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Minimal-size real-space d-wave pairing operator in CuQO, planes
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A novel minimal-size pairing operator A};O with d-wave symmetry in CuO, planes is introduced. This pairing
operator creates on-site Cooper pairs at the four oxygens that surround a copper atom. Via the time evolution
of A;)O, an additional interorbital pairing operator A;p 4 With d-wave symmetry is generated that pairs fermions
located in a Cu and its four surrounding O atoms. The subsequent time evolution of AE a geNerates an intraorbital
d-wave pairing operator AZW involving the four O atoms that surround a Cu atom, as well as the d-wave
operator A;) traditionally used in single-band models for cuprates. Because we recover the larger size operators
extensively used in the three-orbital Hubbard model, we suggest that long-range order using the canonical
extended operators occurs together with long-range order in the new minimal operators. However, our minimal
d-wave operators could be more practical to study d-wave superconductivity because in the finite-size relatively
small systems accessible to computational techniques it is easier to observe long-range order using local
operators. Moreover, an effective model with the usual tight-binding hopping of the CuO, planes supplemented
by an attractive potential V in the d-wave channel is introduced. Using mean-field techniques, we show that a
paired ground state is stabilized for any finite value of V. We observed that the values of V' that lead to gap sizes
similar to those in the cuprates are smaller for d-wave pairing operators that include Cu d orbitals than those that
include only p orbitals. In all cases the gap that opens in the spectrum has standard d-wave symmetry. Finally,

a simpler effective model is introduced to study the phenomenology of multiorbital d-wave superconductors,

similar to how the negative-U Hubbard model is used for properties of s-wave superconductors.
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I. INTRODUCTION

The discovery of d-wave superconductivity in the high-
critical-temperature cuprates [1,2] started efforts to develop
effective Hamiltonians that would allow us to study d-wave
pairing in the same way as the negative-U Hubbard model
allows the study of s-wave pairing in standard BCS super-
conductors [3-5]. Previous efforts focused on single-orbital
systems with on-site Coulomb repulsion together with an
effective attractive nearest-neighbor potential [6,7] or hard-
core dimers [8] or via the phenomenological addition of
a term proportional to the square of the nearest-neighbor
hoppings [9]. These models were difficult to study, parame-
ters needed to be fine-tuned, and actual numerical evidence
of long-range d-wave pairing correlations has been elusive
[10]. The contribution of orbital degrees of freedom to the
symmetry of the pairing operator came to the foreground
when superconductivity was observed in iron-based pnictides
and selenides [11-14], and recently, an effective model with
on-site interorbital attraction was presented [15]. While rel-
atively easy to study, interorbital same-site pairing operators
are considered to be less likely to develop long-range order
than their intraorbital counterparts involving the same orbital
but at different sites. For all these reasons, it is still important
to find alternative and practical intraorbital pairing operators
with d-wave symmetry.

In addition, recent angle-resolved photoemission experi-
ments using BiySr,CaCu,;0g4s indicated a novel “starfish”
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shape of the superconducting pairs with a very short length—
of the order of one lattice space—in the antinodal direction
[16]. This unexpected result appears to be doping indepen-
dent, and it may offer clues on the local structure of d-wave
pairs in the strong-coupling regime. For us these experiments
provide additional motivation to reconsider the local form of
the d-wave pairing operators in the cuprates.

Most previous attempts to construct same-orbital effective
d-wave models, analogous to the U < 0 Hubbard model for
d-wave, relied on single-orbital systems with electrons placed
on sites of a square lattice that mimic only the coppers. In the
present paper, we aim to explore whether effective models for
d-wave superconductivity can be constructed using, instead,
the oxygen locations in the more realistic CuO, lattice. It
is well known that holes tend to reside on oxygens due to
the charge transfer nature of the cuprates. However, the vast
majority of theory efforts in this context rely on one-orbital
Cu-only models, such as the #-J and one-orbital Hubbard.
Only recently have computational efforts to study the full
CuO; models, with both Cu and O incorporated, been carried
out, and interesting results such as stripes have already been
unveiled in this context [17—-19]. Thus, our focus and main
question addressed are timely: can we find an effective model
for d-wave superconductivity using only the oxygens of a
CuO, lattice, namely, only the atoms placed at the bonds of
said square lattice? Moreover, in searching for the most com-
pact form for this pairing operator we will address, as a bonus,
the recent photoemission results in the cuprates that unveiled
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very small Cooper pairs, at least in the antinodal directions
[16]. Our overarching goal can be framed similarly to early
studies within one-orbital models that attempted to construct
quasiparticle operators with a larger quasiparticle weight Z
than those of the usual bare operators (i.e., better “antennas”)
and thus derive pairing operators that could produce stronger
signals in computational studies [20].

