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In this paper, we study the switching properties of the dynamics of magnetic moments that interact with an
elastic medium. To do so, we construct a Hamiltonian framework that can take into account the dynamics in
phase space of the variables that describe the magnetic moments in a consistent way. It is convenient to describe
the magnetic moments as bilinears of anticommuting variables that are their own conjugates. However, we show
how it is possible to avoid having to deal directly with the anticommuting variables themselves, only using
them to deduce nontrivial constraints on the magnetoelastic couplings. We construct the appropriate Poisson
bracket and a geometric integration scheme that is symplectic in the extended phase space and that allows us
to study the switching properties of the magnetization, which are relevant for applications, for the case of a
toy model for antiferromagnetic NiO, under external stresses. In the absence of magnetoelastic coupling, we
recover the results reported in the literature and in our previous studies. In the presence of the magnetoelastic
coupling, the characteristic oscillations of the mechanical system have repercussions on the Néel order parameter
dynamics. This is particularly striking for the spin accumulation, which is more than doubled by the coupling to
the strain; here as well, the mechanical oscillations are reflected on the magnetic dynamics. As a consequence of
such a stress-induced strain, the switching time of the magnetization is slightly faster, and the amplitude of the
magnetization is enhanced.
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I. INTRODUCTION

With the emergence of spintronics, attention has now been
focused on the theoretical understanding and experimental
manipulation of the properties of magnetic materials at ever
shorter length and time scales. In this context, antiferromag-
nets (AFs) are the magnetically ordered materials that appear
to be among the most promising candidates for realizing
fast spintronic devices with very low power consumption [1].
Therefore, quantitative modeling of spin transport is also of
topical interest.

Recent progress in describing spin transport and spin-
transfer torque (STT) effects in such AF devices has paved
the way toward developing multilevel memory devices with
switching speeds, which could exceed those of devices made
of ferromagnetic materials and semiconductors [2]. Moreover,
reversible strain-induced magnetization switching in ferro-
magnetic materials has been reported that also allows the
design of a rewritable, nonvolatile, nontoggle, and extremely
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low-energy straintronic memory [3]. Recently, a piezoelectric,
strain-controlled AF memory, insensitive to magnetic fields,
has been tested as an example of controlling magnetism by
electric fields in multiferroic heterostructures [4].

However, a theoretical description of all these phenomena
is still very much a work in progress since at the scales that are
relevant, it is not possible to separate the magnetic, electric,
and elastic responses—all must be treated simultaneously.

It is indeed noteworthy that no direct local coupling be-
tween electromagnetic field components is allowed in vacuum
at the classical level; the magnetic response to an electric field
is necessarily mediated by atomic position arrangements of
magnetic moments, which in response produce nonlocal me-
chanical strains [5,6]. This response is known, more generally,
under the heading of “magnetoelasticity” [7].

Magnetoelastic phenomena have been typically viewed
either from the perspective of continuum mechanics, where
the magnetic properties of materials are incorporated into
constitutive nonlinear laws of electroconductive bodies [8],
or through the introduction of effective magnetic anisotropies
mimicking the static strains of a solid [9].

Most studies, however, do not investigate the backreaction
of the magnetization on the mechanical strains; however, such
a backreaction can become significant at very short length and
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time scales (where a continuum description reaches its limits).
This highlights the need for developing multiscale models.

Even if multiscale models have been investigated for
magnetoelastic couplings [10], with good experimental com-
parison for single crystals and polycrystalline samples [11],
insights from the framework of localization and homoge-
nization are still the mainstay for deducing the constitutive
laws for polycrystalline media. Moreover, in this context,
homogenization methods for multiscale mechanics assume
the existence of well-separated scales and different relations
among length scales that lead to different effective equations,
which in turn represent the corresponding different physical
effects appropriate at each scale [12].

Renormalization-group ideas, of course, are instrumental
in providing a description of how the dynamics depends on the
scale; what has been lacking to date is a unified construction
of the dynamics of elastic and spin degrees of freedom within
a common Hamiltonian approach at any particular scale. In
particular, what has curiously not been fully exploited is the
resolution of the constraints to which the spin degrees of
freedom are subject, since they are their own canonically
conjugate variables, as their equations of motion are first-
order. This means that they can be most usefully expressed
as multilinear combinations of anticommuting variables. As
we shall see, this can lead to useful insights, in practice, about
the dynamics of the coupled system.

While the generalization of the canonical formalism that
incorporates the constraints implied by spin degrees of free-
dom was worked out a long time ago [13], it has not been
applied to concrete situations of physical interest, simply
because up to now these were not of practical relevance.

In the present paper, we provide a complete description
of the combined Hamiltonian dynamics of the elastic and
of the spin degrees of freedom in phase space, and we
show how the anticommuting nature of the spin degrees
of freedom can be indirectly tested. It is the refined con-
trol over these and the dynamical interplay between strain
and magnetization that are the particular novelties of our
approach.

The elastic (local mechanical strain) and spin degrees of
freedom are thus assigned to sites of a lattice. We deduce the
corresponding fully coupled equations of motion from the cor-
responding Hamiltonian formalism, which treats mechanical
and spin degrees of freedom in a unified way, and we study
the dynamics of this system, comparing it to previous studies,
first for the purely magnetic part [14] and then also for the
magnetoelastically coupled system [15].

Of course, to render the equations tractable we must
resort to approximations. The approximation we employ is
the mean-field approximation, which amounts, in the present
case, to a coarse-graining of the lattice, which means that the
sites are, in fact, domains within each of which the properties
are homogeneous. Within this framework, our Hamiltonian
formalism is, however, exact.

The paper is organized as follows: In Sec. II we construct a
classical Hamiltonian for the mechanical and the spin degrees
of freedom and we discuss their couplings. We discuss the
advantages of describing the magnetic moments in terms of
anticommuting, Majorana, variables, whose salient properties
are reviewed in Appendix A.

In Sec. III, we introduce a Poisson bracket, which allows
us to obtain the equations of motion for the time evolution of
all the dynamical variables. These are then solved in Sec. IV
using a symplectic integration scheme. Special attention is
devoted to the stability analysis of the schemes and to the
order of the different symplectic operators. This analysis is
presented in Appendix B.

Finally, in Sec. V we illustrate the formalism for the case
of a simple toy model for NiO, consisting of two spins,
interacting through antiferromagnetic exchange, and switched
by an external STT as well as under an external stress. It is
here, in particular, that we show that the formalism is capable
of handling the interaction between two domains, taking into
account the coupling between elastic and magnetic degrees of
freedom.

