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High-harmonic generation (HHG), a typical nonlinear optical effect, has been actively studied in electron
systems such as semiconductors and superconductors. As a natural extension, we theoretically study HHG
from electric polarization, spin current, and magnetization in magnetic insulators under terahertz or gigahertz
electromagnetic waves. We use simple one-dimensional spin-chain models with or without multiferroic coupling
between spins and the electric polarization, and study the dynamics of the spin chain coupled to an external ac
electric or magnetic field. We map spin chains to two-band fermions and invoke an analogy of semiconductors
and superconductors. With a quantum master equation and Lindblad approximation, we compute the time
evolution of the electric polarization, spin current, and magnetization, showing that they exhibit clear harmonic
peaks. We also show that the even-order HHG by magnetization dynamics can be controlled by static magnetic
fields in a wide class of magnetic insulators. We propose experimental setups to observe these HHGs, and
estimate the required strength of the ac electric field E0 for detection as E0 ∼ 100 kV/cm–1 MV/cm, which
corresponds to the magnetic field B0 ∼ 0.1 T–1 T. The estimated strength would be relevant also for experimental
realizations of other theoretically proposed nonlinear optical effects in magnetic insulators such as Floquet
engineering of magnets.
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I. INTRODUCTION

Ultrafast nonlinear phenomena in condensed-matter sys-
tems have recently attracted much attention owing to the
development of laser science and technology [1]. A remark-
able example is the high-harmonic generation (HHG) [2] in
semiconductors [3]. A key to this success is that strong mid-
infrared laser fields have been available in recent years [4].
Since the photon energy h̄� of the input laser is much smaller
than the band gap, nonlinear dynamics is relevant and HHG is
clearly seen [5–10]. Recent solid-state HHG studies in semi-
conductors [11–21] have been extended, for example, to Dirac
systems [22–25], superconductors [26–28], charge-density-
wave materials [29,30], Mott insulators [31–33], topological
insulators [34,35], and amorphous solids [36–38].

In view of the rapid development of the HHG in electronic
systems, it is natural to ask if it can be realized in spin
systems (magnetic insulators) without electronic transitions.
The interplay between light and magnets has been inten-
sively studied from the viewpoints of spintronics, magnonics,
magneto-optic effects, Floquet engineering, and so on. The
study of visible and infrared lasers has a long history and the
ultrafast spin dynamics driven by such high-frequency lasers
has been long studied [39]. On the other hand, thanks to the
recent development of terahertz (THz) laser science [40–43],
magnetic dynamics driven by THz waves has been explored
as well in the last decade. Since the photon energy in THz
or gigahertz (GHz) range is comparable with those of mag-
netic excitations in magnetic insulators, such low-frequency
lasers or electromagnetic waves make it possible to directly
create and control magnetic excitations or states. Therefore,
THz or GHz wave is necessary for mimicking HHG in

semiconductors with spin systems. In fact, recently, the sec-
ond harmonic generation originated from magnetic excita-
tions in an antiferromagnetic insulator has been observed
with an intense THz laser [44]. In addition to this, various
experimental studies of THz-wave-driven magnetic phenom-
ena have been done: intense THz-laser-driven magnetic res-
onance in an antiferromagnet [43,45], magnon resonances in
multiferroic magnets with the electric field of THz wave or
laser [46–48], spin control by THz-laser-driven electron tran-
sitions [49], dichroisms driven by THz vortex beams in a ferri-
magnet [50], etc. These experimental studies have stimulated
theorists in many fields of condensed-matter physics and, as
a result, several ultrafast magnetic phenomena driven by THz
or GHz waves have been proposed and predicted: THz-wave-
driven inverse Faraday effect [51,52], Floquet engineering of
magnetic states such as chirality ordered states [53] and a
spin-liquid state [54], applications of topological light waves
to magnetism [55–58], control of exchange couplings in Mott
insulators with low-frequency pulses [59,60], optical control
of spin chirality in multiferroic materials [61], and rectifi-
cation of dc spin currents in magnetic insulators with THz
or GHz waves [62,63]. Very recently, Takayoshi et al. [64]
numerically calculated the HHG spectra in quantum spin
models, assuming that the applied THz laser is extremely
strong beyond the current technique.

Despite these activities, it is still difficult to realize a
sufficiently strong laser-spin coupling in the THz and GHz
regimes. A main reason for the difficulty is that the field
amplitude of THz laser pulse is quite limited (at most the
order of 1 MV/cm) compared with the visible and the mid-
infrared lasers. In addition, electromagnetism tells us that the
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light-spin coupling is generally smaller than the light-charge
one roughly by a factor of c−1, with c being the speed of
light. Therefore, to find practical experimental ways of HHG
in spin systems, it is important to study how easy or difficult
it is to observe the HHG with a moderate field strength at the
frequency as large as the spin gap. The long study of magnetic
resonances shows that when THz or GHz wave at adjusted
frequency � is applied to magnetic insulators, we can usually
obtain a clear linear response signal. Thus, the question is
whether significant signals at n� (n = 2, 3, . . . ) appear as the
nonlinear response to THz fields with moderate strength.

From the experimental viewpoint, the HHG may be one
of the simplest phenomena in nonlinear optical effects in
magnetic insulators. Therefore, estimating required strength
of THz or GHz waves for the HHG contributes not only to
deepen the understanding of the HHG itself, but also to give
us a reference value of required ac fields for the realization of
the other nonlinear phenomena such as optical control of mag-
netism [55,56,61], Floquet engineering of magnets [51–54],
and spin-current rectification [62,63].

In this paper, we theoretically study harmonic generation
and harmonic spin currents in magnetic insulators with ac
electric and magnetic fields within the reach of current tech-
nology. We take account of relaxation of magnetic excitations
and investigate their dynamics by means of a quantum master
equation, showing that clear harmonic signals are present at
reasonable field strengths. We show that the photon energy h̄�

of the driving field does not need to be much smaller than the
spin gap if the relaxation is relevant as is typically the case
with magnetic insulators. This finding implies that a wider
class of THz and GHz electromagnetic waves are useful to
experimentally observe nonlinear optical effects in magnetic
insulators.

The rest of this paper is organized as follows. In Sec. II,
we introduce an inversion-asymmetric spin chain as a sim-
ple realistic model for multiferroic or standard magnetic
insulators in order to study harmonic responses of electric
polarization and spin current. We transform this model into
that of fermions with two energy bands like semiconductors,
and formulate our quantum master equation, which describes
dynamics in the presence of relaxation. On the basis of this
formulation, we investigate the dynamics and its Fourier
spectra of electric polarization and spin current in Secs. III
and IV, respectively. Thanks to the introduction of relax-
ation into the master equation, those spectra are well defined
without artificial treatment such as window functions. We
show that harmonic generation and harmonic spin currents
can be produced and detectable by using currently available
lasers. In Sec. V, we introduce an anisotropic model including
the transverse-field Ising model in order to study harmonic
generation through nonlinear magnetization dynamics. This
model can be mapped to a fermionic BCS-type Hamiltonian of
superconductors, and our quantum master equation is also ap-
plicable. We thereby conduct a parallel analysis, showing that
harmonic generation is possible through magnetization. We
also show that the SHG can be controlled by static magnetic
fields. In Sec. VI, we discuss how to experimentally detect
the harmonic generation and the harmonic spin currents. In
the above sections, we mainly focus on relatively low-order
harmonics (n = 2, 3, 4, 5), which could be observable with

the currently available laser strength even though the laser-
spin coupling is weak in principle. In Sec. VII, we study the
harmonic spectra under hypothetical strong fields of theoret-
ical interest. We thereby discuss the correspondence between
the spin system and semiconductors or superconductors at
the level of the harmonic spectra. Finally, in Sec. VIII, we
summarize our results and make concluding remarks.

