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Group-theoretical classification of superconducting states of strontium ruthenate
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The possible superconducting states of strontium ruthenate (Sr2RuO4) are organized into irreducible represen-
tations of the point group D4h, with a special emphasis on nodes occurring within the superconducting gap. Our
analysis covers the cases with and without spin-orbit coupling and takes into account the possibility of interorbital
pairing within a three-band, tight-binding description of Sr2RuO4. No dynamical treatment if performed: We are
confining ourselves to a group-theoretical analysis. We nevertheless adopt an intermediate-coupling point of view
by working in the orbital basis instead of the band basis. The case of uniaxial deformations, under which the point
group symmetry is reduced to D2h, is also covered. It turns out that nodal lines, in particular equatorial nodal lines,
occur in most representations. We also highlight some results specific to multiorbital superconductivity. Among
other things, we find that odd interorbital pairing allows us to combine singlet and triplet superconductivity
within the same irreducible representation, that pure interorbital superconductivity leads to nodal surfaces and
that the notion of nodes imposed by symmetry is not clearly defined.
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I. INTRODUCTION

The problem of identifying the symmetry of the supercon-
ducting order parameter in Sr2RuO4 remains unsolved after
more than 20 years [1–3]. Despite the impressive number
of experiments that were performed on high-quality samples,
there is no clear consensus on the material’s superconducting
state. Initial NMR Knight shift [4], neutron scattering [5], and
junction [6–8] experiments seemed to point towards triplet
superconductivity, although this piece of evidence is now put
to question by recent studies [9]. There is also evidence for
broken time reversal symmetry from muon spin resonance
[10] and polar Kerr effect [11] measurements. These findings
made plausible the early hypothesis of chiral triplet supercon-
ductivity [12], analogous to the A phase of 3He. However,
some experiments are hard to conciliate with this scenario.
First, specific heat and several transport probes showed the
presence of residual excitations at low temperature [13–16],
most likely related to gap nodes. Secondly, the presence of
an effect resembling Pauli limiting must be present in the
material to explain the value of Hc2 [17]. Lastly, no splitting
of the transition was observed when applying strain to the
material [18–20].

Although strontium ruthenate shares a number of common
characteristics with cuprates superconductors, among which
is its crystal structure [21], an important difference is its
multiorbital nature. Its Fermi surface is well characterized
and composed of three bands that have the character of Ru
t2g orbitals. It is reasonable to believe that this fact plays an
important, or at least a non-negligible, role in the supercon-
ductivity of this material. The identification of a dominant
band for superconductivity in Sr2RuO4 has not been unani-
mous [22–25]. Moreover, some studies suggest the possibility
of important interorbital pairing in the material [26,27]. This
is not too surprising when considering that strong correlations

arising in the material’s normal state are mainly due to Hund’s
coupling [28,29], which is interorbital in nature. Spin-orbit
coupling, which is also known to be significant in the material
[30–34], also has the effect to produce bands with mixed
orbital character.

In light of this situation, we propose to reexamine the
different possibilities for the order parameter of Sr2RuO4. A
classification of possible order parameters must be done in
terms of the irreducible representations of the point group
symmetry of the lattice: D4h, or D2h when uniaxial pressure
is applied. This has already been done in previous works
[12,35,36], but without fully considering the multiorbital na-
ture of the material. This means that the order parameter
must be considered not only as a space- and spin-dependent
function, but also as an orbital-dependent function and that the
irreducible representations are to be calculated accordingly.
Such a classification is important, not only in order to frame
all the proposals for superconducting order parameter in a
coherent picture, but also because it can provide new insights
about the superconducting state. Note that we do not cover the
possibility of odd-frequency pairing [27,37,38] in the present
work.

In this paper, we thus introduce a complete and rigorous
classification of possible superconducting states in strontium
ruthenate, akin to previous classifications that were made
for high-temperature and heavy-fermions superconductors
[39,40]. We also highlight some features of multiorbital su-
perconductivity that are different from what is seen in single-
orbital superconductors. In particular, these considerations
force us to rethink carefully the relation between the spin
character of the order parameter and its parity, the possibility
of combining singlet and triplet superconductivity, and the
relation between order parameter symmetry and gap nodes.
This classification also potentially applies to any t2g supercon-
ductor sharing the symmetry group of Sr2RuO4.
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This paper is organized as follows: In Sec. II we intro-
duce the tight-binding model used to describe Sr2RuO4 and
enumerate its symmetries. In Sec. III, the main section of this
paper, we explain how to classify the possible superconduct-
ing states into irreducible representations of the point group
D4h, with an emphasis on the existence or not of nodes in the
gap. Possible pairing functions are listed in Tables III, IV, and
V, and generic nodes are illustrated in Fig. 3, and in Fig. 6
in the case of uniaxial deformation. We offer some discussion
and conclude in Sec. IV. This work is based on the Master’s
thesis of one of the authors [41].

II. THE TIGHT-BINDING MODEL AND ITS SYMMETRIES

In this section we describe the Hamiltonian and its symme-
tries. We work in the orbital basis, not the band basis, even in
reciprocal space, because it is the most appropriate to discuss
symmetries at the microscopic level.

A. Hamiltonian

We will assume that Sr2RuO4 may be appropriately de-
scribed by the following tight-binding, three-band Hamilto-
nian [42–44]:

H0 = −t1
∑

〈r,r′〉,σ
c†

r,3,σ cr′,3,σ + t2
∑

〈r,r′〉2,σ

c†
r,3,σ cr′,3,σ − t3

⎡
⎣ ∑

〈r,r′〉x,σ

c†
r,1,σ cr′,1,σ +

∑
〈r,r′〉y,σ

c†
r,2,σ cr′,2,σ

⎤
⎦ − λ

∑
〈r,r′〉x+y,σ

(c†
r,1,σ cr′,2,σ + H.c.)

+ λ
∑

〈r,r′〉x−y,σ

(c†
r,1,σ cr′,2,σ + H.c.) + i

κ

2

∑
r

∑
l,m,n

εlmnc†
r,l,σ cr,m,σ ′τ n

σσ ′ + e
∑

r,σ,m=1,2

c†
r,m,σ cr,m,σ − μ

∑
r,m,σ

c†
r,m,σ cr,m,σ (1)

where cr,m,σ is the annihilation operator for orbital m = 1, 2, 3 of spin projection σ at site r; 〈r, r′〉 stands for nearest-neighbor
pairs and 〈r, r′〉2 for second (diagonal) neighbors; 〈r, r′〉x stands for nearest-neighbor pairs in the x direction, and likewise for
the y, x + y, and x − y directions. The κ term is a spin-orbit coupling, where τ 1,2,3 are the Pauli matrices and εlmn the Levi-Civita
antisymmetric symbol. Note that the chosen labeling of the three orbitals (dyz → 1, dxz → 2, dxy → 3) is important in this
expression. Figure 1 illustrates the orbitals and hopping terms involved (t1,2,3 and λ). On that figure, the three orbitals have been
separated vertically for clarity. The first two orbitals (1 and 2) are separated by an energy e from the third.