II. THE HAMILTONIAN

In this section, we propose a Hamiltonian for the combined
system of elastic and spin degrees of freedom. These parts
have obviously been considered before [7], so we shall review
the salient features before introducing our approach.

The starting point for the elastic degrees of freedom is the
framework of mechanics for elastic solids within the regime
of the approximation of small deformations supplemented by
the assumption of perfect mechanical microreversibility [16].
These statements imply that an elastic material is character-
ized by a collection of N time-dependant elastic deformations,
which are described by a set of symmetric Cauchy strain
tensors εi

IJ (t ), where I, J are spatial indices ranging from 1
to 3 and assigned to each lattice site, i ∈ {1, . . . , N}, of the
material. At equilibrium, each of these variables is indepen-
dent of time, and we assume that such a state not only exists
but can be relevant for the time scales of interest [8].

The total internal energy of this system can be described in
terms of the interactions between these variables, which take
into account the elastic mechanical part in the most general
form, and the interaction with external stresses, which will be
described by the magnetic degrees of freedom. Schematically,

H
V0

= Hmech

V0
+ Hext

V0
. (1)

We shall now spell out each term.
To lowest nontrivial, i.e., quadratic order, Hext/V0 can be

written as [17]

Hmech

V0
= 1

2

N∑
i=1

Ci
IJKLεi

IJ (t )εi
KL(t ), (2)

where an implicit sum on the repeated space indices is under-
stood and where Ci

IJKL are the elastic constants with V0 as the
reference volume.

In this expression, we have assumed that the different sites
of the material do not interact through elastic deformations
(they will only interact through spin exchange forces, to be
explained below).

For a homogeneous material (i.e., C(i) = C for every site
i), these elastic constants can be expressed in terms of the
two Lamé parameters [16], designated by (C0,C1), which in
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Cartesian coordinates read as follows:

CIJKL = C0δIJδKL + C1(δIKδJL + δILδJK ). (3)

This mechanical system can be excited by an external stress
σ ext

IJ through the coupling

Hext

V0
= −

N∑
i=1

σ ext
IJ εi

JI . (4)

While this stress can be, in general, a time- and space-
dependent quantity, it is nonetheless assumed to be uniform
over the sites of the material.

The magnetic degrees of freedom, denoted Si
I (t ), are as-

signed to the same lattice sites as the strain and describe
how their dynamics affects the mechanical degrees of freedom
through the so-called magnetoelastic coupling.

The contribution of the magnetoelastic coupling to the
Hamiltonian can be deduced by assuming (global) Galilean
invariance on the one hand, and imposing invariance under
the symmetries of the point group [18] on the other. For an
isotropic medium, these requirements lead to the expressions
for the total energy and the total magnetization [19]. The total
internal energy is thus a sum over the lattice [20].

Consequently, in the approximation of small deformations,
the expansion of the magnetoelastic coupling energy will
contain even powers of the magnetization Si. It will, however,
contain all powers of the strain tensor, ε.

The linear part in εi
IJ defines the first-order, magnetoelastic

coupling, which is responsible for the magnetostriction, while
the quadratic terms in εi

IJ define the second-order magne-
toelastic coupling, which is responsible for the “nonlinear
response” in the elastic properties of magnetic media, which
have also been identified as describing “morphic effects” [7].

Higher-order terms are usually ignored since their coeffi-
cients are assumed to be much smaller than the lower-order
terms, as already discussed.

Therefore, the contribution to the—total—Hamiltonian of
the magnetoelastic coupling can be written as

HME =
N∑

i, j=1

B(1)i, j
IJKL εi

IJ (t )Si
K (t )S j

L(t )

+ B(2)i, j
IJKLMNεi

IJ (t )ε j
KL(t )Si

M (t )S j
N (t ) + · · ·. (5)

The total Hamiltonian can thus be written as

Htot = Hmech + Hext + HME (6)

and leads to a “renormalization” of the effective elastic con-
stants in the following way: If one compares the last term of
Eq. (5) with Eq. (2), it is easy to see that a pair of effective
elastic constants can be introduced that depends on the value
of the spins on each site, i.e.,

Ceff,i, j
IJLK ≡ Ci j

IJLK + 1

V0
B(2)i, j

IJKLMN Si
M (t )S j

N (t ). (7)

This has been used to provide an interpretation of the “anoma-
lous” temperature dependence in the elastic constants in iron
single crystals, for instance, as resulting from the competi-
tion between spin ordering and diffusion effects [21]. In the
present work, however, we will only consider B(1)i, j

IJKL and set

aside the nonlinear mechanical terms. Although there is no
particular difficulty in taking the latter into account in this
formalism, we will take B(2) ≡ 0 for the rest of this study and
for the sake of simplicity.

In Appendix A, we recall that the most effective “classi-
cally equivalent description” of the spin degrees of freedom,
which can capture consistently their interaction with the elas-
tic degrees of freedom, is not through the variables S but
through their “Doppelgänger” ξ, related to the Si

I through

Si
I ≡ − ı

2
εIJKξ i

Jξ
i
K . (8)

The ξ can be identified with Majorana fermions, which have
found many applications recently in condensed-matter sys-
tems [22], where new methods for controlling spin degrees
of freedom have been developed.

It is interesting to remark that the anticommuting variables
ξ i

k are not Grassmann variables, satisfying {ξ i
I , ξ

j
J } = 0, but

rather {ξ i
I , ξ

i
J} = δi jδIJ , i.e., that the ξI generate a Clifford

algebra on each site [23]. It is in this way that the Si
I , defined

through Eq. (8), satisfies the angular momentum algebra [24].
If one were tempted to simply replace S by ξ in Eq. (5) for

N = 1, and because of the symmetries of B(1) as recalled in
Ref. [7], HME = 0, which implies that the dynamics as it is
cannot be encoded by this Hamiltonian.

On the other hand, this allows us to understand the con-
straints on the allowed terms in the true Hamiltonian. They
must necessarily involve more than one spin. Indeed, we
can construct expressions that are multilinear combinations
of the Si

I on different sites, potentially up to order N , the
number of sites, since no two identical ξ i

I variables occur in the
same monomial. This is therefore a nice way of automatically
organizing the multispin terms of the Hamiltonian.

