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Controllable vortex loops in superconducting proximity systems
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Superconducting vortex loops have so far avoided experimental detection despite being the focus of much
theoretical work. We here propose a method of creating controllable vortex loops in the superconducting
condensate arising in a normal metal through the proximity effect. We demonstrate both analytically and
numerically that superconducting vortex loops emerge when the junction is pierced by a current-carrying
insulated wire and give an analytical expression for their radii. The vortex loops can readily be tuned big enough
to hit the sample surface, making them directly observable through scanning tunneling microscopy.
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I. INTRODUCTION

Many key properties of physical systems are determined
by topological defects, such as dislocations in solids, domain
walls in ferroics, vortices in superfluids, magnetic skyrmions
in condensed-matter systems, and cosmic strings in quantum
field theories. In superconductors, the topological entities
are vortex lines of quantized magnetic flux. The topological
nature of these vortices makes them stable, which is important
for potential applications, such as superconducting qubits
[1–3], digital memory, and long-range spin transport [4].
Vortices have nonsuperconducting cores and a phase winding
of an integer multiple of 2π in the superconducting order
parameter, leading to circulating supercurrents [5].

The formation of superconducting vortex loops is topolog-
ically allowed and has theoretically been predicted to form
around strong magnetic inclusions inside the superconductor
[6] in cylindrically shaped current-carrying superconductors
[7–9] or through vortex cutting and recombination [10,11].
However, no observation of vortex loops in superconducting
systems has been found to date. One challenging aspect is
that vortex loops are typically small in conventional super-
conductors and difficult to stabilize for an extended period of
time [12]. Recently, it has been shown that vortex loops can
be formed in proximity systems by inserting physical barriers
around which the vortices can wrap [11].

In this paper, we present a way to create controllable
vortices in mesoscopic proximity systems in a manner
which makes them experimentally detectable through scan-
ning tunneling microscopy. The system considered is a three-
dimensional superconductor-normal metal-superconductor
(SNS) junction pierced by a current-carrying wire which cre-
ates the inhomogeneous field responsible for the vortex loops.
In planar SNS junctions with uniform applied magnetic fields,
changing the superconducting phase difference between the
two superconductors shifts the vortex lines in the vertical
direction [13]. We here show that the corresponding effect
on vortex loops in three dimensions is to change their size.
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Thus, these vortex loops are easily tunable. This makes it pos-
sible to make the vortices touch the surface, leaving distinct
traces which are directly observable by scanning tunneling
spectroscopy [14].

Vortex loops in superconducting systems have previously
been predicted using the phenomenological Ginzburg-Landau
theory [6,10,11]. Here, we use a fully microscopic framework
known as quasiclassical Usadel theory and solve the Usadel
equation relevant for diffusive systems [15]. By showing that
vortex loop formation occurs in a microscopic theory, we
give valuable support to the earlier proposed mechanisms for
superconducting vortex loops. Finally, we discuss how the
proposed setup can be realized experimentally.

II. METHODOLOGY

In this section, we discuss the quasiclassical Usadel theory
and how it may be used to analyze the SNS junction depicted
in Fig. 1. We first present the mathematical tools and end with
the numerical implementation.

A. Quasiclassical theory

In the Usadel theory, the system is described by a qua-
siclassical Green’s function from which physical properties
can be extracted. The SNS junction depicted in Fig. 1 can be
treated in the quasiclassical formalism under the assumptions
that the Fermi wavelength is much shorter than all other
relevant length scales. If the system is diffusive, meaning that
the scattering time is short, the isotropic part dominates and
solves the Usadel equation [15–18], which, in the normal
metal, can be written

D∇̄ · (ǧ∇̄ǧ) + i[ερ̂3 + �̂, ǧ] = 0. (1)

Here, D is a diffusion constant, ρ̂3 = diag(1, 1,−1,−1), and
�̂ = antidiag(+�,−�,+�∗,−�∗) where � is the super-
conducting gap parameter. The covariant derivative is ∇̄ǧ =
∇ǧ − ie[ρ̂3A, ǧ], where e = −|e| is the electron charge, A is
the vector potential, and