II. SETUP FOR ELECTRIC POLARIZATION
AND SPIN CURRENT

A. Model and observables

To study nonlinear dynamics of electric polarization and
spin current, we consider a simple spin model in one dimen-
sion. The Hamiltonian is given by

ĤI = ĤXX + Ĥstag, (1)

with

ĤXX = J
2L∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

)
, (2)

Ĥstag =
2L∑
j=1

(−1) j
[
Jstag

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

) + HstagŜz
j

]
, (3)

where Ŝα
j = σα

j /2 (α = x, y, and z) are the spin operators at
site j with σα

j being the Pauli matrices. Here, ĤXX represents
the isotropic XY model with exchange coupling J , and Ĥstag

consists of the staggered exchange coupling Jstag and the
staggered Zeeman coupling Hstag. The number of sites is 2L,
and the periodic boundary condition is imposed.

The Hamiltonian (1) is a simple but realistic model for
one-dimensional quantum magnets. In fact, the staggered
exchange coupling Jstag often appears in spin Peierls magnets
such as CuGeO3 [65–70] and TTF-CA [71–73]. The staggered
field term Hstag [74–76] is known to exist in a class of two-
sublattice spin-chain compounds such as Cu-benzoate [77],
[PMCu(NO3)2(H2O)2]n (PM=pyrimidine) [78], KCuGaF6

[79,80], KCuMoO4OH [81], and Yb4As3 [82].
The symmetries of the Hamiltonian (1) are as follows.

Both the bond-center and site-center inversion symmetries are
broken if both Jstag and Hstag are nonzero. These inversion-
symmetry-breaking terms are very important to consider the
HHG spectra because even-order HHG signals (n� with
n = 2, 4, 6, . . . ) generally disappear in inversion-symmetric
systems [83]. Note that the Hamiltonian (1) has the global
U(1) symmetry around the Sz axis and the total magnetiza-
tion

∑
j Ŝz

j is conserved. In Sec. V, we switch to another
Hamiltonian, for which it is not conserved, and discuss the
magnetization dynamics and harmonic generation.

We describe the laser-spin coupling by either of the fol-
lowing two effects. The first one is the Zeeman coupling to
the laser magnetic field B(t ) along the Sz direction ĤZ

ext(t ) =
−B(t )

∑
j[η

u
Z + (−1) jηs

Z]Ŝz
j . Here, ηu

Z = gμB, g is the g fac-
tor, μB the Bohr magneton, and we set h̄ = 1 throughout this
paper. We assume that ηs

Z �= 0 when we consider ĤI because
the magnetic field acting on site j is modified in general by
the inner magnetic field. The part of −ηu

ZB(t )
∑

j Ŝz
j causes

no physical effect because the total magnetization is also
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conserved in the presence of B(t ). Thus, when we consider
ĤI, we will use

ĤZ
ext(t ) = −b(t )

∑
j

(−1) j Ŝz
j (4)

with b(t ) ≡ B(t )ηs
Z.

The second laser-spin coupling is the so-called magne-
tostriction effect [84]. This is the coupling of the laser
electric field E (t ) to the spin-dependent electric polarization
proportional to Ŝ j · Ŝ j+1. We write the coupling term as
−E (t )

∑
j[η

u
MS + (−1) jηs

MS](Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1). We have as-

sumed that the dot product Ŝ j · Ŝ j+1 is dominated by Ŝx
j Ŝ

x
j+1 +

Ŝy
j Ŝ

y
j+1 correspondingly to our Hamiltonian (1). Here, ηu

MS is a
constant converting the spin dot product into the polarization,
and ηs

MS is its staggered counterpart. We note that ηs
MS is

larger than ηu
MS in typical multiferroic materials [46–48,84],

and thus neglect ηu
MS for simplicity. The coupling Hamiltonian

is therefore given, in this work, by

ĤMS
ext (t ) = −e(t )

∑
j

(−1) j
(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

)
(5)

with e(t ) ≡ E (t )ηs
MS.

The electric polarization

P̂ = ηs
MS

∑
j

(−1) j
(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

)
(6)

is the first observable of interest. When its expectation value
evolves in time as P(t ) = 〈P̂〉t , it becomes the source of elec-
tromagnetic radiation, which is useful for the experimental
detection. The radiation power at frequency ω is given by

IP(ω) ∝ |ω2P(ω)|2, (7)

where P(ω) is the Fourier transform of P(t ). Before the
application of laser, the expectation value of the polarization
P0 = 〈P̂〉tini is generally nonzero. Since a constant shift of P(t )
does not change IP(ω), we will also use �P(t ) = P(t ) − P0.
In the following, we show that IP(ω) exhibits several peaks at
integer multiples of the driving frequency, which correspond
to the HHG.

We remark that the even-order HHG vanishes for Jstag = 0,
at which the system Hamiltonian ĤI is invariant whereas the
polarization P̂ is odd under the (site-center) inversion. This is
exactly the same selection rule for the “conventional” HHG
in inversion-symmetric semiconductors. The selection rule is
understood in the perturbation regime as follows. For instance,
the second harmonic derives from P(2�) = χ (2)E�E�, where
χ (2) is the nonlinear susceptibility and E� is the Fourier
component of the input field (see a textbook [85] for more
rigorous discussions). By applying the inversion, we also have
−P(2�) = χ (2)E�E�, where we have used the invariance of
χ (2) in inversion-symmetric systems. The above two equa-
tions imply that χ (2) and hence P(2�) vanish in inversion-
symmetric systems. Similar arguments hold true for all the
even-order HHGs, which thus vanish in inversion-symmetric
systems. Note that such constraints are not obtained for the
odd-order HHGs that in fact exist in both inversion-symmetric
and -asymmetric systems.

The spin current is the second observable of interest. This
is defined through the continuity equation for Ŝz

j , and its

definition depends on the coupling term. When we consider
the total Hamiltonian ĤI + ĤZ

ext(t ), the spin-current operator
is given by

Ĵspin =
∑

j

[J + (−1) jJstag]
(
Ŝx

j Ŝ
y
j+1 − Ŝy

j Ŝ
x
j+1

)
. (8)

On the other hand, when we consider the total Hamiltonian
ĤI + ĤMS

ext (t ), it is given by

Ĵspin =
∑

j

{J + (−1) j[Jstag − e(t )]}(Ŝx
j Ŝ

y
j+1 − Ŝy

j Ŝ
x
j+1

)
.

(9)

Both Eqs. (8) and (9) are odd under the inversion like the elec-
tric current in semiconductors, and the even-order harmonics
vanish when the system is inversion symmetric (the above
argument on the polarization applies equally). We will see,
in Sec. II B, the spin currents in our setup are analogous to the
charge currents in semiconductors.

Whereas the electric polarization is measured as the radi-
ation from it, the spin current is usually measured through
conversion to an electric current. Thus, in discussing the spin
current, we use the Fourier component Jspin(ω) by itself, rather
than the radiation power such as Eq. (7).

B. Fermionization

Our spin model can be mapped to noninteracting spin-
less fermions by means of the Jordan-Wigner transfor-
mation [86]: Ŝ+

j = ∏
i(< j)(1 − 2ĉ†

i ĉi )ĉ j , Ŝ−
j = ∏

i(< j)(1 −
2ĉ†

i ĉi )ĉ
†
j , and Ŝz

j = 1/2 − ĉ†
j ĉ j with Ŝ±

j = (Ŝx
j ± iŜy

j )/2. The
Hamiltonian (1) is simplified by introducing the following
Fourier transformations for the odd and even sites:

âk ≡ 1√
L

L∑
j=1

e−ik(2 j)ĉ2 j ; b̂k ≡ 1√
L

L∑
j=1

e−ik(2 j+1)ĉ2 j+1

(10)

with k = πm/L (m = 0, 1, . . . , L − 1). By introducing the
two-component fermion operator φI,k ≡ t(âk, b̂k ), one obtains

ĤI =
∑

k

φ
†
I,kHI(k)φI,k, (11)

where HI(k) is a 2 × 2 matrix representation in our basis and
given by

HI(k) = J cos kσx − Jstag sin kσy − Hstagσz. (12)

The two eigenvalues of HI(k) are ±εI(k) with εI(k) =√
(J cos k)2 + (Jstag sin k)2 + H2

stag , which define the two en-
ergy bands. Thus the band gap, i.e. spin gap, is given by

�I = 2
√

J2
stag + H2

stag, (13)

where Jstag and Hstag are assumed to be smaller enough than J .
The band structures are illustrated in Fig. 1.