This paper is organized as follows: in Sec. II the models
traditionally used to study the cuprates, as well as the d-wave
pairing operators previously investigated, are discussed. Our
new minimal d-wave pairing operator in the CuO, planes is
introduced in Sec. III, while in Sec. IV additional d-wave
pairing operators, including the more standard extended ones,
are deduced by calculating the time evolution of the minimal
operator. Both the minimal and some extended pairing op-
erators are studied at the mean-field level in Sec. V, and a
simple effective model is introduced in Sec. VI. Section VII is
devoted to our conclusions.

II. MODELS AND PREVIOUSLY USED d-WAVE PAIRING
OPERATORS FOR CUPRATES

It is widely accepted that a realistic model to describe
CuO; planes is a three-orbital Hubbard model that includes
the d,»_» orbitals at the coppers and the p, orbitals at the
oxygens at a distance [1/2 from the coppers (lattice constant
units), with i = x or y [21], i.e., along the two directions. The
Hamiltonian is

Hspy = Hrg + Hin, (D
where
Hrp = —tpq Z ai l+ﬂ di,a + H.c.)
i,pn,o
_tl’l’ Z 1uv H—” Ma(pH-%,v,a +pi—g,v,a)
+H.c.]
T DR DRI DI R ey
i i ’ i
and

n’
Hine = Uy anTn1¢ + Up Z n1+ A lJrM L 3

i,u,o

The operator d;fo creates an electron with spin o at site i of the

copper square lattice, while plr b creates an electron with
2

spin o at orbital p,, where ;1 = x or y, for the oxygen located
ati—+ % The hopping amplitudes #,; and #,, correspond to
the hybridizations between nearest-neighbor Cu-O and O-O,
respectively, and (u, ) indicate O-O pairs connected by ?,,,
as shown in Fig. 1. n” o (nf ) is the number operator for
p (d) electrons with spin o, and €; and €, are the on-site
energies at the Cu and O sites, respectively. The Coulomb
repulsion between two electrons at the same site and orbital
is Uy (U,) for d (p) orbitals. The signs of the Cu-O and O-O
hoppings due to the symmetries of the orbitals is included
in the parameters o, and o] i.uv and follow the convention
shown in Fig. 1. Finally, u, is the electron chemical potential.

_tpd +tpd

v
_de

FIG. 1. Schematic drawing of the Cu d,»_,» orbitals at the copper
sites of the square lattice, with the sign convention indicated by the
colors (red for + and blue for —). The oxygen p, orbitals with their
corresponding sign convention are also shown, located at the Cu-O-
Cu bonds. The sign convention for the #,, and f,, hoppings is also
presented.

The hopping parameters are those much used for the cuprates,

e, t,g =13 eV and t,, = 0.65 eV; on-site energy €, =
—3.6 eV [22], and Acr = €4 — €, which is positive (¢; = 0)
[23], is the charge-transfer gap.

A. Single-orbital d-wave operators

Because experiments indicate that the Fermi surface of the
cuprates is determined by a single band [24-27] and, theo-
retically, a mapping of the three-band Hubbard model to the
t-J Hamiltonian can be obtained via Zhang-Rice singlets [28],
using only one band is appealing. In fact, due to their relative
simplicity, the study of single-orbital models has prevailed in
the cuprates. As a result, the simplest pairing operators with
d-wave symmetry are extended in the sense that they involve
nearest-neighbor Cu sites [29,30], without the oxygens in
between. Zhang and Rice studied the addition of one hole
in an undoped three-orbital Hubbard model using a CuOy
cluster but neglecting the O-O hopping. They found that the
hole occupies a symmetric linear combination involving the
four O atoms around a Cu and forms a spin singlet together
with the hole in the central Cu [28]. They also showed that
the energy of the small cluster with two extra holes in the O
orbitals was higher than the energy of two separated O holes.
The next step was to construct Wannier functions combining
the single-cluster symmetric single-hole plaquette states and
obtain the effective single-orbital low-energy model, leading
to the #-J model. As discussed earlier, the simplest d-wave
pairing operator in the 7-J (and one-orbital Hubbard) modes
involves nearest-neighbor sites and has the well-known form