ǧ =
(

ĝR ĝK

0 ĝA

)
(2)
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FIG. 1. Sketch of three-dimensional SNS junction considered in
this paper. The height, width, and length are H, W , and L, respec-
tively, and the junction is pierced by an insulated current-carrying
wire. Contours of the superconducting vortex loops are shown at the
location where they are found in our numerical simulations.

is the quasiclassical impurity-averaged Green’s function.
Finally, x ∈ [−L/2, L/2], y ∈ [−W/2,W/2] and z ∈
[−H/2, H/2] in the normal metal.

ǧ is normalized such that ǧǧ = 1. We use the convention
that, when two matrices of different dimensionality is multi-
plied, the smaller matrix is elevated to the dimensionality of
the larger matrix by the tensor product of an identity matrix
of the appropriate size. In equilibrium, the components of the
8 × 8 Green’s function in Eq. (2) are related by the identi-
ties ĝK = (ĝR − ĝA) tanh(εβ/2) and ĝA = −ρ̂3ĝR†ρ̂3, which
means that, in this case, it is sufficient to solve for the retarded
component ĝR.

The quasiclassical formalism is not applicable across
boundaries because the associated length scale is too short.
The Usadel equation must, therefore, be solved in the normal
metal and superconductors separately, and the solutions must
be connected through boundary conditions. If we assume
a low-transparency interface, we may use the Kupriyanov-
Lukichev boundary condition,

ζiLien · (
ĝR

i ∇̄ĝR
i

) = 1
2

[
ĝR

i , ĝR
j

]
, (3)

where en is the outward-pointing normal vector for region
i, ζi is the ratio of the bulk and interface conductances of
material i, and Li is the length of material i in the direction
of en. For the boundaries interfacing vacuum, en · ∇̄ĝR = 0.

The Usadel equation can be made dimensionless by in-
troducing the Thouless energy, εT := D/L2. The Usadel
equation then becomes dimensionless by performing the
substitutions (x, y, z) → (x/L, y/L, z/L), ε → ε/εT, � →
�/εT, and ∇̄ → L∇̄.

B. Electromagnetic vector potential

The magnetic field should satisfy Biot-Savart’s law,

B = μ

4π

∫
J(r′) × (r − r′)

|r − r′|3 d3r′, (4)

where μ is the permeability and J is the electric current
density. In general, J includes the contribution the induced

currents in the normal metal and superconductors in addition
to that from the insulated current-carrying wire along the x
axis. However, we will make some assumptions in order to
simplify the analytical and numerical calculations. First, we
will assume that the width W and height H is smaller than
the Josepshon penetration depth. In this case, we can ignore
the screening of the magnetic field by currents inside the
normal metal [19]. Second, we will neglect the magnetic field
produced by the supercurrents produced inside the normal
metal. Third, we will assume that the magnetic field vanishes
inside the superconductors due to the screening currents.
These last two assumptions are widely used in the context
of hybrid structures with constant applied magnetic fields
[13,20,21] and has, in such conditions, been shown to give
good agreement with experimental results [22]. Finally, we
will assume that the part of the wire which is inside the
superconductors does not contribute to the magnetic field in
the normal metal.

The last two assumptions are inaccurate very close to
the wire. Close to the wire, the details of screening cur-
rents will be important for the magnetic field, but, far away,
we assume that the total contribution from the currents inside
the superconductor is zero. A more precise model could be
developed by taking into account screening currents inside
the superconductors and solving the Usadel equation self-
consistently with Maxwell’s equation and the superconduct-
ing gap equation inside the superconductors. However, we
are here interested in the solution far away from the wire,
and the details of the magnetic field near the wire should not
significantly alter the results. For this reason, we also model
the wire as being infinitely thin.