We then fermionize the laser-matter couplings and the
observables, and make the 2 × 2 matrix representations in our
basis. The coupling terms are given by

HZ
ext(k, t ) = b(t )σz, (14)

HMS
ext (k, t ) = e(t ) sin kσy, (15)

214424-3



TATSUHIKO N. IKEDA AND MASAHIRO SATO PHYSICAL REVIEW B 100, 214424 (2019)

FIG. 1. Band structure of Jordan-Wigner fermions for (a) the
inversion-symmetric model ĤXX and (b) the inversion-asymmetric
model ĤXX + Ĥstag with asymmetric parameters (Jstag, Hstag ) =
(0.1, 0.03). The unit of energy is taken as J = 1.

and the electric polarization reads as

P(k) = −ηs
MS sin kσy. (16)

The spin current depends on the coupling term, and its matrix
representation is given, for the Zeeman coupling, by

Jspin(k) = J sin kσx + Jstag cos kσy, (17)

and, for the magnetostriction effect, by

Jspin(k, t ) = J sin kσx + [Jstag − e(t )] cos kσy. (18)

We remark that, in the fermion representation, our model
is analogous to two-band models used in the HHG studies
for itinerant electrons. For itinerant electrons, the laser elec-
tric field causes the intraband acceleration and the interband
transition, both of which play important roles in the HHG.
In our model, both ĤZ

ext and ĤMS
ext involve the interband and

the intraband effects. To see this, we first consider the special
case of Jstag = Hstag = 0, where HI(k) = J cos kσx. Making a
unitary transformation U0, we diagonalize this Hamiltonian
as HI(k)′ = J cos kσz, where the coupling terms are repre-
sented as HZ

ext(k, t )′ = b(t )σy and HMS
ext (k, t )′ = e(t ) sin kσx. It

is manifest that the coupling terms have nonzero elements
only in the off-diagonal components, and thus lead to in-
terband transitions and have no intraband effect. Next, we
consider the case of Jstag �= 0 or Hstag �= 0, where the unitary
transformation U1 diagonalizing HI(k) is different from U0.
Thus, in the energy eigenbasis, the coupling terms have, in
general, diagonal elements, and some intraband effects are
involved. Although the details such as the k dependence are
different, we expect that the intraband and interband effects
in our model result in the HHG. In fact, as we will see at the
ends of Secs. III and IV, the harmonic spectra are analogous
to those of semiconductors.

C. Time evolution and laser pulse

We suppose that the system is initially in the ground state
|ψgs〉 = ⊗k |φg(k)〉 and the laser magnetic or electric field is
turned off. In terms of the fermion representation, the ground
state is the one where the lower-energy band is fully occupied
and the upper one is completely unoccupied.

The time evolution is caused by either magnetic field
b(t ) or electric field e(t ). Sufficiently strong field ampli-
tudes (∼1 MV/cm) at THz regime are obtained for pulse
lasers [40,42,43] and it is still difficult to generate THz
continuous waves with high intensity. Therefore, we consider

b(t ) and e(t ) of pulse shape:

b(t ) = b0 cos(�t ) f (t ); e(t ) = e0 cos(�t ) f (t ). (19)

Here, b0 and e0 are the peak coupling energy, � is the
central frequency, and f (t ) is the Gaussian envelope function,
f (t ) = exp[−2 ln 2(t2/t2

FWHM)], where tFWHM represents the
full width at half-maximum of the intensity e(t )2 or b(t )2. We
refer to tFWHM/T with T ≡ 2π/� as the number of cycles
of the pulse field, which is assumed to be 5 unless otherwise
specified below.

As emphasized in Sec. I, relaxation is important in our
setup because its timescale is comparable to the periods of
THZ and GHz waves. To take account of this effect, we
describe the time evolution by a quantum master equation of
the Lindblad form [87]

d

dt
ρ(k, t ) = −i[H (k, t ), ρ(k, t )]

+ γ

(
Lkρ(k, t )L†

k − 1

2
{L†

k Lk, ρ(k, t )}
)

, (20)

where ρ(k, t ) is the 2 × 2 reduced density matrix for the
subspace with wave number k. Here, the Lindblad operator
Lk ≡ |φg(k)〉 〈φe(k)| describes the relaxation from the excited
state |φe(k)〉 to the ground state |φg(k)〉, and γ does its rate.
For simplicity, we assume that γ is independent of k and
set γ = 0.1J . This relaxation rate corresponds to the lifetime
τ = γ −1 ∼ 7.6 ps (1.5 ps) for a typical exchange interaction
J/kB = 10 K (50 K).

Our master equation (20) ensures that the system relaxes
to the ground state in the long run after the external field is
switched off. Without relaxation, the system would remain
excited in an infinitely long time after the pulse irradiation.
We will see later that our master-equation approach thereby
allows us to obtain well-defined Fourier spectra of observables
without artificial treatment such as window functions.

In solving the quantum master equation (20), we take
the initial condition ρ(k, tini ) = |φg(k)〉 〈φg(k)| with the initial
time tini (<0) being so small that f (tini ) � 0. At time t , the
expectation value of an observable

Ô =
∑

k

φ
†
I,kO(k)φI,k (21)

is given by

O(t ) = 〈Ô〉t =
∑

k

tr[ρ(k, t )O(k)]. (22)

D. Units and scales of physical quantities

Before discussing our results, we make remarks on the
scales of physical quantities. In the following, we work in the
units with J = 1 and represent all physical quantities includ-
ing the photon energy, the lifetime of the magnetic excitation,
and the magnetic and the electric fields, in a dimensionless
manner with the physical constants set to unity. The rules to
recover the units depend on the value of J that we suppose. In
Table I, we provide the rules for the two choices of J = 10 and
50 K, which are typical energy scales of magnets. In this table,
we have assumed that ηs

Z = gμB and ηs
MS = gμB/c, where c

is the speed of light. The second assumption implies that, in
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TABLE I. Table of units for physical parameters depending on
two choices of J = 10 and 50 K.

Energy (J) 10 K 50 K

Photon energy (h̄�) 0.86 meV 4.3 meV
Time (h̄/J) 0.76 ps 0.15 ps
Frequency [ f = �/(2π )] 0.21 THz 1.0 THz
Magnetic field [B0 = J/(gμB )] 7.4 T 37 T
Electric field (E0 = cB0) 22 MV/cm 112 MV/cm

good multiferroic materials, the magnetoelectric coupling is
as large as the Zeeman coupling [84,88–90].

We also provide two tables for convenience. Table II is the
unit-conversion table between different physical quantities.
Table III shows the correspondence between the electric-
(magnetic-) field amplitude and the energy flux.

As we noted in the Introduction, the maximum intensity of
the THz waves (∼1 MV/cm) is typically smaller than that of
the mid- and near-infrared lasers used in HHG measurements
in semiconductors. Table I tells us that this corresponds to
∼0.1 J at most. Therefore, we will mainly focus on relatively
lower-order (n = 2, 3, 4, 5) harmonics in Secs. III–VI.

III. ELECTRIC POLARIZATION

In this section, we discuss the harmonic spectrum of the
electric polarization. We use the Hamiltonian ĤI [Eq. (1)],
and discuss the effects of driving by either ĤZ

ext [Eq. (4)],
or ĤMS

ext [Eq. (5)]. As discussed in Sec. II D, we work in the
dimensionless units corresponding to Table I.