ALH = FOWuc)p ol o “)

w.o

where ¢ , creates an electron with spin o at site j of the Cu
square 1att1ce [see Fig. 2(a)], y, =1 (—1) for p = %x (Fy)
and f(o)=1(=1)ifo =1 (}).
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FIG. 2. Schematic drawing of previously used d-wave pairing
operators in the CuO, planes. Circles indicate the Cu d-orbital sites,
while red (blue) squares indicate the O py (py) orbital sites. Solid
symbols indicate atoms where the particles forming the Cooper pairs
are located, and arrows indicate the spin of the electrons and holes in
the pair. (a) In single-orbital approximations to the CuO, planes the
Cooper pairs are assumed to be primarily located in nearest-neighbor
Cu sites via the operator AD (b) In the three-orbital Hubbard model
the d-wave pairing operator AIHB adds Cooper pairs involving py
and p, orbitals, in addition to the Cu orbitals as in (a) not shown in
this panel for clarity. The individual Cooper pairs are encircled with
ellipses. The relative phases are positive along x and negative along y.

B. Three-orbital extended d-wave operators

Note that the empty sites (holes) in the effective #-J model
contain Zhang-Rice singlets (ZRSs), which means that the
components of the Cooper pair in Eq. (4) are created on
top of the ZRSs. The first numerical calculations studying
pairing were performed in single-orbital models [29], and
when, later on, pairing was numerically evaluated in three-
orbital Hubbard models, the pairing operators used [18,31,32]
were straightforward generalizations of Eq. (4) [see Fig. 2(b)]
involving several sites, such as

AL =Y fWuld,, i _,
n,o

t t
+ pj+ﬂ+x/2,x,apj+x/2,x,7(f

t t
F Pitpty/2o Pivy/2y—ol ®)

This operator creates electrons that form intraorbital pairs
whose d-wave symmetry is determined by y,. It considers
that Cooper pairs are formed by one electron (or hole) in a
Cu and another in its neighboring Cu atoms, with a similar
consideration for electrons (or holes) in the p orbitals. It is
in this sense that this operator is intraorbital: the pair terms
involve either Cu or O. In real space the minimum pair created
by the pairing operators in Eqgs. (4) and (5) involves five lattice
sites in a single-orbital model context or several unit cells
(21 Cu and O sites) for the three-orbital case. Such extended
pairing operators [see Figs. 2(a) and 2(b)] appear to be at odds
with the recent experimental results of Ref. [16], where the
observed pairs have a minimum real-space extension of the
order of the lattice constant along the antinodal direction. This
photoemission experiment offers motivation to investigate
whether in the CuO, planes it is possible to construct a more

local d-wave pairing operator involving far fewer sites and
ideally just one unit cell.

III. MINIMAL d-WAVE PAIRING OPERATOR

As explained, in undoped systems and in the Zhang-Rice
approximation a doped hole is placed at an oxygen and forms
a ZRS with the hole at a copper. A second doped hole is
expected to form another ZRS with a different Cu. The one-
orbital pairing operator in Eq. (4) can involve only electrons at
two neighboring Cu sites, each with its own ZRS. However, in
the three-orbital Hubbard model formulation there is no clear
relation between the pairing operator and the two neighboring
ZRSs. Equation (5) just considers that the minimal Cooper
pair can be formed by fermions at a d (p,,) orbital and at the
four nearest-neighbor Cu (O) atoms, thus involving five unit
cells and many sites.

As discussed above, Zhang and Rice found out that it
would be unlikely that two holes would share the O orbitals
of one single plaquette. However, calculations including ¢,,
hopping and the p-d Coulomb repulsion, both neglected in
the ZRS derivation, indicated that an effective attraction be-
tween holes in the oxygens of a single plaquette may develop
[33,34]. Thus, the possibility that two holes could form a pair
in the O orbitals in a single plaquette deserves to be explored.

First, we will construct an on-site d-wave pairing operator
which considers only doubly occupied O sites [see Fig. 3(a)],
in analogy with the on-site attractive s-wave pairing operator.
It has the form

1
F o i i
Appl) = 3 2 F@VuPlsp o P

w.o

_ : i
= VuPlpt Piasm- ©)
m

Although the operator involves doubly occupied sites, each
one apparently s wave, since the operator involves four oxy-
gens around the same copper, a linear combination can be
made that renders the full operator d-wave.