With the assumptions presented above, we get a current
density which is

J = Iδ(y)δ(z)[θ (x + L/2) − θ (x − L/2)]ex, (5)

where θ is the Heaviside step function. Inserting Eq. (5) into
Eq. (4) we get

B = μI

4πρ

(
L/2 + x√

(L/2 + x)2 + ρ2
+ L/2 − x√

(L/2 − x)2 + ρ2

)
eφ

(6)

for x ∈ (−L/2, L/2), where ρ =
√

y2 + z2 and eφ = (yez −
zey)/ρ. B = 0 for x < −L/2 and x > L/2. A vector potential
which satisfies B = ∇ × A is

A = μI

4π
ln

(√
(L/2 − x)2 + ρ2 + L/2 − x√
(L/2 + x)2 + ρ2 − L/2 − x

)

× [θ (x + L/2) − θ (x − L/2)]ex, (7)

as can be seen from insertion or calculated directly from Biot-
Savart law by using that ∇ × [J(r′)/|r − r′|] = J(r′) × (r′ −
r)/|r′ − r|3.

C. The Riccati parametrization

In the Riccati parametrization [23] of ĝR, the parameter
is the 2 × 2 matrix γ , and the retarded Green’s function is
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written

ĝR =
(

N 0
0 −Ñ

)(
1 + γ γ̃ 2γ

2γ̃ 1 + γ̃ γ

)
, (8)

where N := (1 − γ γ̃ )−1 and tilde conjugation is γ̃ (ε) =
γ ∗(−ε).

Since the superconducting correlations in our system are
spin singlet, we may write γN = antidiag(a,−a) and γBCS =
antidiag(b,−b), where γN and γBCS are the Riccati parameters
in the normal metal and superconductors, respectively. Substi-
tuting this into Eqs. (1) and (3), we obtain the dimensionless
equations,

∇2a = 2ã∇a · ∇a

1 + aã
+ 4(1 − aã)LeA · (aLeA + i∇a)

1 + aã
+ 2iLe(∇ · A)a − 2iεa, (9)

and

en · ∇a = (1 + ab̃)(b − a)

ζ (bb̃ + 1)
+ 2iaen · AeL, (10)

where L is the length which is used to define the Thouless
energy εT. The corresponding equations for ã and en · ∇ã are
found by tilde conjugating Eqs. (9) and (10).

D. Observables

As mentioned initially, a vortex is accompanied by a
nonsuperconducting core and a circulating supercurrent. Both
the superconducting order parameter and the supercurrent can
be extracted from the quasiclassical Green’s function. In the
following it will be useful to write:

ĝR =
(

g f

− f̃ −g̃

)
. (11)

There are only singlet correlations in the SNS system, so f =
antidiag( fs,− fs).

The local density of states for spin-band σ at energy ε and
location r can be written

Nσ (ε, r) = N0R {gσσ (ε, r)}, (12)

where N0 is the normal-state density of state at the Fermi
surface. In the normal metal, we can write Eq. (12) in terms
of a,

N (ε, r) := N↑(ε, r) + N↓(ε, r)

2
= N0

1 − aã

1 + aã
. (13)

In the cores of vortices, we expect N = N0 for all energies,
which happens when a(ε) ≡ 0.

The current density is [16]

j = N0eD

4

∫ ∞

−∞
Tr(ρ̂3[ǧ∇̄ǧ]K )dε. (14)

Inserting Eq. (11), using the relations ĝA = −ρ̂3ĝR†ρ̂3, ĝK =
(ĝR − ĝA) tanh(εβ/2), Eq. (14) can be rewritten

j = N0eD

2

∫ ∞

−∞
tanh

(
βε

2

)
Tr(Re[ f̃ †∇ f † − f ∇ f̃ ]

+ 2eA Im[ f f̃ − f̃ † f †])dε. (15)

Written in terms of the quasiclassical Green’s function, the
superconducting order parameter is

(r) := 〈ψ↑(r, 0)ψ↓(r, 0)〉

= N0

2

∫ ∞

−∞
fs(r, ε) tanh(εβ/2)dε. (16)

where ψσ (r, t ) is the field operator which destroys an electron
with spin σ at position r and time t, N0 is the normal-state
density of states and β = 1/kBT .

