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Ferromagnetism in the SU(n) Hubbard model with a nearly flat band
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We present rigorous results for the SU(n) Fermi-Hubbard model on the railroad-trestle lattice. We first study
the model with a flat band at the bottom of the single-particle spectrum and prove that the ground states exhibit
SU(n) ferromagnetism when the total fermion number is the same as the number of unit cells. We then perturb
the model by adding extra hopping terms and make the flat band dispersive. Under the same filling condition,
it is proved that the ground states of the perturbed model remain SU(n) ferromagnetic when the bottom band is
nearly flat. This is the first rigorous example of the ferromagnetism in nonsingular SU(n) Hubbard models in
which both the single-particle density of states and the on-site repulsive interaction are finite.
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I. INTRODUCTION

Strongly correlated electron systems, in which the
Coulomb interaction between electrons plays an essential role,
can exhibit a variety of phenomena such as ferromagnetism,
antiferromagnetism, and superconductivity. The Hubbard
model has been introduced as a minimum model to describe
such systems [1–3]. Despite its apparent simplicity, the
intricate competition between the kinetic and the on-site
Coulomb terms in the model is hard to deal with analytically.
So far, exact and rigorous results have been mostly limited to
one dimension [4] or systems with special hopping and filling
[5–10].

Recently, it has become possible to simulate the Hub-
bard model using ultracold atoms in optical lattices [11–13].
Furthermore, it was proposed theoretically [14] and demon-
strated experimentally [15] that multicomponent fermionic
systems with SU(n) symmetry can be realized in cold-atom
setups. These systems are well described by the SU(n) Fermi-
Hubbard model, in which each atom carries n internal degrees
of freedom. When n = 2, the model reduces to the original
Hubbard model with spin-independent interaction. Although
the SU(n) (n > 2) symmetry has been less explored in the
condensed matter literature, there is a growing interest in
recent years in studying the SU(n) Hubbard model theoret-
ically. For example, it is argued that the SU(n) Hubbard
model can exhibit exotic phases that do not appear in the
SU(2) counterpart [14,16,17]. Besides, enlarged symmetry
other than SU(n), such as SO(5), in higher spin systems has
also been discussed [18].

The SU(n) Hubbard model is, in general, harder to the-
oretically study than the SU(2) Hubbard model. It has been
reported that the Nagaoka ferromagnetism [19,20], which
is the first rigorous result for the SU(2) Hubbard model,
can be generalized to the case of SU(n) [21,22]. Flat-band
ferromagnetism is another example of rigorous results for the
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SU(2) Hubbard model. Here, a flat band refers to a structure
of single-particle energy spectrum which has a macroscopic
degeneracy. A tight-binding model with a flat band can be
constructed using standard methods such as the line graph
[23] and the cell constructions [5]. In the SU(2) case, it is
known that if the system has a flat band at the bottom of the
single-particle spectrum and the particle number is the same as
the number of unit cells, the ground state of the model exhibits
ferromagnetism [5,6,8,24]. An SU(n) counterpart of the flat-
band ferromagnetism has also been discussed recently [25].

In this paper, we consider the SU(n) Hubbard model on a
one-dimensional (1D) lattice called the railroad-trestle lattice
and derive rigorous results. We first treat the model with a flat
band at the bottom and prove that the model exhibits SU(n)
ferromagnetism in its ground states provided that the on-site
interaction is repulsive and the total fermion number is the
same as the number of unit cells. This is a slight generalization
of the result obtained by Liu et al. in Ref. [25], in the sense
that our hopping Hamiltonian has one more parameter. We
then discuss SU(n) ferromagnetism in a perturbed model ob-
tained by adding extra hopping terms that make the flat band
dispersive. We prove that this particular perturbation leaves
the SU(n) ferromagnetic ground states unchanged when the
band width of the bottom band is sufficiently narrow. This is
our main result and can be thought of as an SU(n) extension
of the previous theorem for the SU(2) Hubbard model with
nearly flat bands [26].