The interaction terms include local Coulomb interactions U (intraorbital) and U ′ (interorbital), as well as Hund couplings
J and J ′:

H1=
∑

r

⎧⎨
⎩U

∑
l

nr,l,↑nr,l,↓+
∑
m �=m′

⎡
⎣U ′ ∑

σ,σ ′
nr,m,σ nr,m′,σ ′+ J

2

∑
σ,σ ′

c†
r,m,σ c†

r,m′,σ ′cr,m,σ ′cr,m′,σ + J ′

2

∑
σ �=σ ′

c†
r,m,σ c†

r,m,σ ′cr,m′,σ ′cr,m′,σ

⎤
⎦

⎫⎬
⎭
(2)

Ultimately we are interested in studying the full interacting Hamiltonian in the framework of an appropriate strong- or
intermediate-coupling approach. This we reserve for future work, and for the moment we are just pointing out that the interaction
H1 has the same point-group symmetries as the noninteracting part (see next subsection). However, the strongly correlated nature
of Sr2RuO4, evident from the important effective mass renormalizations [1,45], justifies using the orbital basis in our symmetry
analysis.

The noninteracting Hamiltonian (1) can be expressed in momentum space:

H0 =
∑

m,m′,σ,σ ′,k

c†
k,m,σH0(k)mσ,m′σ ′ck,m′,σ ′ (3)

with the 6 × 6 matrix

H0(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

e − μ − 2t3 cos ky
i
2κ + λk 0 0 0 − 1

2κ

− i
2κ + λk e − μ − 2t3 cos kx 0 0 0 i

2κ

0 0 t1,k + t2,k − μ 1
2κ − i

2κ 0
0 0 1

2κ e − μ − 2t3 cos ky − i
2κ + λk 0

0 0 i
2κ i

2κ + λk 0 0
− 1

2κ − i
2κ 0 0 0 t1,k + t2,k − μ

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

where we have introduced

t1,k = −2t1(cos kx + cos ky) (5)

t2,k = 4t2 cos kx cos ky (6)

λk = −4λ sin kx sin ky. (7)

The degrees of freedom are placed in the following order:

(1 ↑, 2 ↑, 3 ↑, 1 ↓, 2 ↓, 3 ↓). (8)

Upon diagonalizing the matrix H0(k) when κ = 0, one
recovers three bands: The dxy orbital forms a band of its own
labeled γ ; the other two orbitals hybridize because of the λ

term and form two bands labeled α and β. The associated
Fermi surfaces are illustrated in red in Fig. 2. However,
symmetries are more easily described in terms of the original
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FIG. 1. Schematic view of the SRO unit cell. The three orbitals
have been vertically separated for clarity (the model considered
is purely two dimensional). The labels 1,2,3 correspond, respec-
tively, to the dyz, dxz, and dxy orbitals. The different hopping terms
(t1,2,3 and λ) are illustrated.

orbitals, and therefore we will stick to the orbital description
in the remainder of this paper.

Throughout this work, we use the following values of
the band parameters: t1 = 1 (the unit of energy), t2 = 0.4,
t3 = 1.25, λ = −0.1, e = 0.1, and μ = 1.5. These values are
compatible with the ones used in the literature [25,44,46–48].
When present, the spin-orbit coupling κ is set to 0.2; this value
was chosen somewhat arbitrarily, in order to have a visible
impact on the dispersion relation (or Fermi surface).

B. Symmetries

The Hamiltonian H = H0 + H1 has the following symme-
tries:

(1) A mirror symmetry σx with respect to the yz plane; this
reflection changes the signs of orbitals 2 and 3.

(2) A mirror symmetry σy with respect to the xz plane; this
reflection changes the signs of orbitals 1 and 3.

(3) A π/2 rotation C4 around the z axis, together with
the following exchange of orbitals: dxz → dyz and dyz → −dxz

orbitals. The dxy orbital changes sign under this rotation.
(4) Even though the model is two dimensional, we could

imagine a reflection σz with respect to the xy plane that
changes the signs of orbitals 2 and 3. Strictly speaking, this
is an internal symmetry in the context of a two-dimensional
model, but it will be relevant when classifying the supercon-
ducting pairing functions.

FIG. 2. Illustration of the possible nodes in pairing functions. In
red: the normal state Fermi surface, with the band labels α, β, and γ .
In Tables III, IV, and V, the + sign stands for the intersection of any
of these surfaces with horizontal/vertical axes (blue dots), including
zone boundaries. The × sign stands for the intersection of either of
these surfaces with diagonal axes (open black dots). The −, | and �

signs will stand for the intersection with the horizontal, vertical, and
northwest diagonals only.

Operations 1–4 above generate the 16-element point group
D4h.

(5) If κ = 0, a simultaneous rotation of all spins. Other-
wise these rotations are not independent of the spatial sym-
metries (see below).

(6) Time reversal.
(7) A U (1) symmetry leading to the conservation of the

total number of electrons in all three orbitals.
(8) A Z2 symmetry leading to the separate conservation

of the parity (odd or even) of the number of electrons (i) in
the dxy orbitals and (ii) in the dyz and dxz orbitals. Indeed,
were it not for the interactions, the number of electrons would
be separately conserved in the dxy on one hand and in the
set dyz, dxz on the other hand. The Hund coupling, however,
allows pair hopping between these two sets.

(9) Translation symmetry on the lattice.
Let us consider a symmetry transformation g acting on

space. In the absence of spin-orbit coupling, such a transfor-
mation does not affect spin and its effect on the annihilation
operator cr,m,σ is the following:

cr,m,σ → c′
r,m,σ =

∑
m′

Umm′ (g)cgr,m′,σ , (9)

where gr is the mapping of site r under the spatial symmetry
transformation and U (g) is a 3 × 3 matrix. On the other hand,
when κ �= 0, such a transformation must be accompanied by
a spin rotation:

cr,m,σ → c′
r,m,σ =

∑
m′,σ ′

Sσσ ′ (g)Umm′ (g)cr′,m′,σ ′ . (10)
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TABLE I. Generators of the point group D4h. U is the orbital
part, S the spin part (in the case of spin-orbit coupling) and R the
associated rotation of the d vector.

Generator U S R

C4

⎛
⎝ 0 1 0

−1 0 0
0 0 −1

⎞
⎠ (

1+i√
2

0
0 1−i√

2

) ⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠

σx

⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠ (

0 i
i 0

) ⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠

σy

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ (

0 1
−1 0

) ⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠

σz

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ (

i 0
0 −i

) ⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠

Under this more general transformation, the spin-orbit term
becomes

i
κ

2

∑
r

∑
l,m,n

εl ′m′nU
∗
l ′lUm′mc†

r,l,σ cr,m,σ ′S∗
ασ Sα′σ ′τ n

αα′ . (11)

The spin rotation matrix S must belong to a spinorial repre-
sentation of the group such that

S†τ nS = Rnn′τ n′

εl ′m′nU
∗
l ′lUm′m = R−1

nn′εlmn′ (12)

in order for the spin-orbit term to be invariant.
The appropriate matrices U and S, as well as the resulting

rotation matrix R of Eq. (12), are listed in Table I for the four
generators C4, σx, σy, and σz. One checks that these matrices
guarantee the invariance of the complete Hamiltonian under
these transformations; in the absence of spin-orbit coupling,
one can simply ignore the last two columns. These three
transformations generate a group isomorphic to D4h, which as
16 elements and 10 irreducible representations (or irreps, as
we will call them from now on). Its character table is given
in Table II. The precise form of the U matrices takes into
account the change of sign of the d orbitals under spatial
transformations.