IV. TIME-EVOLUTION OF THE PAIRING OPERATOR

In previous literature [35,36] a relationship between the on-
site and the extended s-wave pairing operators in the single-
orbital Hubbard model was obtained by calculating the time
evolution of the on-site pairing operator. Following similar
steps, we can now calculate the time evolution of the on-site
minimal d-wave pairing operator AEO proposed in Eq. (6) for
the three-orbital Hubbard model Eq. (1). We found that

daly

—i

dt

= [Hspu, Aby]

= 2(€p — 1e)Dpg = UpAhy = 1pa Ay O
where AI) nd is another d-wave pairing operator defined in one

unit-cell CuO,. AI) , forms Cooper pairs with one fermion at
a Cu and the other in an antisymmetric linear combination of
the p, orbitals in its four nearest-neighbor O atoms [Fig. 3(c)],
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FIG. 3. Schematic drawing of the minimal intraunit cell d-wave
pairing operators for the CuO, planes that were not explored before
in three-orbital Hubbard models to our knowledge. Circles indicate
the Cu d orbitals, while the red (blue) squares indicate the py (py)
orbitals at the O atoms. Solid symbols indicate sites where the
particles forming the Cooper pairs are located, and arrows indicate
the spin of the electrons and holes in the pair. (a) On-site intraorbital
(i.e., same oxygen) d-wave operator A;)O, defined in Eq. (6). Here
the two members of the Cooper pair are at the same oxygen,
linearly combined, involving the four possible oxygens. (b) More
extended nearest-neighbor intraorbital d-wave operator Azr)pp where
the Cooper pair is formed by two electrons in the same p, orbital,
either x or y, at a distance of one lattice spacing, forming a spin
singlet and linearly combining the vertical and horizontal directions
to form a d-wave operator. (c) Interorbital (dp) d-wave operator
A; ,a With pairs involving a particle at the central Cu and the other at
a neighboring O, linearly combined to form a d-wave. (d) Plaquette
d-wave intraorbital pairing operator A}')p,a , in the CuO, plane. In
(a)—(d), the Cooper pairs are encircled with ellipses. Relative phases
are positive along x and negative along y, leading to a d-wave.

and it is given by

ATDpd(j) = Zf“yﬂaj,l*dj'topL—ﬂ/Z,ﬂ,—a‘ ®)

w.o

Since in the ground state the average value of the pairing
operators is time independent, from Eq. (7) we see that the
average values of the two pairing operators must be related. In
addition, by evaluating the time evolution of the new interor-
bital minimal pairing operator A g TDore extended intra-
and interorbital pairing operators with d-wave symmetry are
obtained. For example, from the commutator between A; ’
and Hyq, the t,; hopping term in Higy [37], we obtain the
nearest-neighbor d-orbital pairing operator in Eq. (4) depicted
in Fig. 2(a) and an additional intraorbital pairing operator

given by
t oy — (ot t t t
Apppd) = (pj‘er/Z,x,ijfx/Z,x,l = Pitxsax | Pi—xj2x1)
ot i o i
Pjtyr234Pi-y/2yt = Pity/2y i Pieyizyt)

_ i i
= D Lo VuPiipo P o ©)

w.o

which is another By, intraorbital pairing operator with the
two particles located in the same orbital but at different
oxygens [see Fig. 3(b)] and it is analogous to the extended,
nearest-neighbor, s-wave operator defined in the context of
the cuprates [29,35]. In addition, the commutator between
A;p , and Hp,, the 7,, hopping term in Hspy, leads to an

extended version of A; , that forms pairs with one fermion
on a d orbital at site r and the other at orbital p, (p,) at
distance r +y + x/2 (r + x +y/2) and symmetrical points
[38]. The commutator of this extended operator with the
t,q¢ hopping term in Hspy finally leads to p-orbital pairing
operators that combine fermions in py (py) orbitals along
the y (x) direction which are the plaquette pairing operators
mentioned in Ref. [16] and shown in Fig. 3(d). They are given
by

A,T)p,aq(j) = (P;+x/2,x,¢p;+y+x/z,x,¢
- p;+x/2,x,ip;+y+x/2vva)
- (p;+y/2,y,¢p;+x+y/2,y.¢
- p}ﬂ/z,y,LPJTHH/Z,Y,T)

_ T t
—ZfffVupj+ﬂ/2,u,apj+;1+ﬂ/2,u,—o’ (10)
n,o

where it =x (y) if uw =y (x). We also notice that the p
contribution in the standard d-wave pairing operator in Eq. (5)
results from a combination of the intraorbital p pairing opera-
tors Agplaq and A}'Jpp.

