thick films [12–14]. The ease of the depinning is caused by the incommensurability between the first and second atomic layers. This decoupling, however, vanishes when the superfluidity of the fluid layer grows to some extent. The similar mass decoupling and its vanishment are also observed for three-atom-thick films by a 32-kHz quartz tuning fork [15,16].

From comparison between these two QCM experiments, the acceleration of substrate plays an important role in the mass decoupling due to depinning [15]. In addition, its vanishment is explained by the cancellation of the mass

transport due to the counterflow of the superfluid overlayer [13].

In this paper, we report the mass decoupling of four-atomthick ⁴He films with a small amount of ³He on a graphite substrate by a 32-kHz quartz tuning fork and the reentrant pinning transition of the ³He overlayer. It was found that the ³He overlayer is depinned from the oscillating substrate below a certain temperature. As further decreasing the temperature, the reentrant *pinning* transition occurs to the ³He overlayer. This transition reveals the structure change of the localized ⁴He layer on the oscillating substrate.

II. EXPERIMENTS

The mass decoupling of a ³He-⁴He mixture film was measured via the QCM technique using a 32-kHz quartz tuning fork. The changes in the resonance frequency and Q value are related to the coupled mass and the energy dissipation of the film on the oscillating tuning fork. When the frictional force acting on the film is proportional to the sliding velocity v as $F \propto -v/\tau$, where τ is the slip time, the changes from no film are expressed as [17]

$$\frac{\Delta f}{f} \sim -\frac{2m}{M} \frac{1}{1 + (\omega\tau)^2},\tag{1}$$

$$\Delta\left(\frac{1}{Q}\right) \sim \frac{4m}{M} \frac{\omega\tau}{1 + (\omega\tau)^2}.$$
 (2)

Here *m* and *M* are the masses of the film and the arms of the quartz tuning fork, respectively, and ω is the angular resonance frequency. When the frictional force decreases, i.e., $\omega\tau$ increases, the film undergoes decoupling. At $\omega\tau = 1$, one-half of the adsorbed mass slides on the oscillating substrate.

In the present experiments, exfoliated single-crystalline graphite was used as the substrate. Single-crystalline graphite was obtained by dissolving a type of mineral called Franklin marble with hydrochloric acid. Exfoliation of graphite provides a large specific surface area. To exfoliate graphite via graphite oxide, pieces of the graphite were immersed in a mixture of concentrated sulfuric acid and nitric acid for 96 h. After neutralization and dehydration, the interlayer space was

^{*}suzuki@phys.uec.ac.jp

FIG. 1. (a) Schematic view of the three-layer structure of ${}^{3}\text{He}{}^{-4}\text{He}$ mixture films on a graphite substrate. The localized ${}^{4}\text{He}$ layer consists of two atomic layers. (b) STM image of an exfoliated single-crystalline graphite. The color scale on the right represents the height of the sample. (c) Relation between the oscillation direction of the tuning fork and the *a* axis of the graphite.

expanded via a quick heating, where a rapid decomposition rate of its functional groups creates a high-enough pressure to overcome the van der Waals interaction between graphene layers. For this purpose, the acid-treated graphite in a crucible was put in a 1050°C-preheated muffle furnace for 15 s under nitrogen atmosphere [18]. For cleaning, the graphite taken from the furnace was heat treated in a vacuum at 900°C for 4 h. A Laue photograph of the exfoliated graphite shows that the crystal orientation is still preserved in the *a-b* plane [19]. The typical grain size was ~1 μ m in diameter, as shown in Fig. 1(b), and the size of the atomically flat surface was found to be ~100 nm in diameter from AFM experiments [20].

To prepare a quartz tuning fork with graphite, a 200-nm-thick silver film was deposited on a sliced piece of the exfoliated graphite. The quartz tuning fork and silver-plated graphite were pressed and heated in hydrogen atmosphere at 300°C for 1 h. The graphite was bonded on the top of both arms of the quartz tuning fork via thermal diffusion of silver. The *a* axis was adjusted to be parallel to the oscillation direction of the tuning fork [Fig. 1(c)]. After bonding, any excess graphite outside the arms was carefully removed. The Q value of the quartz tuning fork was better than 2×10^4 at room temperature in a vacuum. It increased with cooling and reached 1.6×10^5 at 4.2 K. To precisely control the areal density of the film, the quartz tuning fork was mounted in the sample cell with baked Grafoil disks, whose surface area (43 m²) was predominantly larger than that of exfoliated graphite on the quartz tuning fork (0.75 cm²). In our previous experiments [19,21], we have confirmed the equality of ⁴He areal density between Grafoil disks and the exfoliated graphite.