The rest of this paper is organized as follows. In Sec. II, we
introduce the SU(n) Hubbard model with completely flat band
and prove that its ground states exhibit SU(n) ferromagnetism.
In Sec. III, we study a model with nearly flat band and prove
that the ground states remain SU(n) ferromagnetic when the
repulsive interaction and the band gap are sufficiently large.
We present our conclusions in Sec. IV.

II. MODEL WITH COMPLETELY FLAT BAND

Let M be an arbitrary positive integer and � =
{1, 2, . . . , 2M} be a set of 2M sites on the railroad-trestle
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FIG. 1. (a) The railroad-trestle lattice with hopping amplitudes
t1 = νt and t2 = ν2t . Odd (black) and even (white) sites have on-site
potentials t and 2ν2t , respectively. The shaded region indicates the
unit cell. (b) The energy bands for t = 1, ν = 1/

√
2. The lowest band

at zero energy is completely flat.

lattice [Fig. 1(a)]. We impose periodic boundary condition,
so that site j and j + 2M are identified. We denote by E and
O subsets of � consisting of even sites and odd sites, re-
spectively. We define creation and annihilation operators c†

x,α
and cx,α for a fermion at site x ∈ � with color α = 1, . . . , n.
They satisfy {cx,α, c†

y,β} = δα,βδx,y. The number operator of
fermion at site x with color α is denoted by nx,α = c†

x,αcx,α .
We consider the SU(n) Hubbard Hamiltonian

H1 = Hhop + Hint, (1)

Hhop =
n∑

α=1

∑
x,y∈�

tx,yc†
x,αcy,α, (2)

Hint = U
∑

1�α<β�n

∑
x∈�

nx,αnx,β , (3)

where t2x−1,2x−1 = t , t2x,2x = 2ν2t , t2x−1,2x = t2x,2x−1 = νt ,
t2x−2,2x = t2x,2x−2 = ν2t , and the remaining elements of tx,y
are zero [see Fig. 1(a)]. The parameters t, ν, and U are
positive.

When U = 0, the model reduces a tight-binding model and
we see that it has two bands with ε1(k) = 0, ε2(k) = t (2ν2 +
1) + 2ν2t cos k. Clearly, the lowest band is dispersionless, as
shown in Fig. 1(b).

We define total number operators of fermion with color
α and color raising and lowering operators as Fα,β =∑

x∈� c†
x,αcx,β . Since the Hamiltonian H1 has SU(n) sym-

metry, they commute with H1. We denote the eigenvalue
of Fα,α by Nα . Since Fα,α commute with the Hamiltonian
H1, the eigenstates of H1 are separated into different sectors
labeled by (N1, . . . , Nn). If the total fermion number Nf =∑

x∈�

∑n
α=1 nx,α is fixed, Nα must satisfy

∑n
α=1 Nα = Nf .

Now we define a new set of operators

ax,α := −νcx−1,α + cx,α − νcx+1,α for x ∈ E, (4)

bx,α := νcx−1,α + cx,α + νcx+1,α for x ∈ O, (5)

which satisfy

{ax,α, b†
y,β} = 0, (6)

{ax,α, a†
y,β} =

⎧⎨⎩δα,β (ν2 + 2) if x = y,
δα,β ν2 if x = y ± 2,

0 otherwise,
(7)

{bx,α, b†
y,β} =

⎧⎨⎩δα,β (ν2 + 2) if x = y,
δα,β ν2 if x = y ± 2,

0 otherwise.
(8)

The hopping Hamiltonian Hhop is rewritten in terms of bx,α

and b†
x,α as

Hhop = t
n∑

α=1

∑
x∈O

b†
x,αbx,α (9)

and hence positive semidefinite. The interaction term
Hint is also positive semidefinite because nx,αnx,β =
(cx,αcx,β )†cx,αcx,β . Therefore, the total Hamiltonian
H1 = Hhop + Hint is positive semidefinite as well. From now
on, we fix the total fermion number as Nf = |E | = M and
define a fully polarized state as |�all,α〉 := ∏

x∈E a†
x,α |�vac〉,

where |�vac〉 is a vacuum state of cx,α . From the
anticommutation relation (6), we find that |�all,α〉 is an
eigenstate of H1 with eigenvalue zero. Since H1 � 0, the fully
polarized states are ground states of H1. Because of the SU(n)
symmetry, one obtains a general form of degenerate ground
states as ∣∣�N1,...,Nn