The relationships between the minimal and compact, but
more extended, d-wave pairing operators in Fig. 3 deduced
from the time-evolution calculations suggest that if the Hamil-
tonian indeed has a superconducting ground state with d-wave
symmetry, we would expect that all the pairing operators with
that symmetry will develop long-range order simultaneously.
In practice we expect the long-range behavior of local oper-
ators to be easier to study in the finite, often small, clusters
accessible to numerical studies. For this reason, we will focus
on the d-wave pairing operators introduced in Fig. 3, and
we will compare them with the traditional ones presented in
Fig. 2.

V. EFFECTIVE MODEL FOR d-WAVE PAIRING

To show explicitly that the pairing operators in Egs. (6),
(8), (9), and (10) indeed lead to d-wave superconductors we
will study the phenomenological Hamiltonian given by

Hsgpw = Hip + Hin, (1D

where the tight-binding term is the canonical of the three-
orbital Hubbard model for cuprates [Eq. (2)] and the inter-
acting portion of the Hamiltonian for the on-site same-oxygen
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pairing, as in Dy, is given by
0 _ T T
Hint - Z yﬂf(a)[ijrﬂ/Z,p.,aijrﬂ/Z,p.,foA
Jo
+ A*Di-p/2,1,-0 Pi-p /2.0 ]- (12)

A and A* are parameters that determine the strength of the
superconducting condensate, and they also contain the attrac-
tive coupling V usually employed in these phenomenological
models. For the case of the interorbital extended pairing ATDP y
the interaction term is given by

(pd) oot
Iiinlt7 =- Z ylf-f(g)aj’ﬂ[dj,apj‘—p./lu,—aA

Jopo
+ A*pjf,u/Z,u,fadj,a]' (13)

For the intraorbital extended pairing AIEW the interaction term
is given by

op) ; ;
Hy” = =3 Yl @P}s a0 Pipn—o D

J.o
+ A" Pi— 2.~ Pt /20015 (14)
while for the plaquette operator ATDplaq the interaction is given
by
(plaq) __ T F
H" = = 3 vl @l 0P po—o D
J.o
+ A Pi—pj2.p—o Piti/2.m0 ) (15)

A. Mean-field analysis

In this section we perform a canonical mean-field analysis
of the effective pairing models now using our more compact
d-wave operators. As usual, via a Fourier transform we can
work in momentum space, which is more convenient. Thus,
Htg can be written as

Hrp(k) =) @} &P, (16)
k,o

where @ . = (pi(k), p}(k), d"(k)), and

€ —4typSySy  —2itpaSy
&k = | —4tppsesy € —2ityqsy |, 17
2itpdsx 2it,,dsy 0

where s; indicates sin(k;/2), with i = x or y.

Note that in the electron representation the undoped case
is characterized by one hole at the Cu and no holes at the
O, which corresponds to a total of five electrons per CuO,
unit cell (the maximum possible electronic number in three
orbitals is six). The orbital-resolved tight-binding bands along
the I'-X-M-I" path in the Brillouin zone calculated using a
100 x 100 square lattice (with Cu atoms at the sites of the
lattice) is shown in Fig. 4. The dashed black line is the
chemical potential u, for the important electronic density
(n) =5, and the corresponding Fermi surface is given in the
inset. An analysis of the orbital composition of each of the
three bands, shown by the color palette, indicates that the top
band is purely d at the I" point and, moving away from T,
becomes hybridized with the p orbitals such that its d content

0.8

0.6

0.4

0.2

. . i . 0
r X k M T

FIG. 4. Band dispersion for the tight-binding term of the CuO,
Hamiltonian. The orbital content is displayed with red (blue) indi-
cating d (p) character. The dashed line indicates the position of the
chemical potential (or Fermi level Er) at density (n) = 5 (undoped
case). The Fermi surface at this density is in the inset. Colors
indicate the orbital content of the bands, with the palette on the right
denoting the weight of the d component (e.g., 1 means 100% copper
d, and the oxygen weight is simply 1 minus the copper weight).

becomes 78% at X and 56% at M. The two bottom bands have
pure p character at the Brillouin zone center. The middle band
achieves 43% d character at M, while the lower band has 21%
d character at X. Note that the tight-binding Fermi surface,
shown in the inset, has the qualitative shape expected in the
cuprates from both the theory and experimental perspectives.
However, its orbital content is only about 75% d on average,
showing that the oxygen component is not negligible even if
only one band crosses the Fermi level.