The symmetry operations described above would have a
different form if expressed in the band basis instead of the
orbital basis. Specifically, the annihilation operator da(k) of
an electron in band a can be expressed in terms of its orbital
basis equivalent ck,m,σ as

dk,a(k) =
∑
m,σ

Va,mσ (k)ck,m,σ (13)

where Va,mσ (k) is a momentum-dependent unitary matrix
obtained from diagonalizing H0(k) in Eq. (4). The index a
takes six values, the bands being pairwise degenerate in the
absence of spin-orbit coupling. The transformation of da(k)
under a group element g reads

d ′
a(k) =

∑
b

Ũab(g, k)db(gk) (14)

where gk is the image of k under the point group transforma-
tion g and

Ũab(g, k) =
∑

m,m′,σ,σ ′
Va,mσ (k)V ∗

b,m′σ ′ (k)Sσσ ′ (g)Umm′ (g). (15)

The matrix Ũab(g, k) depends on momentum k, whereas the
matrices Sσσ ′ (g) and Umm′ (g) are constant. Hence the orbital
basis makes the group-theoretical analysis much simpler.

III. SYMMETRIES OF THE ORDER PARAMETER

A. General considerations

A general superconducting order parameter may be ex-
pressed in real space as

�r,m,σ ;r′,m′,σ ′ = 〈cr,m,σ cr′,m′,σ ′ 〉. (16)

Assuming translation symmetry, this order parameter depends
on the difference r − r′ and is diagonal in k space:

�m,σ ;m′,σ ′ (k) = 〈cm,σ (k)cm′,σ ′ (−k)〉 . (17)

The Pauli principle imposes antisymmetry under the exchange
of the quantum numbers of the pair:

�m,σ ;m′,σ ′ (k) = −�m′,σ ′;m,σ (−k) . (18)

In the remainder of this paper, the words symmetric and
antisymmetric will refer to the properties of various parts of

TABLE II. Character table of D4h, with a list of the simplest (i.e., lowest degree) singlet and triplet pairing functions for a single-band
model without spin-orbit representation. Note that we distinguish g-type representations, which are even under inversion (i), from u-type
representations, which are odd under inversion.

E 2C4 C2 2C′
2 2C′′

2 i 2S4 σz σx,y σd,d ′ Pairing function Nodes Spin

A1g 1 1 1 1 1 1 1 1 1 1 1 none 0
A2g 1 1 1 −1 −1 1 1 1 −1 −1 xy(x2 − y2) eightfold 0
B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2 fourfold diagonal 0
B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy fourfold 0
Eg 2 0 −2 0 0 2 0 −2 0 0 z(x, y) equator, twofold 0
A1u 1 1 1 1 1 −1 −1 −1 −1 −1 xyz(x2 − y2) equator, eightfold 1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z equator 1
B1u 1 −1 1 1 −1 −1 1 −1 −1 1 xyz equator, fourfold 1
B2u 1 −1 1 −1 1 −1 1 −1 1 −1 z(x2 − y2) equator, fourfold diagonal 1
Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y) twofold (R) or none (C) 1
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the pairing function with respect to the exchange of the two
electrons.

A general order parameter function (or pairing function)
can be expressed as a linear combination of basis functions.
We can use a basis made of tensor products of position-
dependent, orbital-dependent, and spin-dependent factors:

�m,σ ;m′,σ ′ (k) =
∑
μνρ

Cμνρ f μ(k)Oν
mm′Sρ

σσ ′ . (19)

The spin part of the pairing function is generally described
by the so-called d vector, defined as follows:

Sσσ ′ = idρ (τρτ2)σσ ′ = dρ d̂ρ . (20)

The three components dx,y,z form the symmetric, triplet part
of the spin part of the pairing function, whereas the antisym-
metric, singlet part is represented by the zeroth component d0

(the set of Pauli matrices τ1,2,3 is augmented by the identity
matrix τ0). Under a rotation in spin space, the three-vector d
transforms as a pseudovector (i.e., invariant under inversion),
and d0 behaves like a pseudoscalar (it changes sign under
inversion). In the presence of spin-orbit coupling, dz falls
into the A2g representation and (dx, dy) into Eg, whereas d0

corresponds to A1g.
Likewise, we will define the following 3 × 3 matrices to

serve as a basis in orbital space:

âx =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ b̂x =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ ĉx =

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠

ây =
⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ b̂y =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ ĉy =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠

âz =
⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠ b̂z =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ ĉz =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠.

A general matrix acting on orbital space may then be ex-
pressed via three vectors a, b, and c as

Omn = a · âmn + b · b̂mn + c · ĉmn . (21)

The components of these vectors, like the annihilation oper-
ators cr,m,σ , will be labeled using indices m = x, y, z, corre-
sponding, respectively, to the three orbitals dyz, dxz, and dxy,
also numbered 1,2,3 in Fig. 1. Clearly the a and b vectors
describe symmetric orbital parts of the pairing function, and
c antisymmetric orbital parts. The advantage of defining the
vectors a, b, and c lies in their transformation properties: The
combinations az and ax + ay belong to the A1g representation,
and ax − ay to B1g. The component bz belongs to B2g, whereas
cz belongs to A2g. Finally, the pairs (bx, by) and (cx, cy)
both belong to Eg. Said differently, the a vector transforms
like the functions (x2, y2, z2), the b vector like the functions
(yz, xz, xy), and the c vector like a pseudovector.

As for the spatial part of the pairing function, it will
be described by multinomials in x, y, z, which in fact stand
for the components kx, ky, kz of the wave vector. The three
linear functions {x, y, z} form a “vector” representation of
D4h, which is obviously reducible: z belongs to the A2u

representation and (x, y) form the two-component Eu rep-
resentation. By taking symmetrized tensor products of this
reducible representation repeatedly with itself, one finds re-
ducible representations for quadratic, cubic, quartic functions,
and so on. The even-degree functions are symmetric under
inversion (which corresponds here to exchanging the spatial
quantum numbers), whereas the odd-degree functions are
antisymmetric.

The coefficient Cμνρ of Eq. (19) will therefore be expressed
in terms of components of the d-vector for the spin index ρ,
components of the a, b, and c vectors for the orbital index ν,
and multinomial functions of x, y, z for the spatial part. For
instance, the pairing function ĉzd̂z(x2 − y2), which appears
below in Table V under the B1g representation, represents
a spin triplet (|↑↓〉 + |↓↑〉) with an antisymmetric orbital
combination of dxz and dyz (because of ĉz), and a d-wave-like
spatial part. The product ĉzd̂z is a tensor product of a 3 × 3
matrix acting in orbital space (ĉz) with a 2 × 2 matrix acting
in spin space (d̂z), so that the overall pairing function in this
case is a 6 × 6 matrix.