The mass loading of ⁴He was obtained from the decrease in the frequency at the monolayer completion of the ⁴He film, at which the film sticks almost completely to the oscillating substrate, and was 0.021 Hz atoms⁻¹ nm².

The resonance frequency was measured using a transmission circuit. In the circuit, the quartz tuning fork was placed in series with a coaxial line connecting a 50- Ω cw signal generator and a lock-in amplifier. The frequency of the signal

0

PHYSICAL REVIEW B 100, 214508 (2019)

FIG. 2. (a) Decrease in the resonance frequency of pure ⁴He films as a function of the ⁴He areal density. The vertical axis is normalized by the mass loading of ⁴He at the first layer completion. The vertical dashed lines represent layer completions, and the dotted line indicates the mass loading of ⁴He. (b) Decrease in the resonance frequency from a pure ⁴He film of 33.0 atoms/nm² as a function of the ³He areal density. The oscillation amplitude is 0.01 μ m. The dotted line indicates the mass loading of ³He calculated from the areal density. The solid curve is a guide to the eye.

generator was then controlled to keep the in-phase signal at zero and was locked to the resonance frequency. The quadrature signal at this frequency was the resonance amplitude. The oscillation amplitude was calibrated with the applied alternative voltage using a photograph of the oscillating tuning fork [22].

III. RESULTS AND DISCUSSION

Figure 2(a) shows the decrease in the resonance frequency of pure ⁴He films as a function of the ⁴He areal density.

FIG. 3. Variation of (a) the resonance frequency and (b) $\Delta(1/Q)$ for a mixture film of ⁴He with 33.0 atoms/nm² and ³He with 1.7 atoms/nm². Inset: Variation in the resonance frequency for a small amplitude of 0.005 μ m.

The dotted line indicates the mass loading of ⁴He, and the vertical dashed lines represent the layer completions. It was found that a part of the ⁴He films is decoupled between the layer completions. We also observed the mass decoupling due to superfluidity above the middle of three-atom-thick films. The decoupled fraction of the superfluid was ~0.15, which is significantly larger than that of a Grafoil substrate by torsional oscillator experiments [23].

In the present experiments, we prepared a ⁴He film of 33.0 atoms/nm², which becomes superfluid at a T_c of 0.98 K. When a small amount of ³He is introduced onto the ⁴He film, the resonance frequency for a small amplitude of 0.01 μ m decreases from that of the pure ⁴He film, as shown in Fig. 2(b). The dotted line is the mass loading of ³He, which is calculated from the ³He areal density. It was found that the decrease deviates downwards from the mass loading of ³He for large ³He areal densities. This suggests that ³He atoms drag a part of the decoupled ⁴He and stick to the oscillating substrate together with the dragged 4 He [14,24]. This does not depend strongly on the temperature, i.e., ³He atoms stick to the oscillating substrate at this amplitude whether or not the fluid ⁴He overlayer is a superfluid. Conversely, ³He atoms undergo decoupling at a larger amplitude, which is discussed next.

Figure 3 shows the temperature sweep data of a mixture film composed of ⁴He with 33.0 atoms/nm² and ³He with 1.7 atoms/nm² for various amplitudes. T_c was observed at 0.85 K as shown in the inset, and the fluid overlayer is a superfluid in this temperature region. These sets of data were taken during cooling. The similar behavior to the oscillation amplitude was observed from the ³He overlayer with 0.4 atoms/nm², at least, up to 5.0 atoms/nm². For an amplitude of 0.23 μ m, no distinct structure is observed. When the amplitude is 0.33 μ m, the frequency increases gradually at a T_3 of 0.24 K, accompanied by an increase in $\Delta(1/Q)$. For an amplitude of 0.38 μ m, the mass decoupling below T_3 appears more clearly. The increases in $\Delta f/f$ and $\Delta(1/Q)$ below T_3 become 7×10^{-7} and 5×10^{-7} , respectively.