Note that & can be written in terms of the 3 x 3 Gell-
Mann matrices [39] A; for cases i = 1 to 8, while Ay is the
3 x 3 identity (see the Appendix for an explicit form of these
matrices). This is useful in order to highlight the symmetry of
its different terms:

2 V3
& = gép)uo + Tfp)xg + 2tdp(sxA5 + Sy)\.7) — 4tppsxsykl.
(18)
Since the CuO, planes transform as D4, and the Hamil-
tonian has to be invariant under the group operations, i.e.,
it has to transform as the A, representation of the group,
we notice that in Eq. (18), Ao and Ag transform like Ay,
while A; transforms like By, and (As, A7) transform like the
two-dimensional representation E, since they are combined
with (sy, s,), which transforms according to E,.
The interacting term of the Hamiltonian can be written in
terms of a pairing matrix P’ for the on-site same-oxygen case

[Eq. (12)]:

2A 0 0
PYP=10 -2a o], (19)
0 0 0
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which can be written in terms of the A; matrices as
P = 2Ax;. (20)

For the extended pairing [Eq. (14)] the corresponding
matrix P(*P) is given by

2A cos(ky) 0 0
P = 0 —2Acos(ky) O],  (21)
0 0 0

which can be written in terms of the A; matrices as
[cos(k,) — cos(ky)] [cos(ky) + cos(ky)]
—Xo — A3
3 2
3 k) — k
. «/_[COS( ) — cos(ky)] )»8] .

PP = ZA[

5 (22)

For the plaquette pairing operator [Eq. (15)] the corre-
sponding matrix P("“? is given by

2A cos(ky) 0 0
Pliplaq) — 0 —2Acos(ky) 0], (23)
0 0 0

which can be written in terms of the A; matrices as
[cos(ky) — cos(ky)]
3 Ao

N [cos(ky) —; cos(k,)] "

N V3[cos(k,) — COS(kX)]A8:|.

(plaq)
pirea :2A|:

; (24)

For the interorbital pairing operator A,gp , the correspond-
ing matrix P*?) [Eq. (13)] is given by

0 0 2Ais,
P =1 o0 0 —2Ais, |, (25)
2Ais,  —2Ais, 0

which can be written in terms of the A; matrices as
PPD = 2iA(sihg — 5yh6) (26)
k - x4 y/N6)-

Thus, the effective interaction term can be constructed in
terms of a spin-singlet pair operator that transforms according
to the irreducible representation By, of Dy, [40]. In the case
of P the symmetry of the pairing term is given by the
matrix A3, which transforms according to Bj,. For PP in
Eq. (22) note that the terms that contain Xy and Ag, which
transform like Ay,, are multiplied by cos(k,) — cos(k,), which
transforms like Bj,, while the term that contains A3,
which transforms like Big, is multiplied by cos(k,) + cos(k,),
which transforms like Aj,. A similar analysis for P*“%) in
Eq. (24) shows that it also transforms like Bj,. The interorbital
pairing operator also transforms as Bj, because it combines
(8x, 8y) with (A4, Ag), each transforming like E,. Finally,
for completeness, we present the pairing matrices for the
traditional d-wave operator of the single- and three-orbital
Hubbard models presented in Eqs. (4) and (5). For AZ the

corresponding matrix PP is

0 0 0
0 0 0 , (27)
0 0 2A[cos(ky) — cos(ky)]

D) _
R =

which can be written in terms of the A; matrices as
R = 2A[cos(k,) — cos(k)I(ho — /3hg),  (28)

and for A} .. the corresponding matrix P is

S = O

1 0
PP =2 Alcos(k,) — cos(k,)] 8 (1) , (29)

which can be written in terms of the A; matrices as
PP =2 Alcos(ky) — cos(ky)ho. (30)

In summary, for the canonical widely used operators the
By symmetry is just directly given by the factor cos(k,) —
cos(ky), while for our operators deducing the d-wave charac-
ter requires a careful analysis.