Note that the pairing function may also be expressed in the
band basis:

�̃ab(k) =
∑

m,m′,σ,σ ′
Va,mσ (k)Vb,m′σ ′ (−k)�m,σ ;m′,σ ′ (k) (22)

where the matrix Va,mσ (k) was introduced in Eq. (13). Interor-
bital pairing (m �= m′) will in general contribute to intraband
pairing (a = b) and vice versa, in a momentum-dependent
way. Let us stress again that, from a microscopic point of view
appropriate in an intermediate- to strong-coupling context, the
orbital basis allows for a simple description of symmetries.

B. Landau theory

We assume that the pattern of symmetry breaking occurs
within the framework of the Landau theory of phase tran-
sitions. A generic superconducting order parameter may be
decomposed on a basis of possible pairing functions �̂μ, i.e.,
� = ∑

μ ψμ�̂μ, and the Landau free energy functional is a
power expansion in terms of the coefficients ψμ:

f [ψ] = aμν (T )ψ∗
μψν + bμνρλ(T )ψ∗

μψ∗
ν ψρψλ + · · · (23)

where the ellipsis stands for gradient and higher-degree terms,
and T is the temperature.

Organizing the basis functions �̂μ according to irreps
of the point group makes the matrix a(T ) block diagonal:
a(T ) = ⊕

r a(r)(T ), i.e., it has no matrix elements between
functions belonging to different irreps. Within each represen-
tation, the matrix a(r)(T ) may be diagonalized, and at some
point upon lowering T one of its eigenvalues, initially all
positive, may change sign, which signals the superconducting
phase transition and a minimum of f [ψ] at ψ �= 0. This is
going to first occur in one of the representations and will
define the symmetry character of the superconducting state.
Nothing forbids competing minima, and hence additional
phase transitions, to appear at lower temperatures. These
transitions should be detectable, for instance by specific heat
measurements. None has been seen in Sr2RuO4 [1,3], and
therefore we will assume a single symmetry breaking pattern
in this work.
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If the transition occurs in the A1g representation, then
the only broken symmetry is the U (1) of gauge invariance.
In any other irrep, the point group D4h is broken as well,
but not completely: The minimum ψ� leaves a subgroup of
D4h invariant. For instance, in the B1g representation, the
superconducting state is effectively a distortion that breaks
D4h down to the group D2h as described in Sec. III G below,
and it happens that all basis functions of B1g are invariant
under this subgroup. It is noteworthy that for a group like
D4h, which only has one-dimensional and two-dimensional
chiral-like irreps (Eg and Eu), this invariant subgroup only
depends on the irrep of the solution, i.e., it is the same for
all basis functions within that irrep. This means that, in a
given state of broken symmetry, all basis functions of a given
irrep may a priori contribute to the total (or combined) pairing
function.

Time reversal (TR) symmetry may only occur when the
minimum ψ� is degenerate, and this will occur only within a
two-dimensional representation (Eg or Eu). In those cases, the
complex combination (1, i) of the two basis functions defines
a broken TR state, with the conjugate combination (1,−i)
being the time-reversed state. Other TR broken states could
only occur when two solutions belonging to different repre-
sentations happen to have the same energy, which implies a
second phase transition as mentioned above. We exclude that
possibility.

C. Quasiparticle dispersion

In order to identify nodes, or other elementary properties of
the superconducting state, one must compute the quasiparticle
dispersion; this is done at the mean-field level. The pairing
function �k is a 6 × 6 matrix. It appears in the mean-field
Hamiltonian as

F =
∑

m,m′,σ,σ ′,k

ck,m,σ �(k)mσ,m′σ ′c−k,m′,σ ′ + H.c. (24)

The normal and anomalous part of the Hamiltonian are put
together via the Nambu formalism, in which we introduce a
12-component spinor at a given wave vector k [49]:

�k = (ck,m,σ , c†
−k,m,σ ) (m = 1, 2, 3; σ =↑,↓) . (25)

The combined Hamiltonian takes the following form:

H =
∑

k

�
†
kH(k)�k (26)

with the 12 × 12 matrix

H(k) =
(
H0(k) �(k)
�†(k) −H∗

0(k)

)
. (27)

The eigenvalues of H(k) occur in pairs of opposite signs and
provide the dispersion relation of the quasiparticles. Nodes are
found by looking for the zeros of these eigenvalues.

D. No spin orbit coupling

In the following, we will construct possible pairing func-
tions �(k) organized according to irreps of the point group
D4h, keeping the spatial part as simple as possible. The
construction of pairing functions is simpler in the absence of
spin-orbit coupling, because the spin part always factorizes

from the rest and is either a singlet or a triplet. One can
then concentrate on the construction of the spatial-orbital part,
which must be symmetric in the singlet case, and antisymmet-
ric otherwise.

This construction can be automated as follows: One con-
structs a 3 × 3 matrix representation Umm′ (g) of each of the 16
elements g of D4h acting in orbital space, by combining the
generators of Table I. The symmetrized and antisymmetrized
tensor products of this representation with itself are then
constructed:

SU (g) ⊗ U (g) and AU (g) ⊗ U (g) (28)

(S and A are the symmetrizer and antisymmetrizer, respec-
tively). The tensor products of these orbital representations
with the spatial representations of a given degree in (x, y, z)
are constructed next. The resulting higher-dimensional repre-
sentation R(g) can then be projected onto irreps or D4h with
the help of projection operators:

P(r) = d (r)

|G|
∑
g∈G

χ (r)∗
g R(g) (29)

where G stands for the point group (here D4h), the sum is
over the |G| group elements g, and χ (r) is the character of the
irrep r (according to Table II). This procedure is done using a
combination of numerical and symbolic computations in the
Python language.

Among the states selected by the projection operator, some
involve only the vector a and therefore describe intraorbital
pairing. Those involving the components of b describe interor-
bital pairing that is symmetric in orbital (and consequently
associated to a symmetric spatial part for singlets and anti-
symmetric spatial part for triplets). Those involving the com-
ponents of c describe interorbital pairing that is antisymmetric
in orbital (and consequently associated to an antisymmetric
spatial part for singlets and symmetric spatial part for triplets).

Table III lists the singlet pairing functions found in this
way. They are enumerated according to irrep and, within each
irrep, according to the type of orbital pairing:

(1) dxy: intraorbital pairing within the dxy orbital, forming
the so-called γ band.

(2) dxz, dyz: intraorbital pairing within the dyz or dxz

orbital.
(3) dxz/dyz: interorbital pairing between the dyz and dxz

orbitals.
(4) dxy/dxz, dxy/dyz: interorbital pairing between dxy and

dyz orbitals, or between dxy and dxz orbitals.
For the sake of illustrating each type of orbital pairing,

we have carried the construction of spatial functions to a
degree sufficient to display all cases, but displaying only
the lowest degree in each. Column 4 of Table III shows the
pairing function as a function of orbital vector and coordinates
(x, y, z), or equivalently (kx, ky, kz ). In order to represent lat-
tice quantities in the full Brillouin zone and to identify nodes
in the dispersion, we perform the following substitutions
for x:

x → sin kx x2 → 1 − cos kx (30)

and likewise for y and z. Such a substitution would allow us
to provide a real-space description of pairing. For instance,
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TABLE III. List of singlet pairing functions (no spin-orbit coupling). Functions are arranged according to D4h representations and type of
interorbital pairing: intraorbital (dxy, dxz, or dyz) or interorbital (dxy/dxz, dxy/dyz, dxy/dyz, dxz/dyz). The notation for the nodes is the following:
α, β, and γ refer to the normal state Fermi surface sheets (see Fig. 2); when appearing alone, it means that the whole sheet is a nodal surface.
They can be hybridized, hence the notation (βγ ), etc. When appearing next to a symbol (+, |, −, ×, �), then the node is the intersection of
that sheet with particular lines: + stands for horizontal and vertical axes at 0 and ±π ; − and | stand for horizontal and vertical lines only,
whereas × stands for the diagonals and � for the north-west diagonal only. Commas separate different nodal lines or surfaces present. The
combined nodes are obtained in mixing the different functions in a given representation. For functions that do not involve z, the nodes are
kz independent in our approximation that neglects hopping in the z direction. For functions that depend on z, the nodes indicated here are
computed at kz = π/2; in those cases the pairing function vanishes at kz = 0 and the nodes there coincide with the complete Fermi surface.