We first investigate the typical behaviors of the time profile
�P(t ) and the corresponding power spectrum IP(ω) [Eq. (7)]
obtained by ĤZ

ext [Eq. (4)]. Figure 2 shows the results obtained
for the parameters Jstag = 0.1, Hstag = 0.03, and B0η

s
Z = 0.02,

with several driving frequencies. Here, the power spectrum is
normalized so that the fundamental harmonic IP(�) is unity.
We note that the even-order harmonics are present since the
inversion symmetry is broken now.

The lowest frequency � = 0.02, which is approximately
10 times smaller than the spin gap �I = 0.21, corresponds
to the standard setup for the semiconductor HHG and the
previous study of spin-system HHG [64]. At this lowest
frequency, strong harmonic peaks are obtained and the peak
heights slowly decrease as the harmonic order increases.
At this frequency, � � γ −1 holds, and thus the dynamics
is nearly adiabatic. Namely, relaxation occurs so fast that
the quantum state always approaches to ground state at the
instantaneous external field.

TABLE II. Unit-conversion table.

EM field THz GHz

Frequency [�/(2π )] 1012 Hz 109 Hz
Energy (h̄�) 4.1 meV 4.1 μeV
Temperature (T = h̄�/kB) 48 K 48 mK
Magnetic field (B0 = h̄�/gμB) 36 T 36 mT
Electric field (E0 = cB0) 107 MV/cm 107 kV/cm

TABLE III. Laser energy flux for reference field strengths.

E0 = 1 MV/cm

Magnetic field (B0) 0.33 T
Energy flux (I) 1.3 GW/cm2

The harmonic peaks are present regardless of whether the
driving frequency is well below the gap or near resonant.
In fact, in Fig. 2(b), we find strong harmonic peaks for
� = 0.20 and 0.22, which are slightly below and above the
spin gap �I = 0.21, respectively. At these frequencies � ∼
γ −1, the quantum dynamics is more coherent than that for
� = 0.02 (i.e., less suffers from the environment), but the
relaxation is still effective to keep harmonic peaks strong
and sharp. Regarding experiments with THz laser pulse, it is
advantageous that the harmonics peaks are seen with higher
frequencies because the spin gap is typically smaller than
1 THz photon energy in many of magnetic insulators and it
becomes more difficult to obtain high-field amplitudes in the
frequency regime lower than 1 THz.

Now, we systematically investigate the intensity of the
second- and third-harmonic generation (SHG and THG). We
fix Hstag = 0.03 and � = 0.5, and calculate the harmonic
spectrum for various sets of parameters (b0, Jstag). Figures 3(a)
and 3(b), respectively, show IP(2�) and IP(3�) driven by the
ac Zeeman coupling ĤZ

ext(t ). Here, the unit of the intensity
is chosen as the fundamental harmonic IP(�) for b0 = Jstag =
0.05. Both the SHG and the THG tend to increase as b0 or Jstag

increases, and these signals can be as large as the fundamental
harmonic. It is very natural that the HHG signal grows up
with the increase of the light-spin coupling b0. Moreover, the
growth of SHG with the increase of Jstag is easily understood
because the inversion symmetry is broken by the presence
of both Jstag and Hstag, and the SHG disappears in inversion-
symmetric systems. In fact, we have confirmed that in the
limit of Jstag → 0, where the site-center inversion symmetry
recovers, the SHG vanishes in line with the selection rule.

FIG. 2. (a) Time profile of �P(t ) for the Zeeman driving ĤZ
ext(t )

with frequency � = 0.02, 0.2, and 0.22. The parameters are Jstag =
0.1, Hstag = 0.03, and b0 = 0.02, where the spin gap is �I = 0.21.
(b) Corresponding power spectrum IP(ω) (7) plotted against ω/�.
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FIG. 3. Intensities of SHG [IP(2�)] (left) and THG [IP(3�)]
(right) from electric polarization driven by ac Zeeman coupling
(upper) and magnetostriction effect (lower) at � = 0.5. The unit
of intensity in (a) and (b) is chosen as IP(�) for b0 = Jstag = 0.05,
and that in (c) and (d) as IP(�) for e0 = Jstag = 0.05. The other
parameters are set as γ = 0.1 and Hstag = 0.03. The ratio of the two
units IP(�)b0=Jstag=0.05/IP(�)e0=Jstag=0.05 is 1.4 × 10−3. Namely, the
fundamental harmonic for the magnetostriction is much larger than
that for the Zeeman coupling.

HHG is also obtained by the magnetostriction effect
ĤMS

ext (t ). Figures 3(c) and 3(d), respectively, show IP(2�) and
IP(3�) in the (e0, Jstag) plane, where we again fix Hstag = 0.03
and � = 0.5. As we already mentioned, the coupling constant
e0 can be as large as the ac Zeeman one b0 in multiferroic
magnets, and we thereby set the maximum value of e0 to
be that of b0 in Fig. 3. Compared with Figs. 3(a) and 3(b),
Figs. 3(c) and 3(d) seem to imply that the SHG and the
THG by the magnetostriction effect are much smaller than
those by the ac Zeeman coupling. However, this is mainly
because the fundamental harmonic IP(�) is quite large for the
magnetostriction case, and the absolute values of the SHG and
the THG are comparable in the two cases.

In addition to � = 0.5, we have investigated � = 0.2,
which is closer to the spin gap (data not shown). In this case,
the signals tend to become large when the spin gap approaches
the photon energy h̄�. In this parameter region, we have
confirmed that the absolute values of the SHG and the THG
are somewhat larger for the magnetostriction effect than for
the ac Zeeman coupling.

Let us estimate the required laser-field amplitudes to ob-
serve HHG in experiments (see Sec. VI for experimental
protocols). Considering a recent experiment in an antifer-
romagnetic crystal [44], we suppose that a 1% intensity
(10% amplitude) of the fundamental harmonic is actually
detectable. We apply this criterion to our calculations for
Jstag = 0.05 and Hstag = 0.03 at � = 0.5, which corresponds
to f = 0.10 THz (0.52 THz) for magnets of energy scale
J = 10 K (50 K) (see Table I). As for the ac Zeeman driving

FIG. 4. (a) Time profile of Jspin(t ) for the ac Zeeman driving
ĤZ

ext(t ) with frequency � = 0.02, 0.2, and 0.22. The parameters
are Jstag = 0.1, Hstag = 0.03, and b0 = 0.1, where the spin gap is
�I = 0.21. (b) Corresponding amplitude spectrum |Jspin(ω)| [Eq. (7)]
plotted against ω/�.

with, e.g., b0 = 0.01, the SHG has about a 10% intensity of
the fundamental harmonic and should be observable, whereas
the THG does about a 10−4 intensity and its detection might
be challenging. Thus, we regard b0 = 0.01 as a required
field amplitude to observe HHG in experiments. According
to Table I, this field amplitude corresponds to B0 = 74 mT
(370 mT) for magnets of energy scale J = 10 K (50 K).
From Table III, this magnetic-field amplitude corresponds to
the electric-field amplitude E0 = 220 kV/cm (1.1 MV/cm)
and the energy flux I = 0.29 GW/cm2 (1.5 GW/cm2). These
field amplitudes are within the reach of the current THz-laser
technology [40–43]. As for the magnetostriction effect, the
required amplitude is larger than the above values by some
factor.

IV. SPIN CURRENT

In this section, we investigate the harmonic spectrum of
the spin current. As in the previous section, we use the
Hamiltonian ĤI [Eq. (1)] and consider the effects of driving
by either ĤZ

ext [Eq. (4)] or ĤMS
ext [Eq. (5)].

The ac Zeeman driving ĤZ
ext [Eq. (4)] gives rise to harmonic

peaks in the spin-current spectrum |Jspin(ω)| similarly to the
electric polarization. Figure 4 shows the typical time profile
Jspin(t ) and spectrum |Jspin(ω)|, where the parameters are the
same as in Fig. 2. Here, the spectrum is normalized so that
the fundamental harmonic |Jspin(�)| is unity. Again, the clear
peaks are observable both for ω = 0.02 ∼ 0.1�I and ω ∼ �I.