We can conclude that the increase in the frequency below T_3 is caused by the mass decoupling of the ³He overlayer. This conclusion is supported by an analysis of the slip time τ . τ of the ³He overlayer below T_3 can be estimated from the increase in $\Delta f/f$ and $\Delta(1/Q)$ using Eqs. (1) and (2). Supposing that the ³He overlayer is completely stuck above T_3 , we obtain $\omega \tau \sim 0.7$ at 0.1 K for an amplitude of 0.38 μ m, i.e., approximately one-third of the adsorbed mass slides at low temperature. Meanwhile, as shown in Fig. 2(b), the ³He overlayer with 1.7 atoms/nm² causes a decrease of 0.06 Hz at 0.1 K for an amplitude of 0.01 μ m. One-third of this decrease is in good agreement with the increase of 0.02 Hz in frequency below T_3 for an amplitude of 0.38 μ m. Furthermore, we observed a weak hysteresis of T_3 . On warming, T_3 is shifted to the high-temperature side by ~ 0.02 K, which also supports the mass decoupling.

The mass decoupling of the ³He overlayer is also supported by the comparison with experiments of Oda and Hieda [2]. We have already reported that the acceleration determines the mass decoupling [15]. At an amplitude of 0.33 μ m, the acceleration is calculated to be 1.4 × 10⁴ m/s². Oda and Hieda conducted 100 MHz AT-cut QCM experiments for mixture films and revealed that the ³He overlayer is depinned above an amplitude of 4.8×10^{-5} nm. The acceleration at this amplitude is 1.9×10^4 m/s². The two accelerations are similar, which strongly suggests that the decoupled substance is the same for both experiments.

Next we move to a larger amplitude. As seen in the figure, a new phenomenon is observed. The increase in frequency below T_3 drops abruptly at T_{3d} , accompanied by a rapid decrease in $\Delta(1/Q)$. For an amplitude of 0.44 μ m, the frequency increases at a T_3 of 0.25 K and drops suddenly at a T_{3d} of 0.17 K. This behavior can be understood as the pinning of the ³He overlayer when the amplitude exceeds a certain threshold. As the amplitude increases, T_{3d} shifts rapidly to the higher temperature side.

The amplitude at which ³He atoms are depinned is close to the amplitude at which the second atomic layer undergoes decoupling for three-atom-thick films [25]. This suggests that a structure change of the second atomic layer causes the pinning-depinning transition of the ³He overlayer, although the mass decoupling of the localized ⁴He layer is hardly observed for four-atom-thick films because of the cancellation mechanism due to the superfluid counterflow.

To examine the nature of the reentrant pinning state below T_{3d} , we measured the relaxation in the frequency and $\Delta(1/Q)$ after switching from a large to small amplitude. The procedure for the relaxation experiments [12] was as follows. The mixture film was cooled slowly down to 0.15 K for a large amplitude and was kept at this temperature for 2 h. Next, the temperature was changed rapidly after decreasing the amplitude. The film was then kept at the new temperature. Figure 4(a) shows the variation in the resonance frequency and $\Delta(1/Q)$ for the ³He overlayer with 0.9 atom/nm² after a reduction in amplitude from 0.69 to 0.05 μ m. For an amplitude of 0.69 μ m, mass decoupling occurs at a T_3 of 0.29 K while T_{3d} is 0.23 K. No mass decoupling is seen below an amplitude of 0.23 μ m.

FIG. 4. (a) Relaxation of the resonance frequency and $\Delta(1/Q)$ for the ³He overlayer with 0.9 atom/nm² after a reduction in amplitude from 0.69 μ m to 0.05 μ m. The solid lines are exponential curves that are fitted at the beginning. (b) $\omega\tau$ as a function of the waiting time. Inset: t_p versus 1/T. (c) Cartoon of the time evolution of the localized ⁴He layer.

At the beginning after the reduction in amplitude, the frequency decreases exponentially. Near the end of the exponential decrease, the frequency starts to increase accompanied by a large increase in $\Delta(1/Q)$. After additional increases, the frequency and $\Delta(1/Q)$ decrease exponentially once again. As the temperature is increased, the additional increase smears out around T_{3d} and disappears above 0.25 K. From the temperature sweep experiments for the ³He overlayer with 0.9 atom/nm², it was found that the increases in frequency and $\Delta(1/Q)$ below T_3 are 0.015 Hz and 2×10^{-7} ,

respectively. The additional increases in the relaxation experiments are very close to these amounts. From the observed temperature range and the magnitude, it is concluded that the ³He overlayer, which sticks at the beginning, starts to decouple after a while, and relaxes to the pinning state.