Irrep Combined nodes Orbital mixing Pairing function Nodes

dxy âx α, β

dxz, dyz âx + ây γ
A1g none

dxz/dyz b̂zxy γ , +α, +β

dxy/dxz, dxy/dyz z(b̂xy − b̂yx) (αβγ )

dxy âzxy(x2 − y2) α, β, + × γ

dxz, dyz xy(âx − ây ) γ , + × α, +β
A2g +γ , +β

dxz/dyz b̂z(x2 − y2) γ , + × α, + × β

dxy/dxz, dxy/dyz z(b̂xx + b̂yy) α, β, γ

dxy âz(x2 − y2) ×γ , α, β

dxz, dyz âx − ây γ , ×α, ×β
B1g ×β

dxz/dyz b̂zxy(x2 − y2) γ , + × α, + × β

dxy/dxz, dxy/dyz z(b̂xy + b̂yx) (αγ ), β

dxy âzxy α, β, +γ

dxz, dyz xy(âx + ây ) γ , +α, +β
B2g +α,+γ , +β

dxz/dyz b̂z γ , +α, +β

dxy/dxz, dxy/dyz z(b̂xx − b̂yy) α, (β, γ )

dxy âzz(x, y) α, β, |γ : α, β, �γ : α, β

dxz, dyz z(âxx, âyy) +α,+β, γ : + × α,+ × β, γ : +α,+β, γ
Eg β, (αγ ) : (αβγ ) : β, (αγ )

z(âxy, âyx) −α,−β, γ : �α�β, γ : γ

dxz/dyz b̂zz(x, y) +α,+β, γ : +α, +β, γ : +α, +β, γ

dxy/dxz, dxy/dyz (b̂x, b̂y ) β, (αγ ) : (αβγ ) : β, (αγ )

dxz/dyz ĉzz α, β, γ
A1u β, (αγ )

dxy/dxz, dxy/dyz ĉxx + ĉyy β, (αγ )

dxz/dyz ĉzxyz(x2 − y2) α, β, γ
A2u α, (βγ )

dxy/dxz, dxy/dyz ĉxy − ĉyx (αβγ )

dxz/dyz ĉzz(x2 − y2) α, β, γ
B1u α, (βγ )

dxy/dxz, dxy/dyz ĉxx − ĉyy α, (βγ )

dxz/dyz ĉzxyz α, β, γ
B2u β, (αγ )

dxy/dxz, dxy/dyz ĉxy + ĉyx β, (αγ )

dxz/dyz ĉz(x, y) α, β, γ : γ , (αβ ) : (αβ ), γ
Eu α, β, γ : (αβγ ) : α, β, γ

dxy/dxz, dxy/dyz z(ĉx, ĉy ) (αγ ), β : (αβγ ) : (αγ ), β

a product like sin kx sin ky = 1
2 [cos(kx − ky) − cos(kx + ky)]

would correspond to a cross-shaped pairing across the nearest-
neighbor diagonals, and so on.

Column 4 of Table III shows the nodes associated with
each function. The meaning of the symbols used is the fol-
lowing: each of α, β, and γ refers to the normal state Fermi
surface sheets (see Fig. 2) and when appearing alone, means
that the whole sheet is a nodal surface. Nodal surfaces can
be hybridized: For instance, a combination of the β and γ

surfaces, noted (βγ ), is visible in the B1u panel of Fig. 3. The
(αγ ) hybridization is seen in the A1u panel of the same figure,
and a complete hybridization (αβγ ) in the Eg(1, 1) panel.
When a Fermi surface sheet appears in conjunction with +,
then the intersection of that sheet with horizontal and vertical

axes at 0 and ±π constitute the nodes. The symbols − and |
stand for horizontal and vertical lines only. When appearing
in conjunction with ×, then the intersection of that sheet with
diagonals constitutes the nodes. The symbol � stands for the
north-west diagonal only. Commas separate different nodal
lines or surfaces present. For two-dimensional representations
(Eg and Eu), we show the nodes obtained from the (1,0), the
(1,1) and the (1, i) combinations, separated by a colon.

E. On the notion of node imposed by symmetry

Column 2 of Table III shows the nodes obtained when com-
bining the different pairing functions of a given representa-
tion, with an equal amplitude of 0.25. Thus, this represents the
approximate notion of “nodes imposed by symmetry” on each
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A1g A1u

A2g A2u

B1g B1u

B2g B2u

Eg(1,0) Eu(1,0)

Eg(1,1) Eu(1,1)

Eg(1, i) Eu(1, i)

singlet representations
A1g A1u

A2g A2u

B1g B1u

B2g B2u

Eg(1, 0) Eu(1, 0)

Eg(1, 1) Eu(1, 1)

Eg(1, i) Eu(1, i)

triplet representations
A1g A1u

A2g A2u

B1g B1u

B2g B2u

Eg(1,0) Eu(1,0)

Eg(1,1) Eu(1,1)

Eg(1, i) Eu(1, i)

with spin-orbit coupling

FIG. 3. averaged or typical nodes associated to the different irreps of D4h for kz = 0 (blue) and kz = π/2 (red). Each panel covers the
full Brillouin zone from (−π,−π ) to (π, π ) and the representation label is indicated on top. Left: singlet representations, middle: triplet
representations, right: with spin-orbit coupling The normal state Fermi surface is the black dotted line. See text for details.
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representation. These are in turn illustrated in the two leftmost
columns of Fig. 3. As a rule, the nodes of the combined
pairing function in an irrep are the intersection of the nodes
of the separate basis functions. The latter may separately have
accidental nodes, but those generally disappear when taking
linear combinations.

However, strictly speaking, the notion of symmetry-
imposed nodes does not make sense in the case of multiorbital
models, with or without spin-orbit coupling. In the one-band
case, whose symmetry classification appears in Table II, a
symmetry-imposed node corresponds to a pairing function
that vanishes in some direction because it is odd under certain
symmetry operations in that irrep. For instance, the pairing
function must be odd under a diagonal reflection σd in the
representation B1g and must accordingly vanish along the
diagonals, which is indeed the case of the standard d-wave
function x2 − y2. The pairing function being a scalar, its zeros
correspond to nodes. Essentially, the one-band case is simple
because translation invariance allows us to express the order
parameter as a scalar function of the wave vector k.