In the formalism of atomistic spin dynamics, since the
magnetic moments are localized [25,26], it is customary to
consider spatial averages around each site defining an effec-
tive macroscopic localized spin

Seff
I = 〈

Si
I

〉
i, (9)

which implies that multilinear expressions SI SJ no longer
vanish identically, as was imposed by the anticommuting
nature of ξ before. We can thus understand the relevance of
this averaging procedure in terms of the description of the spin
degrees of freedom in terms of the anticommuting variables.

The justification for Eq. (5) was advocated a long time ago
[27] as stemming from a model for a two-body interaction,
which is itself a pedagogical version of the quantum theory
of interacting magnons and phonons [28]. In Eq. (5), what
has been left unspecified are the properties of the tensor B(1)

under exchange of the indices i and j that label the sites. What
is customary is to assume that B(1) in fact does not depend
on i and j at all—it is homogeneous across the material.
By stopping the expansion at first order in the mechanical
deformation in (5) and assuming homogeneity in the material,
we therefore end up with the following expression:

HME = B(1)
IJKLεIJ (t )SK (t )SL(t ). (10)

Again, in the case of an isotropic medium, the elements in B(1)

enjoy the same symmetries as the elastic constants and can be
expressed only in terms of two constants B(1)

0 and B(1)
1 by the
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following expression:

B(1)
IJKL = B(1)

0 δIJδKL + B(1)
1 (δIKδJL + δILδJK ). (11)

In summary, the microscopic theory underlying Eq. (10)
describes the interaction of three particles, two of which
describe spin states, and one that describes the state of the
elastic deformation. However, the spin states are in fact bound
states of more “fundamental” entities, the anticommuting ξ.
B(1) can then be interpreted as the vertex of this interaction,
which describes a spinning particle that does not directly
interact with itself, since any such interaction is inconsistent
with the fact that the ξ anticommute. Such a self-interaction
can, however, appear on larger scales when spatial averages
can become meaningful for describing the spin degrees of
freedom.

In conclusion, the Hamiltonian we have constructed de-
scribes the interaction of magnetic moments through their
embedding within an elastic medium. What remains to be
done is to define the Poisson brackets, which can take into
account the evolution in phase space of commuting as well as
anticommuting degrees of freedom. Indeed, the construction
procedure for commuting canonical variables is well known,
however including anticommuting variables in a unified way
has remained a rather esoteric subject—known in theory [13],
but not implemented in practice.

In the following section, we shall construct the equations
of motion in the phase space of the elastic and the spinning
degrees of freedom, which implements these ideas in practice.

To work directly with the anticommuting variables them-
selves in combination with the mechanical degrees of freedom
requires implementing a graded Poisson bracket; one way to
do this is discussed in Appendix A.

III. THE POISSON BRACKETS AND
THE EQUATIONS OF MOTION

To deduce the equations of motion from the Hamiltonian
discussed in the previous section, we must define the appropri-
ate pairs of canonically conjugate variables and consequently
their Poisson bracket.

First we recognize that ε acts as a tensor, and one can
understand the definition of the Poisson bracket of rank-
2 symmetric tensors as an application of the DeDonder-
Weyl covariant Hamiltonian formulation of field theory [29].
Although the context is different, the ADM procedure in
general relativity also provides such a Poisson bracket [30]
(with further relations between the conjugate variables that are
not relevant here).

Although no clear consensus has in fact emerged on the
properties of the Poisson bracket of rank-2 tensors [31], if
one focuses on the special case of strain tensors that depend
only on time, the following conjugate momentum can be
introduced:

πIJ ≡ ∂L

∂ε̇IJ
, (12)

where L (εIJ (t ), ε̇IJ (t )) is the unconstrained and free
Lagrangian. ε̇IJ (t ) are the components of the strain-rate tensor
[32].

Thus we can build the corresponding Hamiltonian H
for the time evolution with tensor variables for mechanical
deformations ε and their conjugated momenta π, because
these quantities admit unbounded numerical values, as the
corresponding Legendre transform

H(ε,π) = πIJ ε̇IJ − L (13)

up to a total time derivative for L .
For the mechanical system only [i.e., for functions A(ε,π)

and B(ε,π)], the Poisson bracket (PB) can be defined in
perfect analogy to that of any particle system that explores
a given target space geometry (to which the indices I, J, K, L
refer) by the usual relations

{A, B}PB = ∂A

∂εIJ

∂B

∂πIJ
− ∂A

∂πIJ

∂B

∂εIJ
. (14)

In our case, the dynamical variables are the real symmetric
rank-2 tensors, εIJ and πIJ (I, J = 1, 2, 3), which are canon-
ically conjugate in the sense that their Poisson brackets are
deemed to satisfy the following properties:

{εIJ , πKL}PB = δIJKL, (15)

{εIJ , εKL}PB = {πIJ , πKL}PB = 0, (16)

where δIJKL is a δ multilinear object, reflecting the real,
symmetric, nature of the Poisson brackets [33] and defined as
a product of Kronecker δ’s. Very schematically, we may write

δIJKL =

⎧⎪⎨
⎪⎩

δIJδKL,

δIJδLK ,

δJIδLK ,

δJIδKL,

(17)

where each choice of the right-hand side corresponds to a
choice of indices in the Poisson brackets. This choice can
be supplemented by any linear combination of these δ’s that
enforces the symmetries of the tensors.

We now wish to include as phase-space coordinates the
components of the spin vector, S. We follow Ref. [34], and the
details are summarized in Appendix A. The Poisson bracket
for the canonical variables of our system can be written as

{A, B}PB ≡ ∂A

∂εIJ

∂B

∂πIJ
− ∂A

∂πIJ

∂B

∂εIJ
− 1

h̄
εIJK SI

∂A

∂SJ

∂B

∂SK
,

(18)

where h̄ is introduced to restore the physical dimensions of
the Poisson bracket, since S is considered dimensionless for
the sake of simplicity.

It should be stressed that this h̄ does not imply that any
quantum effects are present since the dynamics is fully classi-
cal. It is simply a bookkeeping device for a quantity that has
the dimensions of angular momentum, i.e., of an area in phase
space, and it reflects the fact that the equation of motion for
SI is of first order. Quantum fluctuations will introduce the
“real” h̄.
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Using this Poisson bracket, we can obtain the equations of
motion for the phase-space variables:

ε̇IJ = {εIJ ,H}PB = ∂H
∂πIJ

,

π̇IJ = {πIJ ,H}PB = − ∂H
∂εIJ

, (19)

ṠI = {SI ,H}PB = 1

h̄
εIJK SJ

∂H
∂SK

.