We note that there also exists the dc (ω = 0) component
of the spin current. As was proposed in Refs. [62,63], this
corresponds to the rectification of the spin current, which
occurs in inversion-asymmetric magnets. For � = 0.2 and
0.22, the peak heights of ω = 0 and 2� are similar as shown
in Fig. 4(b). Thus, if the spin-current rectification is observed
in an experiment, the second harmonic is also likely to be
observed in the experimental setup.

The peak heights of the second and the third harmonics are
systematically shown in Fig. 5 for the ac Zeeman coupling and
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FIG. 5. Intensities of second-harmonic [|Jspin(2�)|] (left) and
third-harmonic spin currents [|Jspin(3�)|] (right) by the ac Zeeman
coupling (upper) and the magnetostriction effect (lower). The unit of
intensity is chosen as |Jspin(�)| for b0 (e0) = Jstag = 0.05. The other
parameters are set as γ = 0.1, Hstag = 0.03, and � = 0.02.

the magnetostriction effect as was done for the electric polar-
ization in the previous section. Here, we use a lower frequency
� = 0.02, which corresponds to f = 4.2 GHz (21 GHz) for
magnets of energy scale J = 10 K (50 K) (see Table I). This
lower frequency is advantageous in experimentally observing
the spin currents in electric circuits because the upper limit
of the frequency � for the electric detection is in a GHz
regime [91]. In Sec. VI, we will discuss in detail how higher-
harmonic spin currents are observed by electric techniques.

The second harmonic spin current exhibits a nonmonotonic
behavior as a function of Jstag while monotonically increases
with b0 or e0 as shown in the Figs. 5(a) and 5(c). This
nonmonotonic behavior arises from the following two limits.
First, the second harmonic vanishes in the limit Jstag → 0
owing to the inversion symmetry. Second, it tends to decrease
for the larger Jstag. This can be understood by the analogy
between HHG of semiconductors and that of the present spin
systems. Namely, the photon energy h̄� at � = 0.02 is much
smaller than the spin gap �I for a sufficiently large Jstag and
thus nonlinear optical processes such as multiphoton absorp-
tion is necessary for generating magnetic excitations and spin
dynamics. Such nonlinear dynamics becomes suppressed in
systems with a large Jstag (i.e., a large spin gap) and therefore
the height of the second harmonic spin current decreases in
the large-Jstag region. We remark that the third harmonics also
exhibits the similar behavior to the second one, but more
nontrivial Jstag dependence can arise in the third harmonics
as shown in the Figs. 5(b) and 5(d). In particular, there exists
a clear double peak structure in Fig. 5(d). The authors do not
have simple interpretation for this complicated behavior yet.

In addition to the case of � � �I, we have also studied
the second- and third-harmonic spin currents at � ∼ �I. In

this case, the intensity profiles of |Jspin(2�)| and |Jspin(3�)|
in the (b0(e0), Jstag) plane are, respectively, similar to those of
|IP(2�)| and |IP(3�)| in Fig. 3.

Now, we discuss the typical field amplitude required in
experimental observations, following the same criterion men-
tioned at the end of Sec. III. As shown in Fig. 4, the second
harmonic spin current has about 10% of the fundamental one
at b0 = 0.1, and thus we regard this amplitude as required.
According to Table I, this field amplitude corresponds to
B0 = 0.74 T (3.7 T) for magnets of energy scale J = 10 K
(50 K). From Table III, this magnetic-field amplitude cor-
responds to the electric-field amplitude E0 = 2.2 MV/cm
(11 MV/cm) and the energy flux I = 2.9 × 10−3 W/cm2

(1.5 × 10−2 W/cm2). The required amplitude for the magne-
tostriction effect is the same as the above values. The concrete
experimental setups will be discussed in Sec. VI.

V. MAGNETIZATION

We have discussed the harmonic generation and spin cur-
rent so far by using Hamiltonian (1), in which the total
magnetization is conserved. For completeness, in this section,
we switch to another Hamiltonian [see Eq. (23) below], in-
vestigating the harmonic generation through nonlinear mag-
netization dynamics. The methods that we have developed in
previous sections apply to this model.

A. Model and formulation

The second Hamiltonian that we consider in this section is
the anisotropic XY model:

ĤII = ĤXY = J
L∑

j=1

[
(1 + ε)Ŝx

j Ŝ
x
j+1 + (1 − ε)Ŝy

j Ŝ
y
j+1

]

− βu

L∑
j=1

Ŝz
j, (23)

where ε quantifies intraplane anisotropy and the last term
with βu = gμBB0 represents the uniform Zeeman coupling
due to an applied external magnetic flux B0. For ε �= 0, the
total magnetization

∑
j Ŝz

j is not a conserved quantity, and the
Hamiltonian (23) is useful to study dynamics of magnetiza-
tion. The case of the strongest Ising anisotropy, i.e., ε = 1 cor-
responds to the so-called transverse-field Ising model. There
exist several quasi-one-dimensional magnets with strong Ising
anisotropy, e.g., CoNb2O6 [92], BaCo2V2O8 [93,94], and
SrCo2V2O8 [95].

We consider the laser-spin interaction by the ac Zeeman
coupling to the laser magnetic field B(t ) along the Sz direction
as we have done in Sec. II A. Note that we do not consider
staggered effects in this section. Thus, the coupling Hamilto-
nian is given by

ĤZ
ext,II(t ) = −β(t )

∑
j

Ŝz
j (24)

with β(t ) ≡ gμBB(t ).
The total magnetization

M̂ =
∑

j

Ŝz
j (25)
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is the observable that we consider for ĤII + ĤZ
ext,II(t ). As is the

case with the electric polarization, the magnetization becomes
the source of electromagnetic radiation when it varies in time.
Thus, we consider the radiation power

IM (ω) ∝ |ω2M(ω)|2, (26)

and discuss its peak structure in the following. As we re-
marked for the electric polarization in Sec. II A, a constant
shift of M(t ) = 〈M̂〉t does not change IM (ω), and thus we may
use �M(t ) = M(t ) − M0 with M0 = 〈M̂〉tini .

We remark that the odd-order harmonics exist for generic
choices of the parameters whereas the even-order ones appear
only when βu �= 0. This is analogous to the HHG selection
rule in semiconductors regarding the inversion that has been
discussed in Sec. II. Note, however, that the selection rule for
IM (ω) does not follow from the inversion symmetry unlike
the HHG in semiconductors [96] since the magnetization is
even under the inversion. For the magnetization, the rule can
be obtained by using spin rotations as follows. We consider
the ideal situation where β(t ) involves many cycles and is
approximately sinusoidal with period T = 2π/�. For the
special case of βu = 0, the total Hamiltonian ĤII + ĤZ

ext,II(t ) is
invariant under a dynamical transformation given by t → t +
T/2 combined with the global π rotation around, e.g., the Sy

axis. Since M̂ is odd under this transformation, we have M(t +
T/2) = −M(t ), which implies that the even-order HHG is
prohibited. In fact, we have M(2n�) ∝ ∫ T

0 dt ei2n�t M(t ) =∫ T
0 dt ei2n�t [M(t ) + M(t + T/2)]/2 = 0 (see Appendix for

more detail). However, for βu �= 0, this dynamical symme-
try is broken and the even-order HHG by magnetization is
allowed even if the inversion symmetry is present.

The above result shows that the even-order HHG can be
controlled by the static magnetic field βu, and this is a close
analogy to the SHG controlled by the electric current in
semiconductors [97] and superconductors [98,99]. We stress
that this controllability applies to a wide class of spin systems
as long as the dynamical symmetry exists in the absence of
the static magnetic field.