In a multiorbital model, the pairing function is a multi-
component object: a matrix. That matrix may be odd under
a certain symmetry operation, but that does not imply that it
must vanish at a fixed point of that operation in momentum
space, because the odd character can reside in the orbital part
instead of the spatial part. Indeed, the odd character translates
into the following transformation property for the pairing
function:

�ν (x, y, z) → �′
ν (x, y, z) = U (σd )νν ′�ν ′ (y, x, z) (31)

where the index ν labels basis vectors in orbital space and
U the orbital part of the representation. In the B1g rep-
resentation, we therefore have the condition �′

ν (x, y, z) =
−�ν (x, y, z), or U (σd )�(y, x, z) = −�ν (x, y, z), which trans-
lates into U (σd )�(x, x, z) = −�ν (x, x, z) on the diagonal.
In the single-orbital case, U = 1 and that condition implies
�(x, x, z) = 0. In the multiorbital case, the pairing function
may be an eigenvector of U with eigenvalue −1, and this
imposes no condition at all on �(x, x, z). For instance, the
pairing function âx − ây, which is wave-vector independent,
belongs to B1g. The matrix U in that case exchanges ax and ay

and is equivalent to −1 in orbital space, which leaves an even
(here constant) spatial part.

As another example, the interorbital pairing function ĉxx +
ĉyy in representation A1u describes a singlet state that is odd
under the reflection σz with respect to the xy plane. Indeed,
under this reflection, the orbitals dxz and dyz change sign, and
so do the components cx and cy, while the functions x and y
are unaffected. The matrix-valued pairing function then takes
the form

�(x, y, z) =
⎛
⎝ 0 0 y

0 0 x
−y −x 0

⎞
⎠ (32)

(we ignore spin, which is in a singlet state in this example).
The transformation law of that pairing function under σz is
� → �′ = U (σz )�U (σz ), where U (σz ) is given in Table I.
Therefore �′ = −�, as it should be in representation A1u.
Accordingly, while that pairing function has nodes (in fact
nodal surfaces, since nothing depends on z here), their precise

shape is not imposed by symmetry. In particular they do
not coincide with the normal Fermi surfaces but are rather
hybridized Fermi surfaces, as illustrated in Fig. 3.

Some of the combined nodes illustrated in Fig. 3 are there-
fore generic in their character (point or surface) but accidental
in their precise shape. Depending on the precise coefficients
of the combined pairing function, the precise shape of a
hybridized nodal surface may vary slightly.

Table IV lists the triplet pairing functions found using
the same procedure. In that case only products of orbital
and spatial functions that are antisymmetric under electron
exchange were kept. The combined nodes are illustrated in
the middle two columns of Fig. 3.

In this figure, we have shown the nodes found on the
kz = 0 plane (in blue) and those on the kz = π/2 plane
(in red). The blue curves on the figure thus correspond to
horizontal (more precisely, equatorial) nodal lines. A majority
of representations have them. Often nodal lines also occur at
kz = π/2 but in a hybridized form, hinting at a complex three-
dimensional representation of the nodes in those cases. Note
that our tight-binding model is still strictly two dimensional.
In no case do the generic nodes coincide with the normal
state Fermi surfaces. In that sense, superconductivity is never
hidden in this system, even though it can in many cases be
called gapless, since the nodes occur at every angle, at least in
the absence of spin-orbit coupling.

An important point is that the only two representations that
have no nodes are the singlet A1g, which we could commonly
call s wave, and the triplet Eu(1, i), which we could call px +
ipy. This is still true with spin-orbit coupling.

In order to illustrate how these nodes vary upon changing
the band parameters, we have plotted the typical nodes for
three additional sets of band parameters in Fig. 4. The details
of the nodal surfaces change, but the presence of nodal lines
along various axes is robust.

F. Spin orbit coupling

In the presence of the spin-orbit coupling (κ �= 0), the
symmetry is reduced. The spin will transform according to
the generators listed in Table I, within a spin representation of
D4h, not listed in the character Table II. In particular, within
such a spin representation, the fourth power S(C4)4 is −1,
not 1. The tensor product of this spin representation with
itself yields symmetric and antisymmetric representations,
characterized by the d-vector components. These in turn can
be tensored with orbital and spatial representations, provided
the overall pairing function is antisymmetric.

Table V lists the possible pairing functions in the presence
of spin-orbit coupling. The format used is the same as in
Tables III and IV. Note, however, that the Fermi surface of
the normal state (the dotted line) is slightly different, because
of the added spin-orbit term κ .

The generic nodes of a given representation in the spin-
orbit case are generally the intersections of the nodes of
the corresponding singlet and triplet representations, although
this is not always the case, maybe because the spin-orbit
coupling changes the normal-state dispersion as well. Overall,
the situation is a bit simpler with spin-orbit coupling: 3D
nodal surfaces dot no exist, only equatorial and vertical nodal
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TABLE IV. List of triplet pairing functions (no spin-orbit coupling). See Table III and text for an explanation.

Irrep Combined nodes Orbital mixing Pairing function Nodes

dxz/dyz ĉzxy(x2 − y2) α, β, γ
A1g α, β, γ

dxy/dxz, dxy/dyz z(ĉxy − ĉyx) (αβγ )

dxz/dyz ĉz α, β, γ
A2g α, β, γ

dxy/dxz, dxy/dyz z(ĉxx + ĉyy) (αγ ), β

dxz/dyz ĉzxy α, β, γ
B1g none

dxy/dxz, dxy/dyz z(ĉxy + ĉyx) (αγ ), β

dxz/dyz ĉz(x2 − y2) α, β, γ
B2g none

dxy/dxz, dxy/dyz z(ĉxx − ĉyy) α, (βγ )

dxz/dyz ĉzz(x, y) α, β, γ : (αβ ), γ : (αβ ), γ
Eg β, (αγ ) : (αβγ ) : β, (αγ )

dxy/dxz, dxy/dyz (ĉx, ĉy ) β, (αγ ) : (αβγ ) : β, (αγ )

dxy âzxyz(x2 − y2) α, β, +γ

dxz, dyz xyz(âx − ây ) +α,+ × β, γ
A1u β, (αγ )

dxz/dyz b̂zz(x2 − y2) + × α,+ × β, γ

dxy/dxz, dxy/dyz b̂xx + b̂yy β, (αγ )

dxy âzz α, β

dxz, dyz z(âx + ây ) γ
A2u α, (βγ )

dxz/dyz b̂zxyz +α,+β, γ

dxy/dxz, dxy/dyz b̂xy − b̂yx (αβγ )

dxy âzxyz α, β, +γ

dxz, dyz xyz(âx + ây ) +α,+β, γ
B1u α, (βγ )

dxz/dyz b̂zz +α,+β, γ

dxy/dxz, dxy/dyz b̂xx − b̂yy α, (βγ )

dxy âzz(x2 − y2 ) α, β, ×γ

dxz, dyz z(âx − ây ) ×α,×β, γ
B2u β, (αγ )

dxz/dyz b̂zxyz(x2 − y2) + × α,+ × β, γ

dxy/dxz, dxy/dyz b̂xy + b̂yx β, (αγ )

dxy âz(x, y) α, β, |γ : α, β, �γ : α, β

dxz, dyz (âxx, âyy) +α,+β, γ : +α,+β, γ : +α,+β, γ

Eu |γ : �γ : none (âxy, âyx) −α,−β, γ : �α, �β, γ : γ

dxz/dyz b̂z(x, y) +α,+β, γ : +α,+β, γ : +α,+β, γ

dxy/dxz, dxy/dyz z(b̂x, b̂y ) β, (αγ ) : (αβγ ) : (αγ ), β

lines do. Half of the representations have equatorial nodes.
The only representation without nodes are A1g (or s wave) and
Eu(1, i) (or px + ipy).