E. Numerics

The Usadel equation was solved numerically using a finite
element scheme. See, for instance, Ref. [24] to see how to set
up and solve the nonlinear Usadel equations in a finite element
scheme by the use of the Newton-Rhapson method. The
program was written in JULIA [25], we used linear hexehedral
elements, and JUAFEM.JL [26] was used to iterate through the
cells. Gauss-Legendre quadrature rules of fourth order were
used to integrate through the cells, and Romberg integration
was used to integrate over energy. See, for instance, Ref. [27].
Finally, forward-mode automatic differentiation [28] was used
to calculate the Jacobian.

III. RESULTS AND DISCUSSION

Here, we present first an analytical solution of the Usadel
equation in the weak proximity effect regime, then we show
numerically that the findings are also present in the full
proximity effect regime. Dimensionless quantities are used
in the analytics with distances being measured relative to
the length of the half-metal L, and energies being measured
relative to the Thouless energy εT = D/L2, where D is the
diffusion constant in the normal metal.

A. Analytics

Before solving the Usadel equation, we must determine the
solution in the superconductors. We will show that it suffices
to use the bulk solution,

ĝBCS =
[

θ (ε2 − |�|2)√
ε2 − |�|2

sgn(ε) − θ (|�|2 − ε2)√
|�|2 − ε2

i

]
(ερ̂3 + �̂),

(17)

in the superconductors when a certain condition is fulfilled.
Let λ (to be defined quantitatively below) be the length scale
over which the Green’s function recovers its bulk value in the
superconductor. The criterion for neglecting the inverse prox-
imity effect in the superconductors is then that the normal-
state conductance of the superconductors for a sample of
length λ is much larger than the interface conductance and
that the length of each superconductor is not small compared
to λ. We now proceed to prove this.

The vector potential (7) is zero inside the superconductors,
so the Usadel equation simplifies to

DSC∇ · (ĝR∇ĝR) + i[ερ̂3 + �̂, ĝR] = 0, (18)
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in the superconductor at x < −1/2. To show that we can use
the bulk solution, let

ĝR = ĝBCS + δĝ. (19)

This gives an equation for δĝ,

DSC∇ · ([ĝBCS + δĝ]∇δĝ) + i[ερ̂3 + �̂, δĝ] = 0, (20)

where we have used that ĝBCS solves Eq. (18) for a bulk
superconductor. Next, assume the inverse proximity effect to
be weak such that δĝ  ĝBCS. Using that ĝBCSĝBCS = 1, this
yields

DSC∇2δĝ + iĝBCS[ερ̂3 + �̂, δĝ] = 0. (21)

ĝBCS + δĝ must also satisfy the normalization condition
(ĝR)2 = 1, so

(ĝBCS + δĝ)2 = 1 ⇒ {ĝBCS, δĝ} = 0. (22)

Hence, using that [ερ̂3 + �̂, ĝBCS] = 0,

ĝBCS[ερ̂3 + �̂, δĝ] = (ερ̂3 + �̂)ĝBCSδĝ + δĝ(ερ̂3 + �̂)ĝBCS

= {δĝ, (ερ̂3 + �̂)ĝBCS}. (23)

Finally, from

(ερ̂3 + �̂)2 = ε2 − �2, (24)

we get that δĝ is an eigenfunction of the Laplacian,

∇2δĝ = λ−2δĝ, (25)

where

λ−2 = − 2i

DSC
[sgn(ε)

√
ε2 − |�|2θ (ε2 − |�|2)

+ i
√

|�|2 − ε2θ (|�|2 − ε2)]. (26)

We can choose the sign of λ to be such that R (λ) > 0.
Let LSC be the length of the superconductor in multiples of

the length of the normal metal. Using the boundary condition,

∇δĝ|r∈� = 0, (27)

where � is the boundary not interfacing the normal metal, we
get

δĝ(ε, x, y) = C[e−|x+1/2|/λ + e−2LSC/λ+|x+1/2|/λ],

(28)

where C is some function of y and ε to be determined by
the final boundary condition. From the remaining boundary
condition, Eq. (3), we get