The consistency of this formalism can be checked by noting
that these equations preserve the volume in phase space,

∂ε̇IJ

∂εIJ
+ ∂π̇IJ

∂πIJ
+ ∂ ṠK

∂SK
= 0. (20)

That the dynamics preserves the volume in phase space does
not, of course, imply anything about whether the system thus
defined is integrable or shows Hamiltonian chaos.

The internal energy U involving the mechanical energy
for the deformed elastic medium [16], the magnetic energy
defined by the Zeeman term [35], and the magnetoelastic
energy [7] which takes into account the interaction of the
magnetic moment with the medium, takes the form

U = V0

2
CIJKLεIJεKL − V0σ

ext
IJ εIJ + B(1)

IJKLεIJSK SL − h̄ωI SI ,

(21)

where C is the fully symmetric tensor defining the elastic
response, σ ext is the external stress tensor, ω is the effective
external magnetic field (expressed as a frequency), and B(1) is
the fully symmetric linear magnetostriction tensor.

The “kinetic” term, containing the conjugate momenta, can
be written schematically as

Hkinetic = 1
2πIJM−1

IJKLπKL, (22)

where M is a fully symmetric “mass” matrix that describes the
inertial response.

For the case of isotropic materials, it is assumed that
the M tensor has the form given by Lamé, with only two
characteristic constants:

MIJKL = M0δIJδKL + M1(δIKδJL + δILδJK ). (23)

The tensors C and B are decomposed in the same way.
Consequently, the inverse of these tensors can then be

deduced from MIJKLM−1
IJMN = 1

2 (δKMδLN + δKNδLM ). Thus

M−1
IJKL = −M0

2M1(3M0 + 2M1)
δIJδKL

+ 1

4M1
(δIKδJL + δILδJK ) (24)

and the equations of motion become

ε̇IJ = M−1
IJKLπKL,

π̇IJ = −V0CIJKLεKL + V0σ
ext
IJ − BIJKLSK SL, (25)

ṠI = εIJK

(
ωJ − 2

h̄
B(1)

ABJCεABSC

)
SK ,

highlighting how the mechanical and magnetic subsystems are
coupled.

The last equation—as expected—is a precession equation
for the components of S around both the effective field ω and
an additional field, which depends on the strain tensor and the
spin vector.

In the following section, we shall show how to solve
these equations in a way that preserves the symmetries of the
extended phase space.

IV. GEOMETRIC INTEGRATION

Solving the coupled system of Eqs. (25) is the next step.
Since in the previous section we showed that these equa-

tions describe a volume-preserving transformation of the en-
larged phase space, encompassing elastic and spin variables, it
is natural to rewrite them in terms of the action of a Liouville
operator. Therefore, we shall write Eqs. (25) as

ε̇ = Lεε,

π̇ = Lππ,

Ṡ = LSS,

(26)

where L is the Liouville operator. This formulation allows
us to implement, manifestly, time-reversible area-preserving
algorithms for solving these equations numerically.

The general scheme is as follows: Consider an arbitrary
function f of the canonically conjugate variables of our many-
body system. This function, f (ε,π, S), depends on the time t
implicitly, that is, through the dependence of (ε,π, S) on t .
The time derivative of f is ḟ such that

ḟ = ε̇IJ
∂ f

∂εIJ
+ π̇IJ

∂ f

∂πIJ
+ ṠI

∂ f

∂SI
≡ L f . (27)

The last line defines the (total) Liouville operator

L = ε̇IJ
∂

∂εIJ
+ π̇IJ

∂

∂πIJ
+ ṠI

∂

∂SI
. (28)

Equation (27) can be integrated formally as an initial value
problem to obtain f at any time:

f (ε(t ),π(t ), S(t )) = eLt f (ε(0),π(0), S(0)). (29)

It is not difficult to see that L = Lε + Lπ + LS. However,
these single Liouville operators do not commute two-by-
two, as the reader may easily check by computing LuLv f −
LvLu f �= 0 for any function f and any combination (u, v) of
the individual Liouville operator Lε,Lπ,LS. This means that

eLt = eLεt+Lπt+LSt �= eLεt eLπt eLSt . (30)

According to the Magnus expansion [36], however, it is al-
ways possible to express eLt as a product of the individual
operators at any given order in time according to the so-
called “splitting method” [37]. This ensures that the numerical
algorithm preserves phase-space volumes exactly.

For instance, for a fixed time step τ , upon expanding up to
the third order in time, the following sequence of products:

eLτ = eLS
τ
4 eLπ

τ
2 eLS

τ
4 eLετ eLS

τ
4 eLπ

τ
2 eLS

τ
4 + O(τ 3), (31)

can be generated; this sequence is in fact one of six possible
sequences that has the property of preserving the symplectic
structure of the Poisson brackets. Therefore, any one of them
can be chosen. The possible combinations are presented in
Table I. While these schemes are free from “global” errors,
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TABLE I. Decomposition table of symplectic integrators.

A τ

4
τ

2
τ

4 τ τ

4
τ

2
τ

4

1 S π S ε S π S
2 S ε S π S ε S
3 π ε π S π ε π

4 π S π ε π S π

5 ε π ε S ε π ε

6 ε S ε π ε S ε

they are of course sensitive to “local” errors due to the finite
value of the time step. It is also not at all obvious that all
six can be implemented with comparable efficiency. It is
therefore useful to study the numerical stability and efficiency
of these different combinations in particular, as former studies
in molecular dynamics [38] and magnetic molecular dynamics
[39] showed, apparently, numerical differences between them.

A sampler of such a study is presented in Appendix B.
It is important to keep in mind that the one-step evolution

operators for ε and π describe shifts of the corresponding
tensor components, whereas the one-step evolution operator
for S describes rotations. In the equations,

eLετ (ε(t ),π(t ), S(t )) = (ε(t ) + τ ε̇(t ),π(t ), S(t )), (32)

eLπ τ (ε(t ),π(t ), S(0)) = (ε(t ),π(t ) + τ π̇(t ), S(t )), (33)

eLSτ (ε(t ),π(t ), S(t )) = (ε(t ),π(t ), S(t + τ )︸ ︷︷ ︸
R(τ )S(t )

), (34)

where S(t + τ ) = R(τ )S(t ) is given by Rodrigues’ rotation
formula [40] for a spin vector around a given rotation
vector ω̃(t ) where each of its components is ω̃I (t ) = ωI (t ) −
2
h̄ B(1)

JKLIεJK (t )SL(t ). These equations describe the phase space
of one particle only. To describe the dynamics of a continuum,
we must deduce the equations for many particles.