G. Uniaxial deformations

Under uniaxial pressure along the x or y axis, Sr2RuO4

will undergo a slight spatial deformation that will reduce its
point-group symmetry from D4h to D2h. In this subsection, we
outline the changes that this would bring to the classification
explained above.

D2h is an Abelian subgroup of D4h and contains half of its
elements. Basically, the generator C4 is no longer a symmetry
operation and all group elements obtained from it drop out.
The character table of D2h is reproduced in Table VI. The
irreps of D4h collapse into the irreps of D2h, as illustrated
schematically in Fig. 5.

A similar analysis as done above can be carried out for the
D2h symmetry, after adding an anisotropy parameter α = 0.05
such that hopping parameters t1 and t3 are augmented by α

in the x direction and diminished by the same amount in the
y direction. This small value of α is sufficient to make the
γ -band Fermi surface open, i.e., to bring about a Lifshitz

transition, as observed in experiments [50]. The resulting
nodes are illustrated in Fig. 6. The main change from the
isotropic case is the disappearance of chiral representations.
Thus, the breaking of time-reversal symmetry could only
occur by combining different irreps. In particular, the only
representation that has no nodes at all is A1g (s wave).

IV. DISCUSSION AND CONCLUSION

The main novelty introduced in this paper is the integration
of interorbital pairings, in particular odd-orbital pairings, in
the classification of superconductivity for t2g systems. How-
ever, at this point we are not in a position to say that this
kind of superconductivity is present in Sr2RuO4. Indeed, in
addition to suggestions for interorbital pairing [26,27], there
are also good arguments to indicate that these kind of pairings
should not be favored in the weak-coupling limit [51], even
though they are a definite possibility at strong or intermediate
coupling. We can still highlight the main differences between
interorbital and single-orbital superconductivity, and see how
they constrain the interpretation of available experimental data
for Sr2RuO4.
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TABLE V. List of pairing functions with spin-orbit coupling. See Table III and text for an explanation.

Irrep Combined nodes Orbital mixing Pairing function Nodes

A1g none dxy âzd̂0 α, β

dxz, dyz d̂0(âx + ây ) γ

dxz/dyz ĉzd̂z α, β, γ

dxy/dxz, dxy/dyz (ĉxd̂x − ĉyd̂y ) α, β, γ

A2g +α,+β, +γ dxy âzd̂0xy(−x2 + y2) α, β, × + γ

dxz, dyz d̂0xy(−âx + ây ) +α,+β, γ

dxz/dyz ĉzz(d̂xy + d̂yx), b̂zd̂0(x2 − y2) α, β, γ

dxy/dxz, dxy/dyz ĉxd̂y + ĉyd̂x α, β, γ

B1g ×γ dxy âzd̂0(x2 − y2) α, β, ×γ

dxz, dyz d̂0(âx − ây ) γ

dxz/dyz ĉzz(d̂xx + d̂yy), ĉzd̂z(x2 − y2) α, β, γ

dxy/dxz, dxy/dyz (ĉxd̂x + ĉyd̂y ) α, β, γ

B2g +α,+β, +γ dxy âzd̂0xy α, β, +γ

dxz, dyz d̂0xy(âx + ây ) +α,+β, γ

dxz/dyz b̂zd̂0 α, β, γ

dxy/dxz, dxy/dyz ĉxd̂y − ĉyd̂x α, β, γ

Eg dxy âzd̂0z(x, y) α, β, |γ : α, β, �γ : α, β

dxz, dyz d̂0z(âxx, âyy) −α,−β, γ : +α,+β, γ : + × α,+β, γ

|β, |γ : d̂0z(âxy, âyx) −α,−β, γ : γ : ×α, γ

�α, �β, �γ dxz/dyz ĉz(d̂x, d̂y ) α, β, γ : α, β, γ : α, β, γ :
�α, �β dxy/dxz, dxy/dyz (−b̂yd̂0 + ĉyd̂z, b̂xd̂0 + ĉxd̂z ) α, β, γ : α, β, γ : α, β, γ

(b̂yd̂0 + ĉyd̂z,−b̂xd̂0 + ĉxd̂z ) α, β, γ : α, β, γ : α, β, γ

A1u +α,+β, +γ dxy âzd̂0xyz(x2 − y2) α, β, + × γ

dxz, dyz d̂0xyz(âx − ây ) +α,+β, γ

dxz/dyz ĉz(d̂xy + d̂yx) α, β, γ

dxy/dxz, dxy/dyz z(ĉxd̂y + ĉyd̂x ), d̂z(−ĉxy + ĉyx), d̂0(b̂xx + b̂yy) α, β, γ

A2u none dxy âzd̂0z α, β

dxz, dyz d̂0z(âx + ây ) γ

dxz/dyz ĉz(d̂xx − d̂yy), ĉzd̂zz α, β, γ

dxy/dxz, dxy/dyz z(ĉxd̂x − ĉyd̂y ), d̂0(b̂xy − b̂yx), d̂z(ĉxx + ĉyy) α, β, γ

B1u +α,+β, +γ dxy âzd̂0xyz α, β, +γ

dxz, dyz d̂0xyz(âx + ây ) +α,+β, γ

dxz/dyz ĉz(−d̂xy + d̂yx), b̂zd̂0z α, β, γ

dxy/dxz, dxy/dyz z(ĉxd̂y − ĉyd̂x ), d̂z(ĉxy + ĉyx), d̂0(b̂xx − b̂yy) α, β, γ

B2u none dxy âzd̂0z(x2 − y2) α, β, ×γ

dxz, dyz d̂0z(âx − ây ) γ

dxz/dyz ĉz(d̂xx + d̂yy) α, β, γ

dxy/dxz, dxy/dyz z(ĉxd̂x + ĉyd̂y ), d̂0(b̂xy + b̂yx), d̂z(ĉxx − ĉyy) α, β, γ

Eu dxy âzd̂0(x, y) α, β, |γ : α, β, �γ : α, β

dxz, dyz d̂0(âxx, âyy) +α,+β, γ : +α,+β, γ : +α, +β, γ

d̂0(âxy, âyx) −α,−β, γ : γ : ×α, γ

dxz/dyz ĉzz(d̂x, d̂y ), (b̂zd̂0 − ĉzd̂z )(x, y), (b̂zd̂0 + ĉzd̂z )(x, y) α, β, γ : α, β, γ : α, β, γ

|β, |γ : dxy/dxz, dxy/dyz (ĉyx(d̂x − id̂y ), ĉxy(d̂x + id̂y )) α, β, γ : α, β, γ : α, β, γ