〉 = (F n,1)Nn . . . (F 2,1)N2 |�all,1〉, (10)

where N1 = M − ∑n
α=2 Nα . We also refer to states of the form

Eq. (10) as fully polarized states [27].
The first result of this paper is the following.
Theorem 1. Consider the Hubbard Hamiltonian (1) with the

total fermion number Nf = M. For arbitrary t > 0 and U > 0,
the ground states of the Hamiltonian (1) are the fully polarized
states and unique apart from trivial degeneracy due to the
SU(n) symmetry.

Proof of Theorem 1. Let |�GS〉 be an arbitrary ground state
of H1 with Nf = M. Since the ground-state energy is zero, we
have H1 |�GS〉 = 0. The inequalities Hhop � 0 and Hint � 0
imply that Hhop |�GS〉 = 0 and Hint |�GS〉 = 0, which means
that

bx,α |�GS〉 = 0 for any x ∈ O and α = 1, . . . , n, (11)

cx,αcx,β |�GS〉 = 0 for any x ∈ � and α �= β. (12)

Since ax,α and bx,α obey the anticommutation relation (6),
the condition (11) implies that |�GS〉 does not contain any
b†

x,α operator when it is constructed by acting with creation
operators on the vacuum state. Therefore, it is written as

|�GS〉 =
∑

A1,A2,...An⊂E∑n
α=1 |Aα |=M

f ({Aα})

(∏
x∈A1

a†
x,1

)
. . .

(∏
x∈An

a†
x,n

)
|�vac〉,

(13)

where Aα is a subset of E and f ({Aα}) is a certain coefficient.
Next, we make use of the condition (12). We take an even

site x ∈ E . Using the anticommutation relation {cx,α, a†
y,β} =

δα,βδx,y and Eq. (12), we see that f ({Aα}) = 0 if there exist
Aα and Aβ such that Aα ∩ Aβ �= ∅. Since

∑n
α=1 |Aα| = M

and Aα ∩ Aβ = ∅ for α �= β, we find that ∪n
α=1Aα = E . This
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means that the ground state is rewritten as

|�GS〉 =
∑

α

C(α)

(∏
x∈E

a†
x,αx

)
|�vac〉, (14)

where the sum is over all possible color configurations α =
(αx )x∈E with αx = 1, . . . , n. Then, we consider the condition
(12) for x ∈ O. By using

{cx,α, a†
y,β} =

{−νδα,β if y = x ± 1,

0 otherwise,
(15)

we get

cx,αcx,β |�GS〉

=
∑

α

s.t.αp=β,

αq=α

ν2[C(α) − C(αp↔q)]

⎛⎝ ∏
y∈E\{x±1}

a†
y,αy

⎞⎠|�vac〉,

(16)

where p = x − 1 and q = x + 1. The color configuration
αp↔q is obtained from α by swapping αp and αq. Since all the
states in the sum are linearly independent, we find from the
condition (12) that C(α) = C(αp↔q) for all α and all x ∈ O.
As the two localized states on neighboring even sites share an
odd site between them, we see that

C(α) = C(αx↔y), (17)

where x, y are arbitrary different sites in E .
To show that states satisfying Eq. (17) are the fully

polarized states, i.e., SU(n) ferromagnetic, we introduce a
concept of a word [28]. A word w = (w1, . . . ,wM ) is a
sequence of integers where wi ∈ {1, . . . , n} for all i. We
denote by |w|α the number of occurences of α in w. We
define the set of words for which |w|α = Nα holds as follows:
W (N1, . . . , Nn) = {w| |w|α = Nα, α = 1, . . . , n}. For exam-
ple, W (2, 0, 1) consists of (1, 1, 3), (1, 3, 1), and (3, 1, 1). It
follows from Eq. (17) that the ground state of H1 in the sector
labeled by (N1, . . . , Nn) can be written as∣∣�̃N1,...,Nn