B. Fermionization and BCS Hamiltonian

Our model is also fermionized via the Jordan-Wigner
transform. Through the Fourier transformation of the
Jordan-Wigner fermion d̂k ≡ L−1/2 ∑L

j=1 e−ik j ĉ j , the Hamil-
tonian (23) and the coupling (24) are given by

ĤII =
∑

k

[(J cos k + βu)d̂†
k d̂k

+ i(J/2)ε sin k(d̂†
k d̂†

−k + d̂k d̂−k )], (27)

ĤZ
ext,II(t ) = β(t )

∑
k

d̂†
k d̂k . (28)

For simplicity, we assume that L is even and focus on the sub-
space of the states with even fermion numbers. Correspond-
ingly, we impose the antiperiodic boundary condition for the
fermion and take k = ±π (m + 1/2)/L (m = 0, 1, . . . , L −
1) [100].

Equation (27) is the same as a BCS-type Hamiltonian
for superconductors [101,102]. It means that the HHG of

the anisotropic spin chain (23) is analogous to that of su-
perconducting systems with a static Cooper-pairing coupling
iεJ sin k/2 (i.e., without the dynamics of condensed wave
function such as the Higgs mode). Similarly to Eq. (11), we
have the 2 × 2 form of the Hamiltonian (27) as

ĤII =
∑
k>0

φ
†
II,kHII(k)φII,k, (29)

where φII,k ≡ t(d̂k, d̂†
−k ) and the 2 × 2 Hamiltonian matrix

HII(k) is defined by

HII(k) = (J cos k + βu)σz − Jε sin kσy. (30)

To diagonalize Eq. (29), we perform a unitary (Bogoli-
ubov) transformation. Namely, we introduce γk = ukd̂k −
vkd̂†

−k and γ−k = vkd̂†
k + ukd̂−k , where uk = cos(θk/2) and

vk = i sin(θk/2) with tan θk = −Jε sin k/(J cos k + βu), ob-
taining ĤII = ∑

k>0 εII(k)(γ̂ †
k γ̂k + γ̂

†
−k γ̂−k − 1) with εII(k) =

J
√

(cos k + gu)2 + (ε sin k)2 and gu = βu/J . Thus, the
ground state is the one annihilated by all the γ̂±k’s and
written as1

|�II〉 =
∏
k>0

(uk + vkd̂†
k d̂†

−k ) |0〉 , (31)

where |0〉 being the Fock vacuum for the fermion {d̂k}.
Even under the ac Zeeman coupling (28), the time evo-

lution of each k subspace occurs within a two-dimensional
space rather than the entire four-dimensional space. This is
because the coupling conserves the number of the Jordan-
Wigner (d) fermions and a single quasiparticle (γ ) excitation
is prohibited. We let d̂†

k d̂†
−k |0k〉 and |0k〉 (|0k〉 is the Fock

vacuum for the k subspace) be the basis then the 2 × 2
matrix representation of ĤII is given by Eq. (30) whose eigen-
states are |ψg(k)〉 = t(vk, uk ) and |ψe(k)〉 = t(uk, vk ). The two
eigenenergies ±εII(k) define the two energy bands.

In the following, we focus on ε = 1 corresponding to the
transverse-field Ising model and assume βu > 0. The energy
bands are illustrated in Fig. 6. Then, the energy gap, i.e.,
the minimum energy difference between the upper and lower
bands, occurs at k = π and is given by

�II = 2J|1 − gu|. (32)

In terms of the original spin model, gu = 1 corresponds to the
quantum critical point between the Néel (0 < gu < 1) and the
forced ferromagnetic (gu > 1) phases [86,100].

1In the case of |gu| � 1, in addition to |�II〉 of Eq. (31), there
exists an almost degenerate state in the subspace of states with odd
fermion numbers: |� ′

II〉 = d̂†
π

∏
0<k<π (uk + vk d̂†

k d̂†
−k ) |0〉 with k =

πm/L (m = 1, 2, . . . , L − 1). These states |�II〉 and |� ′
II〉 are eigen-

states of the global π rotation around the Sz axis Û z
π , Û z

π Ŝα
j Û

z†
π =

−Ŝα
j (α = x, y), with eigenvalue 1 and −1, respectively. Meanwhile,

the two Néel states |N+〉 = |→←→ · · ·〉 and |N−〉 = |←→← · · ·〉
in the thermodynamic limit satisfy Û z

π |N±〉 = |N∓〉. Thus, |�±〉 ≡
(|�II〉 ± |� ′

II〉)/
√

2 satisfying Û z
π |�±〉 = |�∓〉 correspond to the

Néel states. Nevertheless, for large system sizes, all these states lead
to almost the same dynamics for M̂z because 〈� ′

II|M̂z(t )|�II〉 = 0 and
〈�II|M̂z(t )|�II〉 � 〈� ′

II|M̂z(t )|� ′
II〉, where M̂z(t ) is the Heisenberg-

picture operator.
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FIG. 6. Upper band εII(k) of the 2 × 2 matrix (33) for the
transverse-field Ising chain (ε = 1) in static Zeeman fields gu =
0.0, 0.5, . . . , and 2.0. The energy unit is J and the lower band is
given by −εII(k).

Since our problem is two dimensional in the above sense,
we can use the quantum master equation (20) to analyze the
dynamics with relaxation. In the present case, the Hamiltonian
part corresponds to

H (k, t ) = HII(k) + β(t )σz, (33)

and the Lindblad operator is Lk = |ψg(k)〉 〈ψe(k)|. The master
equation is solved for the density matrix with the initial
condition ρ(k, tini ) = |ψg(k)〉 〈ψg(k)|. We set the driving field
as a pulse shape

β(t ) = β0 cos(�t ) f (t ), (34)

where β0 is the peak coupling energy and f (t ) is the same as
that in Sec. II A.

C. Numerical results

Figure 7(a) shows typical magnetization profiles in which
we apply a laser pulse of Eq. (34) to the transverse-field
Ising model. Here, gu = 0.5, i.e., �II = 1, and the driving
frequencies are much smaller than or close to the gap. Their
normalized power spectrum IM (ω) is shown in Fig. 7(b). The
even-order harmonics are present since gu �= 0 while we have
confirmed that they are negligibly small in the absence of the
static magnetic field gu = 0, as shown in Fig. 7(d). This is
consistent with the symmetry argument in Sec. V A. Namely,
we have numerically shown that the SHG is controllable by
the static magnetic field.

Whereas the SHG is strong both for � slightly above and
below the spin gap, the THG is stronger for � below the spin
gap. Similarly to the electric polarization and the spin current
discussed in the previous sections, the harmonic peaks remain
narrow even for � ∼ �II because of relaxation. Without re-
laxation, near-resonant driving causes strong real excitations,
which destroy the clear peak structures. The interplay between
the strong driving and relaxation results in the strong and clear
THG signals.

We now systematically investigate the intensity of the
HHG derived from magnetization dynamics. Figure 8 shows
IM (2�) and IM (3�) in the (β0, gu) plane with � = 0.5, where
the unit of intensity is taken as IM (�) for β0 = 0.05. This
value of � corresponds to 0.10 THz (0.52 THz) for J = 10 K
(50 K). Within the range of parameters in Fig. 8, the SHG
(THG) intensity tends to monotonically increase with the ac

FIG. 7. (Left) Time profile of �M(t ) in the transverse-field Ising
chain (ε = 1) with the ac Zeeman driving ĤZ

ext,II(t ) at frequencies
well below, slightly below, and above the spin gap. The static Zeeman
field is βu = 0.5 (top) and βu = 0 (bottom), where the spin gap
is �II = 1 and 2, respectively. The other parameters are β0 = 0.1
and γ = 0.1. (Right) Corresponding power spectrum IM (ω) [Eq. (7)]
plotted against ω/� for βu = 0.5 (top) and βu = 0 (bottom).

Zeeman coupling β0 and becomes as large as 30% (1%) of
our reference fundamental harmonic.