One way to generalize Eqs. (25) for the case of many
particles, labeled by an index, i = 1, . . . , N , according to the
conventions of the previous sections, is the following:

ε̇i
IJ = [Mi]−1

IJKLπ
i
KL, (35)

π̇ i
IJ = −V0C

i
IJKLε

i
KL + V0σ

i ext
IJ − Bi

IJKLSi
K Si

L, (36)

Ṡi
I = εIJK

(
ωi

J − 2

h̄
B(1)i

ABJCεi
ABSi

C

)
Si

K . (37)

The case of a staggered AF state is treated simply by
letting N = 2. To simplify the mechanical part further, we
can impose additional conditions pertaining to the uniformity
of the external stress, mechanical constants, mass matrices,
and magnetoelastic constants at each site. In what follows, we
shall use the following Ansatz:

B(1)1
IJKL = B(1)2

IJKL,

C1
IJKL = C2

IJKL,
(38)

M1
IJKL = M2

IJKL,

σ 1 ext
IJ = σ 2 ext

IJ .

The conservative part of the precession contains a local field,
which is modified to include the antiferromagnetic exchange
between the sites and a single anisotropy axis n with an
intensity K . One has

ωi
I = 1

h̄

∑
〈i j〉

Ji jS j
I + K

h̄
nJsi

JnI . (39)

Because of the exchange field, the Liouville operators for
different spins do not commute either. A global geometric in-
tegrator, implementing the approach of Omelyan [41], which
remains accurate up to third order in the time-step expansion,
must therefore be constructed.

For any given time step, τ , the corresponding expression
for the evolution operator, reads

eLSτ = eLS1
τ
2 eLS2 τ eLS1

τ
2 + O(τ 3). (40)

For N = 2, this operator is numerically identical to the opera-
tor obtained by permuting the site indices, 1 ↔ 2.

The same reasoning is applied for the Liouville operators
for the elastic variables that enter in Eqs. (26), and the cor-
responding global geometric integrators are constructed along
the same lines. The system is then integrated by following one
of the schemes displayed in Table I.

With these tools, we can study a plethora of phenomena
that are sensitive to the coupling of magnetic, electric, and
elastic degrees of freedom. In the following section, we shall
apply this formalism for studying “fast switching” effects of
the magnetization in antiferromagnetic media. The numerical
accuracy ensured by the geometric integrators is necessary to
describe picosecond switching times.

V. ANTIFERROMAGNETIC ULTRAFAST
SWITCHING UNDER STRESS

In this section, we shall apply the formalism constructed
above to describe how it is possible to generate and ma-
nipulate picosecond switching of the magnetization induced
by STTs from a short pulse of electric current in elastic
media that exhibit staggered AF order. Such a fast switching
process in AFs is schematically displayed in Fig. 1 and can
be realized, in practice, by a femtosecond laser excitation of
the magnetic moments that generate a field-induced STT on
the two sublattices. During the pulse, energy is transferred
from conduction electrons to the sublattice magnetic moments

FIG. 1. Switching scheme for the antiferromagnetic magnetome-
chanically coupled toy model with external STT.
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via STT (this is how the electric current affects the magnetic
response), and hence it contributes to the exchange energy
between the moments since local moments can be canted non-
collinearly. The energy due to the strong exchange interaction
between neighboring moments, which is commonly found in
AFs, in particular due to magnetic anisotropy, appears as an
effective inertia to the motion, leading to the appearance of
a time scale much longer than that of the excitation pulse.
Afterward, the system follows a natural path along the easy
plane to circumvent the unfavorable anisotropy barrier and
finally relaxes to a new magnetic configuration. The resulting
dynamics is a switching of the two sublattice moments to the
opposite direction through the easy plane.

This process defines the ultrafast antiferromagnetic switch-
ing effect. During the process, the Néel vector, which probes
the difference between the magnetic moments of the two
sublattices, acquires a net value that can be transferred as
a so-called “spin accumulation” to an adjacent nonmagnetic
normal material in order to pump the produced spin current
via scattering of electrons. The reverse mechanism can be
realized as well.

What was not considered before is the possibility to
enhance or inhibit such a switching depending on tensile
or compression effects, which are generated by an external
stress. This stress couples to the internal strain produced by
the intrinsic magnetoelastic interaction in such materials, as
depicted in Fig. 1.

To conform to the notation used in our previous studies
[15], Eq. (37) is supplemented with a nonconservative part,
labeled T , on the right-hand side, which includes both a
transverse damping and a damping-like STT torque,

T i
I = αεIJK Si

J Ṡi
K + G

(
si

I s
i
J pJ − pI s

i
J si

J

)
. (41)

The resulting equations of motion are numerically integrated
using the approach of Sec. V. It is noteworthy that this
equation also describes the “backreaction” of the magnetic
response on the spin-transfer torque. On the other hand, we
do not consider how this backreaction affects the current pulse
itself, which is assumed to be external.

In Figs. 2 and 3 we report the evolution of the av-
erage magnetization m ≡ 1

2 (S1 + S2) and the Néel vector
l ≡ 1

2 (S1 − S2), in the presence as well as the absence of
magnetoelastic coupling, for a moderate external stress of
σxx = −2μ0M2

s . We start the simulations using an initial
configuration in which spins are aligned along the x̂ axis in
an antiferromagnetic configuration, and we apply two 10 ps
electric pulses of 0.0034 rad THz intensity, each separated by
50 ps, in the p = ẑ direction. In addition to the exchange inter-
action, the spins are subjected to a global anisotropy along the
n = x̂ axis. The numerical value for α in the following studies
is 0.005.

In the absence of magnetoelastic coupling, our results are
identical to those of Cheng et al. [14] and to those we obtained
under the same conditions in our previous work [15].