〉 =
∑

w∈W (N1,...,Nn )

a†
2,w1

a†
4,w2

. . . a†
2M,wM

|�vac〉. (18)

Now using commutation relations [Fβ,α, a†
x,γ ] = δα,γ a†

x,β for
all x ∈ E , we see that

(F 2,1)N2 |�all,1〉 =
∑

w∈W (M−N2,N2 )

a†
2,w1

a†
4,w2

. . . a†
2M,wM

|�vac〉.

(19)

By repeating the procedure, we have the desired result
|�̃N1,...,Nn〉 = |�N1,...,Nn〉. This proves that the ground states of
H1 are fully polarized states. �

III. MODEL WITH NEARLY FLAT BAND

So far, we have considered the flat-band model, but this is
an idealized case in which the lowest energy band becomes
completely dispersionless. As a more realistic model, we con-
sider a model with nearly flat band by adding a perturbation to

(a)
(b)

FIG. 2. (a) The lattice geometry of H ′
hop. The hopping amplitudes

are given by t1 = ν(t + s), t2 = ν2t , and t ′
2 = −ν2s. Odd (black) and

even (white) sites have on-site potentials t − 2ν2s and −s + 2ν2t ,
respectively. The corresponding energy bands are shown in panel
(b) for t = 1, ν = 1/

√
2, s = 1/10.

the model in the previous section [29]. Here we define another
Hubbard model on the same lattice as Theorem 1:

H2 = H ′
hop + Hint, (20)

where H ′
hop is defined as

H ′
hop = −s

n∑
α=1

∑
x∈E

a†
x,αax,α + t

n∑
α=1

∑
x∈O

b†
x,αbx,α, (21)

and Hint is defined in Eq. (3) with parameters s, t,U > 0.
When the hopping Hamiltonian H ′

hop is written in terms
of original fermion operator cx,α , it takes the form
H ′

hop = ∑
α

∑
x,y∈� t ′

xyc†
x,αcy,α , where t ′

2x−1,2x−1 = t − 2ν2s,
t ′
2x,2x = −s + 2ν2t , t ′

2x−1,2x = t ′
2x,2x−1 = ν(t + s), t ′

2x−2,2x =
t ′
2x,2x−2 = ν2t , t ′

2x−1,2x+1 = t ′
2x+1,2x−1 = −ν2s, and the

remaining elements of t ′
x,y are zero. When we consider the

single-particle problem, we obtain two bands with ε1(k) =
−s(2ν2 + 1) − 2ν2s cos k, ε2(k) = t (2ν2 + 1) + 2ν2t cos k
[see Fig. 2(b)]. We see that the lowest band is no longer flat;
however, it can be regarded as a nearly flat band when s is
small enough. We focus on this model in the following and
prove a theorem on the ferromagnetism.

Theorem 2. Consider the Hamiltonian (20) with the total
fermion number Nf = M. For sufficiently large t/s > 0 and
U/s > 0, the ground states are the fully polarized states and
unique apart from the trivial degeneracy due to the SU(n)
symmetry.

Proof of Theorem 2. First, we decompose the Hamiltonian
(20) into the sum of local Hamiltonians as

H2 = −sM(2ν2 + 1) + λHflat +
∑
x∈E

hx, (22)

where

Hflat =
n∑

α=1

∑
x∈O

b†
x,αbx,α +

∑
x∈�

∑
α<β

nx,αnx,β (23)

and

hx =
n∑

α=1

[
−sa†

x,αax,α + t − λ

2
(b†

x−1,αbx−1,α + b†
x+1,αbx+1,α )

]

+ κ (U − λ)

4
nx−2(nx−2 − 1) + U − λ

4
nx−1(nx−1 − 1)

+ (1 − κ )(U − λ)

2
nx(nx − 1) + U − λ

4
nx+1(nx+1 − 1)

+ κ (U − λ)

4
nx+2(nx+2 − 1) + s(2ν2 + 1), (24)
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where nx is defined as nx = ∑
α nx,α . The two parameters λ

and κ satisfy 0 < λ < min{t,U } and 0 � κ < 1. To prove
Theorem 2, we use the following lemmas.