The SHG and THG show nonmonotonic behaviors in the
static magnetic field gu. These behaviors are understood by the

FIG. 8. Intensities of SHG [IM (2�)] (left) and THG [IM (3�)]
(right) generated by ac Zeeman-coupling-driven magnetization dy-
namics in the transverse-field Ising chain (ε = 1). The unit of in-
tensity is chosen as IM (�) at β0 = 0.05 and gu = 0.5. The other
parameters are set as γ = 0.1 and � = 0.5.
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FIG. 9. Schematic illustrations of experimental setups to observe harmonic generation and spin currents. (a) Strong THz laser induces
nonlinear oscillations of the electric polarization or the magnetization, which gives rise to harmonic generation. (b) Harmonic spin currents
induced by strong THz waves in a magnet sample are injected into an attached metal, where the electromotive force is induced by the inverse
spin Hall effect. (c) An all-optical setup to detect harmonic spin currents generated by strong GHz pumps. The spin currents are detected by a
weak-probe high-frequency wave, whose polarization changes according to the Faraday rotation.

multiphoton processes in a perturbative viewpoint as follows.
As gu increases from 0, the spin gap �II decreases according
to Eq. (32) (see also Fig. 6). When the gap becomes smaller
than 3� (2�), the three- (two-) photon process becomes
significant and the THG (SHG) starts to increase. One might
expect that the THG (SHG) enhances resonantly when the res-
onance condition 3� (2�) = �II = 2εII(k = π ) is satisfied,
but this enhancement is not observed in Fig. 8. This is because
the resonance occurs at k = π , but the ac Zeeman coupling at
k = π has no matrix elements between the upper and lower
bands [see Eqs. (33) and (30)]. As gu increases further to
approach the quantum critical point gu = 1 and the spin gap
vanishes, the SHG and THG decrease. This is because near
gu = 1 the band dispersion εII(k) becomes like a Dirac cone
and the density of state decreases. As gu increases from unity,
the spin gap grows again and the SHG and THG increase.
However, the HHG finally decreases to almost vanish when
the gap becomes larger than 2� and 3� and the multiphoton
processes are not significant.

Figure 8 clearly shows that the SHG and THG are gen-
erally smaller in the forced ferromagnetic phase (gu > 1)
than in the Néel one (0 < gu < 1). This would be understood
from the value of the magnetization along the Sz direction.
Namely, the initial magnetization M0 becomes larger with
increase of gu, and thus the application of the ac Zeeman field
along the same direction leads to less efficient magnetization
oscillations.

Let us estimate the required field amplitude to observe the
HHG through magnetization in our model. We again follow
the criterion discussed at the end of Sec. III, and regard
β0 = 0.1 as the required amplitude from the � ∼ 1 data in
Fig. 7. This pair of β0 and � corresponds to B0 = 0.74 T
at 0.21 THz for magnets of energy scale J = 10 K and
B0 = 3.7 T at 1.0 THz for those of J = 50 K. Compared
to the HHG through the electric polarization discussed in
Sec. III, this amplitude is one order more demanding. This
might be related to the difference between the origins of the
SHG. While we considered an inversion-asymmetric model in
Sec. III, we here discuss another one with broken dynamical
symmetry regarding spin rotations. The HHG by magnetiza-
tion in inversion-asymmetric models would merit future study.

VI. EXPERIMENTAL PROTOCOLS

We have shown that harmonic responses can be generated
in spin systems by THz and GHz electromagnetic waves. In

this section, we propose some ways to observe them, and
discuss how intense electromagnetic waves are required.

To detect the harmonic generation through the electric
polarization and the magnetization, it is useful to observe
the radiation from them by a spectrometer as shown in
Fig. 9(a). This is basically the same as that of HHG in
semiconductors.

On top of detecting the radiation, the harmonic spin cur-
rents could be detected by the following two methods. The
first one is based on electric technology and attaching a
spin-orbit-coupled metal on the sample magnetic insulator
as shown in Fig. 9(b). In this method, the generated ac spin
currents are injected into the metal. Then, these spin currents
are converted into the ac electric currents through the inverse
spin Hall effect [103–105]. Finally, these electric currents
are detected as the ac electric voltage if the frequency is
sufficiently low. As we already mentioned, high-frequency
electric voltage cannot be detected by the standard electric
method and thus the frequency of the applied laser field should
be equivalent to or smaller than several tens of THz [91]. The
second one is an all-optical pump-probe method as shown in
Fig. 9(c). In this method, a weak high-frequency, e.g., visible
light wave detects the magnetization dynamics driven by GHz
or THz pump waves through the Kerr effect or the Faraday
rotation.

VII. EXTREMELY STRONG FIELDS

We have been focusing mainly on the second and third
harmonics and the required field strengths to observe them.
We have shown that these harmonics could be observable
with the state-of-the-art intense lasers even though the laser-
spin coupling is weak in principle. Meanwhile, it is still of
theoretical interest to investigate even higher-order harmonics
generated by extremely strong lasers that would not be avail-
able in the current technology. In particular, since our spin
models correspond to electron systems such as semiconduc-
tors and superconductors, this investigation leads to extending
the correspondence of the models to that of the HHG spectra.

Let us first consider the HHG spectra by the polariza-
tion (7) in the model introduced in Sec. II. As we remarked in
Sec. II, our spin model in the fermion language is analogous
to the semiconductors. Thus, if a very strong field is applied,
our spin system is expected to give HHG spectra similar
to those of the semiconductors. This is indeed the case as
shown in Fig. 10(a), in which we show the power spectrum
IP(ω) [Eq. (7)] for the Zeeman driving, for example. Note
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FIG. 10. (a) Power spectrum IP(ω) [Eq. (7)] for extremely strong
Zeeman drivings ĤZ

ext(t ) with b0 = 0.2, 0.3, and 0.4. (b) Amplitude
spectrum |Jspin(ω)| for extremely strong Zeeman drivings ĤZ

ext(t ) with
b0 = 0.4, 0.6, and 0.8. In both (a) and (b), the Hamiltonian is ĤI

with Jstag = 0.1 and Hstag = 0.03, where the spin gap is �I = 0.21,
and the driving frequency of ĤZ

ext(t ) is well below the gap � = 0.02.
Also, the data are normalized so that the highest peak is unity for
each spectrum. (c) Power spectrum IM (ω) in the transverse-field Ising
chain (ε = 1) for extremely strong drivings with β0 = 0.8, 1.2, and
1.6. The parameters are βu = 0.5 where the spin gap is �II = 1.0
and the driving frequency is well below the gap � = 0.1. The data
are normalized so that the highest peak is unity for each spectrum.

that the field amplitude b0 is more than 10 times larger than
those used in Sec. III. We clearly see the plateau structure
followed by the rapid decrease of intensity. The harmonic
order at which the rapid decrease sets in is known as the cutoff
order in the semiconductor HHG [4], which is roughly read
from Fig. 10(a) as 20, 30, and 40 for b0 = 0.2, 0.3, and 0.4,
respectively. This linear scaling of the cutoff order to the field
amplitude is known as a unique feature of the semiconductor
HHG. Therefore, the similarity of our spin system to the
semiconductor system extends to that of HHG spectra in these
two systems.

A similar correspondence to the semiconductor HHG
is seen in the spin-current spectrum |Jspin(ω)| as well.
Figure 10(b) shows the results for extremely strong Zeeman
fields with b0 = 0.4, 0.6, and 0.8. (see figure caption for
the other parameters). For, e.g., b0 = 0, we observe that the

harmonic peak slowly decreases up to ω/� � 80 and then
rapidly decays. We interpret this as an approximate plateau
with cutoff order about 80. The cutoff order thus defined is
read out as ∼60 and ∼40 for b0 = 0.6 and 0.4, respectively.
Thus, the cutoff order roughly scales linearly with b0 in line
with the semiconductor HHG.