Figure 3(b) shows the slip time of the ³He overlayer calculated assuming that the ³He overlayer is completely stuck after a long time has elapsed. Here we used the differences in $\Delta f/f$ and $\Delta(1/Q)$ from the exponential curve at the beginning. The calculated value of $\omega \tau$ exceeds 0.3 [26]. This demonstrates that the ³He overlayer slides under some *specific* conditions with small amplitude. In the inset, we plot the waiting time when $\omega \tau$ has a maximum value, t_p versus 1/T. Above 0.23 K, t_p decreases rapidly with rising temperature and obeys Arrhenius's law with an activation energy E/k_B of 7 K. This energy is connected to the relaxation of the localized ⁴He layer. The value is close to the previous experiments with pure ⁴He films [12].

It is natural for ³He atoms floating on the underlying fluid layer to interact with the inhomogeneous potential of the localized ⁴He layer. In the previous experiments for pure ⁴He films, the mass decoupling of the localized ⁴He layer is understood as the motion of the edge dislocation between the first and second atomic layers [13]. This means that the stable structure of the localized ⁴He layer has some inhomogeneity and that the second atomic layer undergoes a structure change on the oscillating substrate.

At the beginning of the relaxation experiments, the frequency decreases exponentially. This demonstrates that the localized ⁴He layer is partly decoupled for an amplitude of 0.69 nm and remains a metastable structure after the reduction in amplitude, as observed for pure ⁴He films [12].

From these considerations, we propose a following scenario for the relaxation experiments. A cartoon of the time evolution for the localized ⁴He layer is shown in Fig. 4(c). At the beginning, the localized ⁴He layer remains a metastable structure and the spatial inhomogeneity is high. ³He atoms are pinned to this inhomogeneous potential. In the relaxation process from the metastable to the stable structures, a transient structure appears. In the transient structure the inhomogeneity is decreased, and ³He atoms undergo decoupling. When the localized ⁴He layer approaches the stable structure, the inhomogeneity is increased and ³He atoms are pinned once again.

The temperature sweep experiments are also explained by the scenario. In a small amplitude, ³He atoms are pinned to the inhomogeneous potential. As the amplitude increases, a structure change occurs in the localized ⁴He layer at T_3 , and ³He atoms are depinned. When the temperature is decreased further, the inhomogeneity is increased. Above a certain amplitude, the localized ⁴He layer becomes highly inhomogeneous, and ³He atoms are pinned once again at T_{3d} . The plausibility of this scenario is enhanced by observations of the mass decoupling of three-atom-thick films [25]. This decoupling occurs at a nearly equal amplitude to the pinning-depinning transition in the present experiments. In addition, the decoupled mass grows rapidly as the amplitude increases, i.e., the inhomogeneity is increased in a large amplitude, which explains the amplitude dependence of T_{3d} .

Here we comment on experiments for ³He-⁴He mixture films on a H₂ substrate by Finley *et al.* [1]. The additional mass decoupling may be explained by the above-mentioned scenario. The localized ⁴He layer (\sim 0.60 monolayers) slides easily on the incommensurate H₂ substrate. For pure ⁴He films, the mass decoupling is, however, hardly observed because of the cancellation mechanism due to the superfluid counterflow, while the depinning of the ³He overlayer occurs for ³He-⁴He mixture films. In their experiments, ³He atoms are almost completely decoupled, which results in no additional dissipation. On the other hand, Oda and Hieda observed the pinning-depinning transition of the ³He overlayer with a large hysteresis [2]. We also observed a weak hysteresis both