C = λĝBCS[ĝBCS + δĝ, ĝN]

2(1 − e−2LSC/λ)ζSCLSC
. (29)

From Eq. (28), we see that R (λ) can be interpreted as
the penetration depth of δg. Note that R (λ) is bounded by
including the effect of inelastic scattering, which is performed
by the substitution ε → ε + iδ for some positive scattering
rate δ [29]. This ensures that 1/(1 − e−2LSC/λ) remains finite
as ε → �. Thus, we see from Eq. (29) that C, and, therefore,
δg, becomes negligible when

ζSCLSC/R (λ) � 1 (30)

provided that the length of the superconductor LSC is not small
compared to the maximal penetration depth max[R (λ)].

ζSC is proportional to the conductance of the whole
superconductor and, therefore, with 1/LSC. Therefore,
ζSCLSC/R (λ) is the ratio of the normal-state conductance of a
superconductor of length R (λ) to the interface conductance.
Taking the superconducting coherence length ξ as a measure
of the inverse proximity effect penetration depth R (λ), we see
that the criterion Eq. (30) is, indeed, experimentally feasible.
The equation is fulfilled for a low-transparency interface and
for a superconductor that is larger than the coherence length.
A similar calculation shows that we can use ĝBCS also in the
superconductor at x > 1/2.

Solving for the Riccati parameter in the superconductors
we get that γBCS = antidiag(b,−b) with

b = �

ε + i
√

|�|2 − ε2
θ (|�| − |ε|)

+ � sgn(ε)

|ε| +
√

ε2 − |�|2
θ (|ε| − |�|). (31)

The nonlinear Usadel equation does not have a general
analytical solution, but it can be solved analytically in an
approximate manner far away from the wire. If we assume the
proximity effect to be weak, we can keep only terms which
are linear in a, ã, and their gradients. In this case, the Usadel
equation (9) decouples

∇2a = 4eLA · (aeLA + i∇a) + 2ieL(∇ · A)a − 2iεa. (32)

Equation 32 can be further simplified when we only consider
regions where ρ � 1 with ρ =

√
y2 + z2. The solution of

Eq. (32) is constant in y and z when A = 0, and by assuming
this is approximately true when |eLA|  1, we can neglect the
terms ∂2

y a and ∂2
z a. Finally, we can simplify the calculations

further by Taylor expanding the vector potential,

LeA = −nπ
1

ρ
ex + O

(
1

ρ2

)
ex, (33)

where

n = −eLμI

4π2
. (34)

We keep only the first term in the Taylor expansion.
Equation (32) can now be solved exactly, and by applying

the linearized boundary conditions,

en · ∇a = (b + a[bb̃ − 1])

ζ (bb̃ + 1)
+ 2iaen · AeL, (35)

the solution can be written in the form

a = ceiφl +u(x−0.5)

(k − d )2ek − (k + d )2e−k
{(k − d )[ek(x−0.5)

+ ei δφ−ue−k(x+0.5)] + (k + d )[ek(0.5−x)

+ ei δφ−uek(x+0.5)]}, (36)

where

δφ = φr − φl , (37)

c = |b|
ζ (bb̃ + 1)

, d = (bb̃ − 1)

ζ (bb̃ + 1)
, (38)

u = −2π in

ρ
and k = √−2iε. (39)
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FIG. 2. Local density of states N relative to the normal-state
density of states N0 at energy ε = 0.5|�|, where � is the supercon-
ducting gap parameter. The lower left shows a cross section at x = 0
and the lower right shows a cross section at y = 0. Here, n = 1 and
the superconducting phase difference is φr = 0.