Finally, we investigate the HHG spectra by the magneti-
zation (26) for the transverse-field Ising chain (ε = 1). As
remarked in Sec. V, this model is mapped to a BCS-type
model of superconductors. Figure 10(c) shows IM (ω) for
β0 = 0.8, 1.2, and 1.6 that are roughly 10 times larger than
those we have considered in Sec. V. For β0 = 0.8 we observe
a plateaulike behavior up to ω/� � 25 and then a rapid
decrease. The width of the plateaulike behavior increases
almost linearly, roughly speaking, with the field amplitude
β0. It is more remarkable that the second plateau emerges for
higher fields and observed for β0 = 1.2 and 1.6. The second
plateau has not been seen in Figs. 10(a) and 10(b), for which
the Hamiltonian is analogous to semiconductors. Thus, the
second plateau might possibly be related to superconductors,
to which the present model is analogous. We leave further
study on this relation as a future work.

VIII. CONCLUSIONS

We have investigated the harmonic generation and har-
monic spin currents in magnetic insulators. To this end, we
have considered simple but realistic models of quantum spin
chains and studied the laser-driven nonlinear dynamics by
means of the quantum master equation. In Sec. II, we have
introduced the inversion-asymmetric spin chain to study the
HHG by electric polarization and spin current. Through the
Jordan-Wigner transformation, the model is exactly mapped
to a two-band fermion model like semiconductors. We have
confirmed that both intraband and interband transitions of
the Jordan-Wigner fermions are relevant to generate har-
monic peaks similarly to the HHG of semiconductors. On
the other hand, we have focused on the transverse-field Ising
chain to explore HHG by magnetization dynamics in Sec. V,
and the chain is mapped to a fermion model with a BCS-
type Hamiltonian. Calculating the quantum dynamics under
pulse lasers and relaxation in Secs. III–V, we have shown
that the harmonic peaks can appear in the electric polariza-
tion, the spin current, and the magnetization. As shown in
Figs. 2, 4, and 7, these harmonic peaks have been obtained
in a well-defined manner thanks to the relaxation taken in our
quantum master equation. For hypothetical strong fields, we
have obtained the harmonic spectra involving plateaus in our
spin models and pointed out the correspondence to the spectra
in semiconductors and superconductors (see Fig. 10).

For realistic field strength within the state-of-the-art
technology, the obtained lower-order harmonics become
large enough to be experimentally observed. The required
ac electric-field strength is typically E0 = 100 kV/cm–
1 MV/cm. The THz and GHz waves with these field strengths
could be achieved within the current laser technology [40–43].
The data in Tables I–III would be useful to semiquantitatively
estimate the required laser field to experimentally create HHG
in magnets. We have shown that the harmonic peaks are not
sensitive to the driving frequency and the field strength is more
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important for a successful detection. It is noteworthy that the
SHG from magnetization dynamics has been shown control-
lable by static Zeeman fields. This controllability applies to a
wide class of magnetic insulators.

We have proposed some experimental ways of observing
HHG in magnetic insulators in Sec. VI. In addition to the
optical method, we have considered electric ways of detect-
ing harmonic spin currents (see Fig. 9). An intense GHz
wave (i.e., sufficiently low-frequency laser or electromagnetic
wave) is necessary to use the electric methods.

As we mentioned in the Introduction, the HHG is a typical
and simple nonlinear optical phenomenon in solids. There-
fore, our estimate for the required ac field strength (E0 = 100
kV/cm–1 MV/cm) would serve as a reference value not only
for future HHG experiments in real magnets but also for other
nonlinear magneto-optical effects such as Floquet engineering
of magnetism [53,54], dc spin-current rectification with THz
or GHz waves [62,63], inverse Faraday effects [51,52], etc.

Extensions of this work to magnonic systems are future
works of interest. A difference from our present model map-
pable to the Jordan-Wigner fermions is that the magnons may
exhibit resonances to the external field and stronger signals
could be obtained in certain conditions. Of course, more
quantitative theoretical evaluations specific to each material
become important when one interprets concrete experiments.
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APPENDIX: HHG SELECTION RULE FOR
MAGNETIZATION DYNAMICS

We supplement the argument in Sec. V A, where the even-
order harmonics are shown to vanish when the static Zeeman
field is absent βu = 0. The key equation is

M(t ) = −M(t + T/2), (A1)

which is satisfied by the time-dependent expectation value of
the total magnetization. In this Appendix, we derive the above
equation by more careful calculations.

For simplicity, we restrict ourselves to the Ising case ε = 1.
In this case, both the static Hamiltonian ĤXY and the ground
state are invariant under the global π rotation around the
Sx axis Û x

π , Û x
π Ŝα

j Û x†
π = −Ŝα (α = y, z), and Û x

π Ŝx
jÛ

x†
π = Ŝx.

Note that our argument can easily be generalized to the
general case ε �= 1, where the symmetry axis depends on ε.

Let us express the symmetry in terms of the Jordan-Wigner
fermions. As one can check easily, the global rotation Û x

π leads
to Û x

π ĉ jÛ x†
π = (−1) j ĉ†

j , which implies, in the Fourier trans-

form, that Û x
π d̂kÛ x†

π = d̂†
π−k . Then, the rotational invariance

of ĤXY is translated into the 2 × 2 matrix representation (33)
as

HII(π − k) = σyHII(k)σy (A2)

for βu = 0. This means that there is one-to-one correspon-
dence between the energy eigenstates of HII(π − k) and
HII(k), which leads to

ρ(π − k, tini ) = σyρ(k, tini )σy (A3)

at the initial time.
Next, we consider the dynamical symmetry, supposing

the multicycle limit, at which T/tFWHM � 1 and β(t ) is
approximately sinusoidal. In this situation, the ac Zeeman
field satisfies β(t + T/2) = −β(t ), and the total Hamiltonian
Ĥ (t ) = ĤII + ĤZ

ext,II(t ) has the dynamical symmetry Ĥ (t ) =
Û x

π Ĥ (t + T/2)Û x†
π . In the fermion language, this dynamical

symmetry reads as

H (π − k, t ) = σyH (k, t + T/2)σy. (A4)

We remark that the Lindblad operators satisfy similar relations

Lπ−k = eiϕk σyLkσy, (A5)

where ϕk is some real number.
Equations (A4) and (A5) relate the dynamics of ρ(k, t )

and ρ(π − k, t ). To see this, we symbolically represent the
quantum master equation (20) by using the Liouvillian super-
operator

d

dt
ρ(k, t ) = Lk (t )ρ(k, t ). (A6)

Equations (A4) and (A5) lead to

d

dt
ρ(π − k, t ) = Lπ−k (t )ρ(π − k, t )

= σyLk (t + T/2)σyρ(π − k, t ), (A7)

and thus to

d

dt
σyρ(π − k, t )σy = Lk (t + T/2)σyρ(π − k, t )σy.

(A8)

Comparing Eqs. (A6) and (A8), we obtain

σyρ(π − k, t )σy = ρ(k, t + T/2) (A9)

if σyρ(π − k, tini )σy = ρ(k, tini + T/2). This condition is ac-
tually satisfied because of the following reasons. First,
Eq. (A3) holds true. Second, the time evolution of ρ(k, t )
from t = tini to tini + T/2 is negligible because we have
taken such a small tini that the ac Zeeman field is negligible
at t ∼ tini.

Finally, we discuss the magnetization, which is given in the
2 × 2 matrix representation by

Mk = −σz (A10)
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independently of k. Thus, Eq. (A9) leads to the following
relations for the expectation values of magnetization:

M(π − k, t ) = tr[(−σz )ρ(π − k, t )]

= tr[(−σz )σyρ(k, t + T/2)σy]

= −tr[(−σz )ρ(k, t + T/2)]

= −M(k, t + T/2), (A11)

where we have used the cyclic property of the trace
and σyσzσy = −σz. Therefore, the total magnetization M(t )

satisfies

M(t ) =
∑

k

M(k, t )

=
∑

k

M(π − k, t + T/2)

= −M(t + T/2). (A12)

Thus, we have obtained Eq. (A1).
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