- P. T. Finley, P. S. Ebey, and R. B. Hallock, Phys. Rev. Lett. 98, 265301 (2007).
- [2] T. Oda and M. Hieda, Phys. Rev. Lett. 111, 106101 (2013).
- [3] J. Krim, Adv. Phys. 61, 155 (2012).
- [4] L. Bruschi, A. Carlin, and G. Mistura, Phys. Rev. Lett. 88, 046105 (2002); A. Carlin, L. Bruschi, M. Ferrari, and G. Mistura, Phys. Rev. B 68, 045420 (2003).
- [5] A. Dayo, W. Alnasrallah, and J. Krim, Phys. Rev. Lett. 80, 1690 (1998); M. Highland and J. Krim, *ibid.* 96, 226107 (2006).
- [6] G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).
- [7] G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
- [8] P. Le Doussal and T. Giamarchi, Phys. Rev. B 57, 11356 (1998).
- [9] H. Van Swygenhoven, P. M. Derlet, and A. G. Fröseth, Acta Mater. 54, 1975 (2006).
- [10] F. M. Ellis, R. B. Hallock, M. D. Miller, and R. A. Guyer, Phys. Rev. Lett. 46, 1461 (1981).
- [11] G. A. Csáthy and M. H. W. Chan, Phys. Rev. Lett. 87, 045301 (2001).
- [12] N. Hosomi, A. Tanabe, M. Suzuki, and M. Hieda, Phys. Rev. B 75, 064513 (2007).
- [13] N. Hosomi, J. Taniguchi, M. Suzuki, and T. Minoguchi, Phys. Rev. B 79, 172503 (2009).
- [14] N. Hosomi and M. Suzuki, Phys. Rev. B 77, 024501 (2008).
- [15] F. Nihei, K. Ideura, H. Kobayashi, J. Taniguchi, and M. Suzuki, J. Low Temp. Phys. 162, 559 (2011).
- [16] K. Noda, K. Okamura, J. Taniguchi, M. Suzuki, and M. Hieda, J. Low Temp. Phys. 171, 638 (2013).
- [17] J. Krim and A. Widom, Phys. Rev. B 38, 12184 (1988).
- [18] M. Cai, D. Thorpe, D. H. Adamson, and H. C. Schniepp, J. Mater. Chem. 22, 24992 (2012).
- [19] K. Noda, F. Nihei, H. Kobayashi, J. Taniguchi, and M. Suzuki, J. Phys.: Conf. Ser. 400, 012056 (2012).

for T_3 and for T_{3d} in the present experiments. The effect of superfluidity is the subject for a future study.

IV. SUMMARY

In summary, we performed QCM experiments for a ${}^{3}\text{He}{}^{4}\text{He}$ mixture film on a graphite substrate using a 32-kHz quartz tuning fork. The ${}^{3}\text{He}$ overlayer undergoes decoupling at T_{3} , and the decoupled one is pinned at T_{3d} on the oscillating substrate under a large amplitude. It was found that a structure change of the underlying localized ${}^{4}\text{He}$ layer triggers the pinning-depinning transition of the ${}^{3}\text{He}$ overlayer.

- [20] H. Kobayashi, J. Taniguchi, M. Suzuki, K. Miura, and I. Aarakawa, J. Phys. Soc. Jpn. 79, 014602 (2010).
- [21] We prepared a quartz tuning fork with Grafoil and mounted it in the same sample cell to compare the decrease in the frequency with exfoliated graphite. In both experiments, it was found that the resonance frequency drops at the ⁴He areal densities where the layer completions takes place on Grafoil disks in the sample cell.
- [22] We took a photograph of the oscillating arm through a microscope, measuring the applied alternative voltage. Because of oscillation, its contour was blurred, whose a half width corresponds to the amplitude. The obtained amplitude from photograph was in the range of μ m–10 μ m and was found to be proportional to the applied alternative voltage. In the present experiments, this calibration was extrapolated to a small amplitude. The estimated accuracy was several percentages. In addition, we checked the linearity between the amplitude and the applied alternative voltage by means of a laser Doppler vibrometer using a different quartz tuning fork.
- [23] P. A. Crowell and J. D. Reppy, Phys. Rev. B 53, 2701 (1996).
- [24] We found that pure ⁴He films are partly decoupled from the oscillating substrate, as shown in Fig. 2(a).
- [25] We found that the mass decoupling occurs above $\sim 0.4 \ \mu m$ for three-atom-thick films of pure ⁴He. The decoupled mass increases linearly with amplitude up to $\sim 1.5 \ \mu m$ and reaches one third of ⁴He monolayer for 24 atoms/nm².
- [26] The slip time ($\omega \tau \sim 0.37$) may be underestimated because we assume that the ³He overlayer is completely stuck for an amplitude of 0.05 μ m. From Eqs. (1) and (2), the mass of the ³He overlayer is calculated ~0.12 Hz. This value is larger than the decrease in frequency of ~0.03 Hz for the ³He overlayer with 0.9 atoms/nm² in Fig. 2. The discrepancy is settled by assuming that the ³He overlayer in the equilibrium of this amplitude is decoupled partially.