Another way of verifying the d-wave symmetry of the pro-
posed pairing operators is the calculation of the band structure
via the resulting 6 x 6 Bogoliubov—de Gennes Hamiltonian
given by

Hpag = Y W HY W, 31)
k

with the definitions
W = (P 1o Py G Pl Pteyt-doiy)  (32)
and

HMF _ (Hr(K) — teho)
LU @)K

Lo o) e
—(Hr(K) — ftero))’

where the label o takes the values 0, pp, pd, plag, D, or D3B
and we have included the chemical potential x, in the tight-
binding term to ensure that the gap opens at the Fermi surface.

Diagonalizing the mean-field Hamiltonian, we find that a
d-wave gap opens at the chemical potential. The resulting
band structures for « = 0 and pp are shown in Fig. 5 for a
100 x 100 lattice at a density of 4.9 electrons per unit cell (5
electrons per unit cell corresponds to the undoped case) along
the main directions in momentum space for various values of
A. Results for A = 0 are shown to indicate the noninteracting
Fermi surface. The results for the on-site pairing operator Dy
(o = 0) are shown in Fig. 5(a), while those for the extended
operator D, (o = pp) are in Fig. 5(b). In Figs. 5(c) and 5(d)
it can be seen that for both A = 0.3 and 0.5 a gap opens at the
antinodal position X but the node along the diagonal direction
I'-M remains, indicating the d-wave symmetry of the gap, as
expected [41]. In addition, note that the interaction distorts
only the bands close to the Fermi surface, and we observe
a very flat dispersion of the band that defines the gap at X,
in agreement with recent experiments [16]. The results for
the plaquette, interorbital, and traditional operators look very
similar and are not shown explicitly.
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FIG. 5. Band dispersion for the mean-field Hamiltonians with
B, pairing. (a) On-site Dy and (b) extended D,, for the indicated
values of the pairing order parameter A at a density of 4.9 electrons
per unit cell. (c) Detail of the areas inside rectangular boxes in (a);
(d) detail of the areas inside rectangular boxes in (b). The dashed
lines indicate “shadow” bands.

B. Stability of the d-wave state

The next aspect to explore is the stability of the pairing
state with a finite gap. To study this issue we need to evaluate
the energy of the mean-field Hamiltonian vs A for different
values of the pairing strength V', where A =V (p_k .1, | Pk 1)
for the on-site pairing Dy, which we assume is the same for
all values of u. The total energy is

2

. A2N
E=) 1) () —po)—Ed) |+ ——, (34
k i=1

where ¢€;(k) are the eigenvalues of the tight-binding term, E;
are the three negative eigenvalues of the mean-field matrix
(where the chemical potential has been included), and N
is the number of sites of the large but finite cluster used.
The appropriate fermionic operators need to be used in the
expression of A for the remaining d-wave pairing operators.
We have observed that any finite value of V stabilizes
the proposed pairing states, similar to what happens in the
negative-U Hubbard model. The small values of A that mini-
mize the energy for the different values of V' are indicated with
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FIG. 6. Total energy versus A at various values of V for (a) the

on-site Dy and (b) the extended D,, pairing operators. Arrows
indicate the minima in the energies. A and E are in units of eV.

an arrow in Figs. 6(a) and 6(b) for the pairing operators Dy and
D,,. Experimentally, the value of the superconducting gap in
the cuprates ranges from 20 to 40 meV [42]. Since the gap in
our model is equal to 2A, we see from Fig. 6 that V ~ 2.4
(V ~ 3.6) provides a reasonable value of A for the minimum
energy for on-site (extended) pairing. While all the d-wave
pairing operators open a gap in the density of states as soon as
V is finite, we observed that all the pairing states that include d
orbitals produce larger gaps than the pure p-orbital operators
at a fixed value of the attraction V. This becomes clear as we
obtain the value of V needed in each case to open a gap similar
to the one observed in the cuprates. In Table I we present the
values of the attraction that stabilizes a gap of 20 meV in each
case, and it can be seen that V < 1 eV (V > 1 eV) is needed
for operators that (do not) involve d orbitals.