�α, �β, �γ : (ĉyy(d̂x − id̂y ), ĉxx(d̂x + id̂y )) α, β, γ : α, β, γ : α, β, γ

none z(b̂yd̂0 − ĉyd̂z, b̂xd̂0 + ĉxd̂z ) α, β, γ : α, β, γ : α, β, γ

z(b̂yd̂0 + ĉyd̂z, b̂xd̂0 − ĉxd̂z ) α, β, γ : α, β, γ : α, β, γ

(ĉyx(d̂x + id̂y ), ĉxy(−d̂x + id̂y )) α, β, γ : α, β, γ : α, β, γ

(ĉyy(d̂x + id̂y ), ĉxx(−d̂x + id̂y )) α, β, γ : α, β, γ : α, β, γ
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FIG. 4. Averaged or typical nodes associated to the triplet rep-
resentation A1u but with different band parameters. Top left: No
change in the parameters. Other panels are obtained by changing the
parameters as indicated on top of each panel. In particular, the bottom
right panel corresponds to a drastic change in band parameters
incompatible with Sr2RuO4. Again, the kz = 0 nodes are in blue
(including equatorial nodes), and the kz = π/2 vertical nodal lines
are shown as red dots. The normal state Fermi surface is the black
dotted line.

A. Singlet vs triplet superconductivity

An odd orbital part for the superconducting order param-
eter (i.e., involving the c vector) allows the combination of
singlet and odd parity, or triplet and even parity order param-
eters. This contrasts with the single-orbital case where singlet
and triplet, respectively, imply even and odd parity. Here, both
singlet and triplet can be associated with any e-type or u-type
representation. In the presence of spin-orbit coupling, this
implies that there is no clear distinction between singlet and
triplet and that a combination of both is possible in general,
as seen in Table V. Some studies [52,53] have suggested the
possibility of combining singlet and triplet order parameters
in Sr2RuO4 due to strong spin-orbit coupling. Our analysis
shows that the only way to achieve such combinations within
the same irreducible representation is through odd orbital
pairing.

Also, recent Knight shift measurements [9] show a sub-
stantial drop in the spin susceptibility across Tc, with or

TABLE VI. Character table of D2h.

E C2z C2y C2x i σz σy σx

Ag 1 1 1 1 1 1 1 1
B1g 1 1 −1 −1 1 1 −1 −1
B2g 1 −1 1 −1 1 −1 1 −1
B3g 1 −1 −1 1 1 −1 −1 1
A1u 1 1 1 1 −1 −1 −1 −1
B1u 1 1 −1 −1 −1 −1 1 1
B2u 1 −1 1 −1 −1 1 −1 1
B3u 1 −1 −1 1 −1 1 1 −1

A1g B1g A2g B2g Eg A1g B1u A2u B2u Eu

A1g B1g B2g B3g A1u B1u B2u B3u

D4h:

D2h:

FIG. 5. Branching of the irreducible representations of D4h (top)
into those of D2h (bottom).

without uniaxial strain. This seems to rule out any pairing
function with an important d̂z component in the spin sector.
However, this does not rule out any of the representations of
Table V, since the d̂z components are never alone in those.

B. Odd vs even superconductivity

As can be seen from Table I, the inversion operation i =
σxσyσz has no effect on the orbitals, and therefore on the a, b,
and c vectors. This implies that all states within an irrep have
the same spatial parity. In particular, all g-type representations
are even and all u-type representations are odd. Josephson
interferometry experiments [6–8] have suggested that the
order parameter of Sr2RuO4 has odd parity. If this were true,
it would eliminate all the g-type representations.

C. Broken time-reversal symmetry

Broken time-reversal symmetry, supported by muon spin
resonance [10] and polar Kerr effect [11] experiments, can
only occur in our paradigm within two-dimensional irreps
(Eg and Eu). However, the absence of splitting of the su-
perconducting transition when applying strain [18–20] seems
to exclude that possibility. We are facing a contradiction
that cannot be resolved without abandoning the single phase
transition hypothesis; the possibility of interorbital pairing is
of no help here.

D. Nodes and the density of states

One of the main motivations of this work was to predict
typical nodal structures from symmetry considerations. We
have seen that the notion of nodes imposed by symmetry
is not strictly valid when many orbitals are involved in the
superconducting state. However, there are typical nodes that
can be observed in a given irreducible representation, and they
are shown in Fig. 3. There is contradicting evidence for both
vertical nodal lines [13,14,16] and horizontal nodal lines [15]
in Sr2RuO4.

However, nodal surfaces would lead to a finite density of
states at the Fermi level within the superconducting state,
which seems excluded [14]. Simple single-orbital pairing
functions involving only âz, or a combination of âx and ây,
would lead to nodal surfaces coinciding with the Fermi
surfaces of the bands not involved in pairing. It is likely,
however, that interactions would cause superconductivity to
have components in every band. Figure 3 shows that u-type
singlet representations and g-type triplet representations have
nodal surfaces. These disappear when spin-orbit coupling is
important.

If we exclude two-dimensional representations, keeping
nodal vertical and horizontal nodal lines would tend to favor
representations A1u and B1u if spin-orbit coupling is important.
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Ag Au

B1g B1u

B2g B2u

B3g B3u

singlet representations
Ag Au

B1g B1u

B2g B2u

B3g B3u

triplet representations
Ag Au

B1g B1u

B2g B2u

B3g B3u

with spin-orbit coupling

FIG. 6. Averaged or typical nodes associated to the different irreducible representations of D2h for kz = 0 (blue) and kz = π/2 (red). Each
panel covers the full Brillouin zone from (−π,−π ) to (π, π ) and the representation label is indicated on top. Left: singlet representations,
middle: triplet representations, right: with spin-orbit coupling. The normal state Fermi surface is the black dotted line.

Incidently, both of these are odd under inversion, which is also
supported by observations [6].

From a strongly interacting perspective, it makes sense to
seek real-space pairing along the same bonds as the most
important hopping terms. Therefore we are led to favor the
lowest possible degree in pairing functions, as they corre-
spond to the shortest ranges, and to exclude pairing functions
in the z direction. It is, however, difficult to meet this require-
ment while considering a gap with horizontal nodes, with or
without interorbital pairing. For instance, the spin-orbit irreps
A1u and B2u have horizontal and vertical nodes, no nodal
surfaces, but the simplest pairing functions belonging to these
representations (from Table V) involve interorbital, nearest-
neighbor pairing, which does not correspond to hopping terms
of the model studied. On the other hand, the spin-orbit Eg rep-
resentations also have the correct nodal content, have constant
interorbital pairing functions, and even allow for a broken
time-reversal solution [Eg(1, i)]. Furthermore, these nodes are
preserved even as uniaxial pressure is applied (see Fig. 6 under
B2g and B3g). However, as mentioned above, the absence of

transition splitting when applying uniaxial pressure does not
favor representations of this type, and they are not odd under
inversion.

Let us remark that our results can easily be applied to
other t2g systems with D4h symmetry. The precise values of
the hopping terms are not important in the classification we
presented, although some fine details about the shape of the
nodes will vary, as illustrated in Fig. 4.

Note Added. Recently, we became aware of other current
work dealing with the same issues [54,55].
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