Lemma 1. Suppose the local Hamiltonian hx is positive
semidefinite for any x ∈ E . Then the ground states of the
Hamiltonian (22), and hence Eq. (20), are fully polarized
states and unique apart from the trivial degeneracy due to the
SU(n) symmetry.

Lemma 2. Suppose that t,U are infinitely large and 0 <

κ < 1. Then the local Hamiltonian (24) is positive semidefi-
nite. (We take λ and κ to be proportional to s.)

We note that hx can be regarded as a finite-dimensional
matrix independent of the system size since the local Hamilto-
nian hx acts nontrivially only on a finite number of sites. This
means that the energy levels of hx depend continuously on the
parameters. Therefore, Lemma 2 guarantees that hx is positive
semidefinite when t,U are finite but sufficiently large. Then
Lemma 1 implies that the ground states of the Hamiltonian
(20) are fully polarized states, which proves Theorem 2. �

Below, we prove Lemmas 1 and 2.
Proof of Lemma 1. First, it is noted that a fully polarized

state |�all,1〉 = (
∏

x∈E a†
x,1) |�vac〉 satisfies hx |�all,1〉 = 0 for

each hx. Since hx is SU(n) invariant, all fully polarized
states have zero energy. We assume that hx � 0 for all x ∈
E . Let |�flat

GS〉 be an arbitrary ground state of Hflat. Since
Hflat |�flat

GS〉 = 0 and hx |�flat
GS〉 = 0, we see that H2 |�flat

GS〉 =
−sM(2ν2 + 1) |�flat

GS〉. From hx � 0, the ground energy of H2

is −sM(2ν2 + 1). If |�GS〉 is an arbitrary ground state of
H2, it satisfies H2 |�GS〉 = −sM(2ν2 + 1). From Hflat � 0 and
hx � 0, we find Hflat |�GS〉 = 0 and hx |�GS〉 = 0. This shows
that any ground state of H2 must be a ground state of Hflat.
The Hamiltonian Hflat is nothing but the Hamiltonian H1 with
t = U = 1. Thus, the ground states of H2 are fully polarized
and unique. �

We remark that one can check whether hx is pos-
itive semidefinite by numerically diagonalizing a finite-
dimensional matrix. The result for the SU(4) case is shown
in Fig. 3.

Proof of Lemma 2. Because of the translational invariance,
it suffices to show the case for h0. The local Hamiltonian h0 is

FIG. 3. The positive semidefiniteness of hx (n = 4) holds in the
shaded region for ν = 1/

√
2, κ = 0. The plot is obtained by diago-

nalizing hx numerically. Lemma 1 says that the ground states of the
full Hamiltonian H2 are fully polarized states in the shaded region.
For example, the ferromagnetism is established if t/s � 4.5 when
U/s = 25.

regarded as an operator defined on five sites {−2,−1, 0, 1, 2},
where x = −2,−1, and 0 are identified with x = 2M −
2, 2M − 1, and 2M, respectively. On these sites, we define
operators

ã−2,α := 1√
ν2 + 1

(c−2,α − νc−1,α ), (25)

b̃−1,α := νc−2,α + c−1,α + νc0,α, (26)

ã0,α := −νc−1,α + c0,α + −νc1,α, (27)

b̃1,α := νc0,α + c1,α + νc2,α, (28)

ã2,α := 1√
ν2 + 1

(−νc1,α + c2,α ). (29)

These operators satisfy

{ãy,α, ã†
y′,β} =

⎧⎨⎩
δα,β (2ν2 + 1) for y = y′ = 0,

δα,β
ν2√
ν2+1

for |y − y′| = 2,

δα,βδy,y′ for y, y′ = ±2,

(30)

{ãy,α, b̃†
y′,α} = 0. (31)