In the presence of magnetoelastic coupling, however, as
the mechanical system is undamped, the results are quite
different. Because of the presence of a constant stress, a finite
mass matrix, and nonzero elastic constants, the mechanical
system is expected to be oscillating freely, which is indeed

-1

-0.5

0

0.5

1

l

lx
ly
lz

-0.001
0

0.001
0.002
0.003

m

mx
my
mz

0 20 40 60 80
time (ps)

0

0.001

0.002

0.003

S
T

T
 c

ur
re

nt
 

   
(r

ad
.T

H
z)

Gpz

FIG. 2. Néel order parameter (upper panel) and average magne-
tization components (middle panel) for uncoupled switching. {K =
2π rad GHz, ωE = 172.16 rad THz, Ms = 5 × 105 A m−1}. Initial
conditions: {s1(0) = −s2(0) = x̂}. The lower panel displays the STT
pulses. The figures agree with Ref. [14] because the magnetoelastic
constants are set to zero.

observed in Fig. 4, where we display the evolution of the strain
components over time. Indeed, as one can see in Figs. 3 and 4,
the characteristic oscillations of the mechanical system have
repercussions on the Néel order parameter dynamics. This is
even more striking for the spin accumulation, which is more
than doubled by the coupling to the strain; here as well, the
mechanical oscillations are reflected on the magnetic dynam-
ics. What is interesting is that these characteristic mechanical
oscillations are expected to be related to the sound velocity
of the medium [42], which is controlled by the constants M0
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FIG. 3. Néel order parameter (upper panel) and average magne-
tization components (middle panel) for a coupled switching. {K =
2π rad GHz, ωE = 172.16 rad THz, Ms = 5 × 105 A m−1}. Initial
conditions: {s1(0) = −s2(0) = x̂, εi

IJ (0) = 0}. The lower panel dis-
plays the STT pulses. Here B(1)

0 = 7.7μ0M2
s and B(1)

1 = −23μ0M2
s .
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FIG. 4. Strain components as a function of time with the magne-
toelastic constants turned on with parameters identical to Fig. 3.

and M1. In the present study, we have chosen M0 = 0 and
M1 = 10 000, but there should be a way to obtain these coeffi-
cients of the mass matrix more efficiently in order to describe
these oscillations more accurately from experimentally easily
accessible data. This, however, is not the focus of the present
study, and it shall be studied more thoroughly elsewhere. As
a consequence of such a stress-induced strain, the switching
time of the magnetization is slightly faster and the amplitude
of the magnetization is enhanced, depending on the values of
the stress and magnetoelastic constants, as depicted in Fig. 3.
We observe that a compression in one direction becomes
tensile in the other one and vice versa depending on the sign
of B(1)

1 . Conversely, if B(1)
1 is of the opposite sign, a tensile

stress would slow the switching process down.
This leads to another interesting question: How is the

switching time affected by the values taken by either B(1)
0 and

B(1)
1 ? We have verified that changing B(1)

0 has no influence
on it because this coefficient does not enter in the precession
equation. It simply produces the Joule magnetostriction phe-
nomena as anticipated before in Ref. [7]. However, changing
B(1)

1 has a strong influence. Figure 5 displays the switching
time as a function of the values of varying B(1)

1 . By defining
R as the ratio of B(1)

1 divided by its natural value in NiO,
we perform different simulations and report the time when
the Néel vector x-component crosses over to negative values.
One can see that this time decreases by increasing B(1)

1 ,
which makes sense as this is amplifying the effects of the
tensile stress. When R becomes lower than 1, the effect is
opposite. One aspect that is surprising, however, is that there
is a quick drop of the switching time for approximately four
times the value of B(1)

1 over its natural value in NiO. This is
due to the oscillations of the magnetization induced by the
elastic coupling. As this coupling becomes stronger, one of
the mechanical oscillatory peaks dips below 0 and thus the
switching time appears to drop in a discontinuous fashion.
This is another interesting consequence of the interplay of the
magnetization and the strain, which could be captured in real
experiments.
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FIG. 5. Switching time (in ps) as a function of varying B(1)
1 over

its natural value in NiO.

VI. DISCUSSION AND CONCLUSIONS

In the present paper, we have set up a Hamiltonian frame-
work for the consistent coupling between magnetic and elastic
degrees of freedom. We have shown how the phase space, the
Poisson bracket, and the Hamiltonian itself can be defined,
and how the resulting equations of motion can be solved
using symplectic integration schemes. We discuss the merits
and weaknesses of several ways of splitting the integration,
which is useful for selecting the most suitable scheme. We
have focused in particular on the advantage of expressing the
magnetic degrees of freedom using anticommuting variables
in order to describe more directly the terms that can contribute
to the coupling between magnetic and elastic degrees of
freedom.

A linear coupling already describes nontrivial effects,
which can be measured in real and numerical experiments,
as we have shown. Indeed, in the case of NiO, we have
shown that a small tensile stress can enhance the switching
speed for the Néel order parameter. Furthermore, due to the
characteristic oscillations, which are induced by the coupling
to the strain, the switching speed appears to drop discontinu-
ously, with increasing stress, when a peak of the oscillations
of the Néel order parameter dips below zero, which triggers
the switching. This switching leaves a characteristic imprint
on the mechanical oscillations, i.e., a “backreaction,” for
which our approach can fully account. Our approach thus pro-
vides a starting point for designing future antiferromagnetic
devices for spintronics (as well as “straintronics”) applica-
tions, which are sensitive to both mechanical and magnetic
effects

The spin-transfer-torque sources, introduced in the Hamil-
tonian to describe the switching, also lead to damped oscilla-
tions for the magnetic degrees of freedom. This can serve as
a starting point for taking into account stochastic effects more
generally. The appropriate framework for purely magnetic
degrees of freedom has already been set up [43], and we
plan to report on how to take into account elastic degrees of
freedom in future work.
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APPENDIX A: MODEL FOR PRECESSION THROUGH
ANTICOMMUTING VARIABLES

We review some issues when dealing with classical spin
variables, and we explain some limitations that are met by
using the framework of commuting variables [44]. A common
starting point to build precessional models is choosing the
appropriate representation of the su(2) algebra.

In the Heisenberg picture, the Ehrenfest theorem implies
that the equations of motion for the average of the spin
operator Ŝ components read

ı h̄
d〈Ŝ〉
dt

= 〈[Ŝ,H]〉, (A1)

where H is the Zeeman Hamiltonian operator for an external
magnetic field H such that

H = −gμ0μBŜ · H. (A2)

From the commutation relations [Ŝi, Ŝ j] = ıεi jk Ŝk , one can
quite straightforwardly show that

d〈Ŝ〉
dt

= gμBμ0

h̄
〈Ŝ〉 × H, (A3)

which corresponds to the well-known Larmor precession of
the expectation value of the spin in an external magnetic field
H .