From Eq. (36), we see that a vanishes at x = 0 and i δφ − u =
i(2N + 1)π , where N is any integer. This happens at

ρ = 2n

1 + 2N − φr−φl

π

. (40)

This means that f and, hence,  vanish at these points. By
Taylor expanding a to first order around a root located at
(0, ρ̃ ), we find

a ∼ B1 cos(θ + α1) + iB2 cos(θ + α2), (41)

where x ∼ cos θ and ρ − ρ̃ ∼ sin θ, B2
1 = 5|k|2/4 − |k|d +

2d2, B2
2 = |k|2/4 + d2, α1 = tan−1[(|k|/2 + d )/(|k| − d )],

and α2 = tan−1(|k|/2d ). Hence, these roots have a phase
winding of 2π as is characteristic for vortices. Equation (40)
is our main analytical result as it predicts how the radius of
the vortex loops depends on the tunable parameters of the
system: the current through the wire and the applied phase
difference. Although it was obtained using approximations,
we demonstrate below that it matches the full numerical
solution of the exact Usadel equation very well.

Note that the radius ρ of the largest vortex loop given
Eq. (40) can be made arbitrarily large by letting φr − φl

approach π . Thus, for a given sample size L × W × H and
current I , there is a superconducting phase difference for

FIG. 3. Amplitude of the superconducting order parameter  for
n = 1 and superconducting phase difference φr = 0. The lower left
shows a cross section at x = 0, and the lower right shows a cross
section at y = 0.

which the vortex loop hits the surface and can be directly
detected experimentally.

It is expected that a change in the superconducting phase
difference will change the radii of vortex loops. This is be-
cause changing the phase difference is equivalent to changing
the applied supercurrent through the junction. The applied
current will be deflected by the circulating currents associated
with the vortices and, hence, produce a reactionary force
on the vortices. See, for instance, Ref. [30]. What is more
surprising, however, is that changing the superconducting
phase difference can make the vortices arbitrarily large so that
they can always be made to hit the surface. If this feature is
generally true for other systems with vortex loops, it could
prove useful for the study of systems containing vortex loops
which are less obviously controllable than the one considered
in the present paper but which are easier to design in a
laboratory. For instance, one possibility is to grow the normal
metal around a magnetic dipole. Reference [6] found that
vortex loops can form around magnetic dipole inclusions
in superconductors if the magnetic field is strong enough,
so there are reasons to believe that vortex loops can also
form around magnetic dipoles embedded in a SNS junction.
The magnetic field from a dipole can, unlike the magnetic
field from a wire, not be altered in strength. Nevertheless,
if the field is strong enough to produce vortices, altering the
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FIG. 4. Plot of the three different components of the supercurrent
ex · j (upper left), ey · j (lower left), and ez · j (lower right). The
lower half shows the value of the current on the surface in color,
and the upper half shows streamlines of the current with the current
strength indicated by the same color. Here, n = 1 and φr = 0.

superconducting phase difference could be a way to increase
the size of the vortex to the point where it touches the surface
and becomes directly observable.

B. Numerics

We now proceed to show numerical results in the full
(nonlinear) proximity effect regime. We have set the param-
eters |�| = 4εT, ζ = 3, W = H = 6L, and φl = 0 common
for all the numerical calculations. We include the effect of
inelastic scattering by performing the substitution ε → ε + iδ
where δ = 0.001|�| in order to avoid the divergence of ĝBCS

at ε = |�| [29].
Numerically, we find that vortex loops form at the locations

predicted by the analysis. There are circular paths around the
origin where the superconducting order parameter vanishes,
and the local density of states is equal to that of the normal
state. This can be seen in Figs. 2 and 3 which shows the
local density of states and the amplitude of the Cooper pair-
correlation function , respectively. Around these loops, there
are a circulating supercurrent as can be seen in Fig. 4, and a
phase winding in the order parameter of 2π . Figure 5 shows a
contour plot of ||, which shows the location of the vortices,
together with the circulating supercurrent j as well as the
phase of , which shows that there is, indeed, a phase winding
of 2π around the vortices.