Single-fermion states corresponding to these operators are
linearly independent. To show the lemma, we only need to
consider states |�〉 which have finite energy in this limit, i.e.,
limt,U→∞ 〈�| h0 |�〉 < ∞. The condition that |�〉 has finite
energy is equivalent to the following:

b̃y,α |�〉 = 0 for y = ±1, (32)

cy,αcy,β |�〉 = 0 for y = 0,±1,±2. (33)

Let |�〉 be a state which has finite energy. From Eqs. (32) and
(33) with y = −2, 0, 2, |�〉 is written as

|�〉 =
∑

A1,...,An⊂Ẽ
Aα∩ Aβ=∅

f ({Aα})

⎛⎝∏
y∈A1

ã†
y,1

⎞⎠. . .

⎛⎝∏
y∈An

ã†
y,n

⎞⎠|�vac〉, (34)

where Ẽ = {−2, 0, 2} and Aα is an arbitrary subset of Ẽ .
Since Ẽ contains three sites, the particle number of finite-
energy states must be less than or equal to three. Using the
condition Eq. (33) with y = ±1, we see that all the finite-
energy states |�〉 must be a fully polarized state over the
five sites and have zero energy when the particle number is
three. For one-particle states, all the eigenvalues of h0 are non-
negative. Thus, we only need to verify the positive semidefi-
niteness for two-particle sectors labeled by (Nα, Nβ ) = (2, 0)
and (Nα, Nβ ) = (1, 1). To this end, we solve the eigenvalue
problem for Ph0P, where P denotes the projection operator
onto the space of finite-energy states. In the sector (2, 0), we
find that there are three eigenstates

|�1〉 = ã†
−2,α ã†

0,α|�vac〉, (35)

|�2〉 = ã†
0,α ã†

2,α|�vac〉, (36)

|�3〉=
[

ν2

ν2 + 1
(ã†

−2,α−ã†
2,α )ã†

0,α−(2ν2 + 1)ã†
−2,α ã†

2,α

]
|�vac〉

(37)
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and their corresponding eigenenergies are 0, 0, and s(2ν2+1),
respectively. In the sector (1,1), there are four eigenstates.
Three of them can be obtained by applying Fβ,α to the states
|�1〉 , |�2〉, and |�3〉. As a state orthogonal to them, we get a
singlet state

|�4〉 = (ã†
−2,α ã†

2,β − ã†
−2,β ã†

2,α )|�vac〉, (38)

and we find that this state satisfies

Ph0P |�4〉 = s(2ν2 + 1)|�4〉. (39)

Clearly, the state |�4〉 has a positive energy. Hence, we see
that all the eigenvalues of h0 are non-negative. Thus, we have
proved Lemma 2. �

IV. CONCLUSION

We have presented an extension of flat-band ferromag-
netism to the SU(n) Hubbard model on the railroad-trestle
lattice. Furthermore, we proved that in the nearly flat-band
case, all the ground states are fully polarized if t and U are suf-
ficiently large. One can similarly construct and analyze mod-
els in higher dimensions, in which the ground states are fully
polarized if the lowest band is completely flat. The previous

results for the SU(2) Hubbard models in higher dimensions
suggest that the parameter ν has to be larger than a threshold
value νc > 0 when the lowest band is nearly flat [30,31]. The
details will be discussed elsewhere.

Although we have focused on models with a nonzero band
gap, it would be interesting to see if the method developed in
this paper can be extended to include SU(n) Hubbard models
with gapless flat or nearly flat bands [32]. It would also be
interesting to study SU(n) ferromagnetism in systems with
topological flat bands carrying nontrivial Chern number, as its
SU(2) counterpart has been discussed in Ref. [33]. Another
direction for future research is to explore ferromagnetism in
multiorbital Hubbard models, including the one with SU(n)
symmetry. In such systems, rigorous [34,35] and numerical
results [36] about ferromagnetism, which are different from
the flat-band scenario, have been obtained recently. It is thus
interesting to see to what extent our results can be generalized
to the multiorbital case.
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