Thus, the mean-field results appear to indicate that pairing
operators that involve the d orbital need a much smaller
attraction to produce a superconducting gap similar to the
one observed in the cuprates. This is probably due to the fact
that in the mean-field calculations the gap opens around the
noninteracting Fermi surface, which, as shown in Fig. 4, is
mostly a d band. In the cuprates, however, it is expected that
the band that forms the noninteracting Fermi surface would
generate upper and lower bands due to the Coulomb repulsion
at the Cu, and the Fermi surface upon doping will occur in a
p-d hybridized band [43], identified as a Zhang-Rice band in
photoemission [24,44—46]. Due to the higher weight of the p
orbitals in this band, it is expected that the p-based compact

TABLE 1. Va_y mev indicates the value of the attraction that
produces a total gap of 40 meV for the corresponding d-wave pairing.

Operator label Va=20 mev (€V)
Dy 2.38
D,, 3.68
Dptag 3.50
Dy 0.50
Dp 0.13
Dpsp 0.15
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d-wave order parameters proposed here may work better than
the traditionally used pairing operators [47].

VI. PHENOMENOLOGICAL MODEL

Finally, if we replace A by 2V y, pj+o,2,v,) Pj+9/2,v,4 instead
of the average value of the pairing operator in Eq. (12), we
obtain a phenomenological interaction that should promote
the on-site d-wave pairing Dy given by

H; int

_ i i
= =4V Y VWPt Pr A P02 Py 200
Jopv

= — 4V Y migp2p i)
Jou

T F
+4V Z Dips2,u 1 Pi+9/2v. 1 Py py2,p, | Pi+0/2,0.1 - (35)
J.uF#v

The first term is an effective on-site attraction in the O sites,
while the second term involves the four O atoms that surround
the Cu at site j and is repulsive. While it is unlikely that terms
of this form could be dynamically generated by the long-range
Coulomb repulsion and a short-range attraction induced by
antiferromagnetic fluctuations, it is important to remember
that the electron-phonon interaction in BCS superconductors
does not lead to the instantaneous on-site attraction of the
negative-U Hubbard model. However, this model has been
an important phenomenological tool to study the behavior of
s-wave superconductors, both with weak and strong attraction.
In fact, numerical studies of the negative U Hubbard model
show that in the weak-coupling regime in which the Cooper
pairs are very extended in real space, the extended s-wave
pairing operator is more enhanced than the on-site operator,
despite the fact that both develop long-range order. This
behavior is reversed in the strong-coupling limit in which
the pairs are localized, and thus, the on-site pairing operator
prevails [48]. Thus, it is possible that the Hamiltonian here
proposed could play a similar role but for d-wave supercon-
ductors. In order to observe long-range order with this very
local pairing operator it may be necessary to use a very large
value of V to allow for a higher p-d hybridization at the Fermi
surface. In addition, we want to point out that the negative-U
Hubbard model has been simulated using optical lattices, but
it has been very challenging to do the same for the repulsive
case, and thus, the observation of d-wave superconductivity
in these lattices has been elusive [49]. Simulating the present
phenomenological model, with an explicit attraction, via opti-
cal lattices may offer an alternative avenue towards this goal.

VII. CONCLUSIONS

Summarizing, in this effort intracell CuO,, three intraor-
bital and one interorbital, pairing operators with d-wave

symmetry have been proposed for the high-critical-
temperature cuprates. These operators are more local (more
compact in size) than those previously employed in numerical
studies, and thus, they may produce a stronger signal when
their long-range behavior in finite systems is studied with
numerical many-body techniques. These operators can be
used in models for the CuO; planes that include longer-range
hoppings or additional orbitals [50]. In addition, they may
be able to account for the small size of the pairs recently
experimentally observed in the cuprates via angle-resolved
photoemission methods. At the mean-field level, the flatness
of the band that forms the gap at the antinodes is reproduced,
and it is demonstrated that the size of the superconducting gap
experimentally observed is obtained even with a moderate
attraction [51]. The next step would be to evaluate more
properties of these pairing operators at the mean-field
level and, even more importantly, to calculate their pairing
correlations in the three-orbital Hubbard model employing
unbiased computational techniques.
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APPENDIX: A; MATRICES

The A; matrices used in the text are presented here:

1 0 O 0 1 O
=0 1 0], =1 0 0],
0 0 1 0 0 O
0 —i O 1 0 O
Mm=]|i 0 0], A= -1 0],
0O 0 O 0O 0 O
0 0 1 0O 0 —i
M=]0 0 0], As=(10 0 O],
1 0 0 i 0 O
0 0 O 0O 0 O
)\6— 0 O 1 s )\72 0 O -],
0O 1 0 0o i O
1 1 0 O
rq=—10 1 O
30 0 —2
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