We find that the positions of the vortex loops match with
Eq. (40) for vortices with radii that are between 2L and 3L.
Figures 6 and 7 show how the sizes of the vortex loops depend

π

−π

A
rg

(Ψ
)

H
ig

h
L
ow

C
ur

re
nt

FIG. 5. Plot of the phase of the superconducting order parameter
 on a the surface of a diagonally cut part of the normal metal, con-
tour plot of its amplitude ||, and streamlines of the supercurrent j.
Here, n = 1 and φr = 0.

on superconducting phase difference φ and magnetic-field
strength n, respectively. We find that increasing φ can make
the vortices arbitrarily large but does not increase the number
of vortices. Increasing n, on the other hand, also increases the
number of vortices, but the sizes grow only linearly with n.
Note that, as the vortex loops hit the surface, they curve so as
to hit normally to the surface. This is consistent with previous
results [6,31] and can be understood from the circulating
currents. There should be no current component normal to
the surface, and the only way for the current circulating the
vortices to adhere to this is if the vortices hit the surfaces at a
right angle.

IV. EXPERIMENTAL REALIZATION

Normal SNS junctions are created by vertically growing
first a superconducting material, such as niobium, then, a
normal metal, such as copper, and finally the same super-
conducting material. The layers are grown, for instance, by a
sputter deposition technique, such as direct current sputtering
[32] or radio-frequency sputtering [33]. The setup presented
here adds an extra complication by requiring an isolated
conducting nanowire to penetrate the system. One possible
way to achieve this could be to first grow a vertical insulated
nanowire and then grow the superconductor and normal metal
around it in a layerwise fashion.

Growing a wire is more complicated than growing a
plane because one must localize the growth to happen at the
tip of the wire, even though most of the surface area will
be on the sides. Nevertheless, growing vertical nanowires
has successfully been performed by methods, such as the
vapor-liquid-solid method [34–36] and template-directed
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FIG. 6. Contour plot of the amplitude of the superconducting order parameter  for n = 1 and various values of the superconducting phase
difference φr .

synthesis [37]. The vapor-liquid-solid method works by using
droplets of, for instance, gold which are a few angstroms in
width to localize the growth [35], and template-directed syn-
thesis works by having the wire grow inside a premade tem-
plate which can later be removed [37]. The vapor-liquid-solid
method has already been used to produce vertical surround-
gate field-effect transistors with a precision exceeding what
should be necessary for the system presented here [35].

Schmidt et al. [35] made nanowires using the vapor-
liquid-solid method which were 40 nm in diameter and 400
nm in length. This should be on the same length scale as
would be necessary for the system considered in this paper.
The superconducting energy gap of niobium is |�| = 30.5 ×
10−4 eV [38], which is equivalent to about 2.46 mm−1 in
natural units. The Fermi velocity and scattering time for
copper are about vF = 3.70 × 10−3 and τ = 10.8 μm, re-
spectively [39]. The diffusion coefficient is defined as

D := τv2
F

3
, (42)

so the diffusion coefficient for copper is about D = 49.2 pm.
In the numerics, we have used

|�| = 4εT = 4D

L2
, (43)

so

L = 283 nm (44)

which is on the same scale as what has been made with
the vapor-liquid-solid method. Of course, other metals and
superconductors could be used, giving different physical
lengths corresponding to the values being used in the
numerics here. Moreover, from the analysis, it seems vortex

loops would form also for other values of |�|/εT. The
calculation above is merely to show that the length scales
used here are not unreasonable compared to what has already
been experimentally achieved.

V. CONCLUSION

We have used quasiclassical Usadel theory to demonstrate
that controllable superconducting vortex loops can emerge in
a Josephson junction pierced by an insulated current-carrying
wire. The size and number of vortices depend on the phase
difference between the superconducting order parameter in
the superconductors φr − φl as well as the strength of the
magnetic field. The radius of the vortices can be made arbitrar-
ily large by tuning of the superconducting phase difference,
which means that they can always be manipulated so that they
intersect the surface. This makes them directly observable
by scanning tunneling microscopy, which has already been
used to detect normal vortices in proximized metals [14].
If this ability of the superconducting phase difference to
expand vortex loops to arbitrary sizes is a general feature
of SNS junctions, it could be used to detect vortex loops
in systems where controlling the magnetic-field strength is
not an option, such as in a system with a magnetic dipole
inclusion.
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