Interestingly, a different—but equivalent—approach can
be followed by considering the Majorana representation in
terms of anticommuting variables, ξI , ξIξJ + ξJξI = 0 [22] of
the vector S:

SI = − ı

2
εIJKξJξK , (A4)

which can easily be shown to commute as SI SJ = 0. This last
relation is of course not satisfactory. It can be easily avoided,
however, by imposing that the ξI satisfy the anticommutation
relations {ξI , ξJ} = δi j—that they generate a Clifford algebra
(up to a constant normalization) [23].

These relations imply that the SI define a spin- 1
2 represen-

tation of the su(2) algebra. Higher spin representations can be
defined by multilinear combinations [13], which are relevant
for describing magnetic properties of composite objects; since
we can work with the SI instead of the ξI , however, this
complication will not affect us here.

This representation highlights that the spin degrees of
freedom, SI , are in fact “composite” objects and that the
“fundamental degrees of freedom” are the ξI . Therefore, it is
useful to develop the description of the dynamics directly in
terms of the ξI themselves. We shall recall the salient features
below.

The Poisson brackets for the anticommuting variables ξI

are related to those of SI so that the dynamics will indeed
be equivalent, in a way that was set forth many years ago,
through the construction of a corresponding graded Poisson

bracket, which generalizes Poisson brackets from manifolds
to supermanifolds [13].

In terms of any functions of anticommuting variables ξ, this
bracket reads

{ f (ξ), g(ξ)}PB ≡ ı

h̄
f (ξ)

←−
∂

∂ξK

−→
∂

∂ξK
g(ξ), (A5)

with the corresponding definition of the left and right deriva-
tive of any function of the anticommuting variables. One can
show that this bracket, also known as the “antibracket” of any
two functions on a flat supermanifold, satisfies all necessary
properties for a graded bracket, namely the (graded) Leibniz
rule, (graded) antisymmetry, and (graded) Jacobi identity [45].

By taking this graded Poisson bracket for any two of these
anticommuting variables, we get

{ξI , ξJ}PB = ı

h̄
δIJ . (A6)

This implies that any two such variables are canonically
conjugate, since {ξI ,−ı h̄ξJ}PB = δIJ , and πI ≡ −ı h̄ξI defines
the canonical conjugate [13].

By using the Grassmann properties of ξ, one proves that

{SI , SJ}PB = 1

h̄
εIJK SK , (A7)

which is a consistency check that the SI as defined in (A4) do
realize a representation of the rotation group [24].

In Eq. (A5), if the functions of the ξ are chosen to contain
only quadratic terms, then one can identify the previous
bracket as a regular Poisson bracket on a Riemannian man-
ifold for the commuting variables S,

{ f (S), g(S)}PB = ı

h̄

∂ f

∂SI
SI

←−
∂

∂ξK

−→
∂

∂ξK
SJ

∂g

∂SJ

= {SI , SJ}PB
∂ f

∂SI

∂g

∂SJ
= 1

h̄
εIJK SK

∂ f

∂SI

∂g

∂SJ
,

(A8)

which is precisely the “spinning part” of the bracket intro-
duced by Yang and Hirschfelder [34] for magnetized fluid
dynamics, which reads

{A, B}PB ≡ ∂A

∂qI

∂B

∂ pI
− ∂A

∂ pI

∂B

∂qI
− 1

h̄
εIJK SI

∂A

∂SJ

∂B

∂SK
. (A9)

Similar expressions have already been found by Casalbuoni
long ago [13] without having attracted the attention they
deserve. Following the inverse path of canonical quantization,
we use this graded Poisson bracket on any commuting quan-
tity, which allows us to compute directly

{S,H}PB = gμBμ0

h̄
S × H, (A10)

thereby highlighting that the description of S in terms of ξ is
an equivalent description of the dynamics.

For any time-dependent commuting functions of S(t ), we
can use this Poisson bracket to deduce a Liouville equation,

dF (S(t ))
dt

= {F (S(t )),H}PB. (A11)
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FIG. 6. Single-site total energy as a function of both time and
variable time step Q. Conditions of the simulation are expressed
in reduced units: 2C0/μ0M2

s = 5.1 × 105, 2C1/μ0M2
s = 3.5 × 105,

M1V0μ0M2
s /2h̄2 = 1000, ωDC = (0, 0, 2π ) rad GHz, π11(0) = 1,

s(0) = (1, 0, 0). All the other parameters not reported, including
initial conditions, are zero.

Consequently, the equations of motion for the variables ξ read
much more simple expressions as

dξ(t )

dt
= {ξ,H}PB = ı

h̄

−→
∂ H
∂ξ

, (A12)

which are known to form a nonrelativistic pseudoclassical
mechanics [13].

One reason why using the representation of S in terms of ξ

is useful is that it is intrinsically difficult to build a Lagrangian
model for the commuting spin variable S, since its canonically
conjugate variable cannot be unambiguously identified. As is
well known by now, the conjugate of the dynamical variable
ξ is proportional to itself [46]. Therefore, the dynamics of
spinning degrees of freedom can be described, either through
a vector of commuting variables on a curved manifold, or
by a vector of anticommuting variables on a flat—though
non-Riemannian—manifold. Finally, it has been found that
the Majorana-fermion representation of 1

2 -spin operators is
also a powerful tool to straightforwardly compute spin-spin
correlators [47], which represents an advantage for computing
magnetic response functions in many-body systems.

APPENDIX B: NUMERICAL ACCURACY
OF THE SPLITTING ALGORITHMS

The accuracy of the numerical schemes represented in
Table I depends on the relative amplitude of the velocity terms
(ε̇, π̇ , Ṡ), and it can be monitored by checking the stability of
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FIG. 7. Single-site strain components as a function of time for
various numerical schemes. Conditions of the simulation are iden-
tical to those for Fig. 6, and the results are produced for Q =
0.0025 only.

Eq. (20) over time [36,37]. Figure 6 displays the total energy
in one domain [given by the sum of Eqs. (21) and (22)] upon
varying the numerical precision. The splitting algorithm con-
sidered corresponds to the label A = 1 in Table I. The numer-
ical precision is controlled by the “quality factor Q,” chosen
at the beginning of the simulation, which produces variable
time steps τ according to the relation τ = Q/‖ω‖. Simulation
conditions produce a total energy equal to π2

11(0)/4M1, which
has to stay constant over time. We observe that this is indeed
the case regardless of the value of the quality factor Q. We
remark that, as Q → 0, the variations about the average value
of the energy are suppressed, as should be expected.

Figure 7 displays some of the nonvanishing components
of the strain tensor over time [here ε22(t ) = ε33(t ), and this
third component is not reported] when using different splitting
algorithms among those displayed in Table I. We observe less
than 1% of a numerical relative difference between the two
algorithms on the strain and its conjugate variables, and no
difference (up to the machine precision) on the magnetization
with a “coarse” quality factor Q, which cannot be detected
by visual inspection in the figure. This difference falls to
0.1% when the quality factor is divided by 4. The same
procedure can be repeated for all the splitting combinations in
Table I. The conclusions previously drawn apply also for the
magnetization, strain, and its conjugate variable, depending
on the frequency of appearance of the split operator.

As expected, once a splitting algorithm is selected, the
more frequently an operator is evaluated, the smaller is the
error, although of course the time required also grows. This
opens the possibility to select optimally a proper splitting
algorithm, depending on the relative intensity of ε̇i j, π̇i j, Ṡi

over time.

[1] I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H.
Dürr, T. Ostler, J. Barker, R. Evans, R. Chantrell et al.,

Nature (London) 472, 205 (2011); T. Jungwirth, X. Marti, P.
Wadley, and J. Wunderlich, Nat. Nanotech. 11, 231 (2016).

214428-10

https://doi.org/10.1038/nature09901
https://doi.org/10.1038/nature09901
https://doi.org/10.1038/nature09901
https://doi.org/10.1038/nature09901
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1038/nnano.2016.18


DYNAMIC MAGNETOSTRICTION FOR ANTIFERROMAGNETS PHYSICAL REVIEW B 100, 214428 (2019)

[2] J. Železný, P. Wadley, K. Olejník, A. Hoffmann, and H. Ohno,
Nat. Phys. 14, 220 (2018).

[3] H. Ahmad, J. Atulasimha, and S. Bandyopadhyay, Sci. Rep. 5,
18264 (2015).

[4] H. Yan, Z. Feng, S. Shang, X. Wang, Z. Hu, J. Wang, Z. Zhu,
H. Wang, Z. Chen, H. Hua, W. Lu, J. Wang, P. Qin, H. Guo,
X. Zhou, Z. Leng, Z. Liu, C. Jiang, M. Coey, and Z. Liu, Nat.
Nanotech. 14, 131 (2019).

[5] M. Fiebig, J. Phys. D 38, R123 (2005).
[6] J. Atulasimha and S. Bandyopadhyay, Appl. Phys. Lett. 97,

173105 (2010).
[7] E. Du Trémolet de Lacheisserie, Magnetostriction: Theory

and Applications of Magnetoelasticity (CRC, Boca Raton, FL,
1993).

[8] G. A. Maugin, Continuum Mechanics of Electromagnetic Solids,
North Holland Series in Applied Mathematics and Mechanics
No. 33 (North Holland, Amsterdam, 1988).

[9] C. Kittel, Rev. Mod. Phys. 21, 541 (1949).
[10] N. Buiron, L. Hirsinger, and R. Billardon, Le J. Phys. IV 9, Pr9

(1999).
[11] L. Daniel and N. Galopin, Eur. Phys. J.: Appl. Phys. 42, 153

(2008).
[12] C. C. Mei and B. Vernescu, Homogenization Methods for

Multiscale Mechanics (World Scientific, Singapore, 2010).
[13] R. Casalbuoni, Il Nuovo Cimento A (1965-1970) 33, 115

(1976); 33, 389 (1976); F. Berezin and M. Marinov, Ann. Phys.
104, 336 (1977); D. F. Nelson and B. Chen, Phys. Rev. B 50,
1023 (1994).

[14] R. Cheng, M. W. Daniels, J.-G. Zhu, and D. Xiao, Phys. Rev. B
91, 064423 (2015).

[15] T. Nussle, P. Thibaudeau, and S. Nicolis, J. Magn. Magn. Mater.
469, 633 (2019).

[16] H. B. G. Casimir, Rev. Mod. Phys. 17, 343 (1945); L. D.
Landau, E. M. Lifshitz, and L. D. Landau, Theory of Elas-
ticity, 3rd ed., Course of Theoretical Physics Vol. 7 (Elsevier,
Amsterdam, 2008).

[17] B. K. D. Gairola, Phys. Status Solidi B 85, 577 (1978); Nonlocal
Continuum Field Theories, edited by A. C. Eringen (Springer,
New York, 2004).

[18] R. A. Toupin and B. Bernstein, J. Acoust. Soc. Am. 33,
216 (1961); E. R. Callen and H. B. Callen, Phys. Rev. 129,
578 (1963); W. F. Brown, Magnetoelastic Interactions, en-
glish ed., edited by C. Truesdell, R. Aris, L. Collatz, G.
Fichera, P. Germain, J. Keller, M. M. Schiffer, and A. Seeger,
Springer Tracts in Natural Philosophy Vol. 9 (Springer, Berlin,
1966).

[19] G. Rosen, Am. J. Phys. 40, 683 (1972).
[20] H. F. Tiersten, J. Math. Phys. 5, 1298 (1964); A. Akhiezer, V.

Bar’yakhtar, and S. Peletminskii, Spin Waves, North Holland
Series in Low Temperature Physics Vol. 1 (North Holland,
Amsterdam, 1968).

[21] D. Dever, J. Appl. Phys. 43, 3293 (1972).
[22] F. Wilczek, Nat. Phys. 5, 614 (2009); J. Alicea, Rep. Prog. Phys.

75, 076501 (2012).
[23] P. Lounesto, Clifford Algebras and Spinors, 2nd ed., London

Mathematical Society Lecture Note Series No. 286 (Cambridge
University Press, Cambridge, 2003).

[24] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[25] R. F. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O.
Ellis, and R. W. Chantrell, J. Phys.: Condens. Matter 26, 103202
(2014).

[26] O. Eriksson, A. Bergman, L. Bergqvist, and J. Hellsvik,
Atomistic Spin Dynamics: Foundations and Applications, 1st
ed. (Oxford University Press, Oxford, 2017).

[27] J. H. van Vleck, Phys. Rev. 52, 1178 (1937); L. Néel, J. Phys.
Radium 15, 225 (1954); E. W. Lee, Rep. Prog. Phys. 18, 184
(1955).

[28] R. F. Sabiryanov and S. S. Jaswal, Phys. Rev. Lett. 83, 2062
(1999).

[29] H. A. Kastrup, Phys. Rep. 101, 1 (1983); I. V. Kanatchikov,
arXiv:hep-th/9312162.

[30] R. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev. 117, 1595
(1960).
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