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Spin nematics in frustrated spin-dimer systems with bilayer structure
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We study frustrated spin-1/2 dimer systems in two dimensions with a bilayer structure, where spins are
ferromagnetically coupled in dimers. Our model includes frustrated two-spin exchange interactions as well
as four-spin interactions. We pay particular attention to the spin nematic phase, which does not exhibit any
magnetic (spin-dipole) order but has a spin-quadrupolar long-range order. Employing a perturbation calculation,
a mean-field approximation, and a numerical many-variable variational Monte Carlo method, we determine
ground-state phase diagrams on various two-dimensional lattices. It is found that the model exhibits the spin
nematic phase with ferroquadrupolar order in a wide parameter region, in addition to conventional magnetically
ordered phases. In particular, it is shown that even when the four-spin interactions are absent, frustrated two-spin
exchange interactions can realize the spin nematic phase as a result of strong interdimer correlations. It is also
found that the phase transitions between the spin nematic phase and antiferromagnetic phases can be continuous.
Furthermore, we present some exact arguments that various phases including the spin nematic phase and the
vector chiral (p-type nematic) phase emerge from an SU(4) symmetric point in the model by the addition of
appropriate perturbative interactions. The spin nematic phase generated from the SU(4) point is connected with
the spin nematic phase found numerically in the system with only two-spin interactions.
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I. INTRODUCTION

The search for spin nematic states has been under active
investigation in the last decade. The spin nematic state is
characterized by the absence of any magnetic long-range
order (except a trivial magnetization in an applied mag-
netic field) and the spontaneous symmetry breaking of spin
rotation accompanied with a spin-quadrupolar long-range
order [1]. Because of these peculiar properties, the spin ne-
matic state is a novel, intriguing nonmagnetic state with a
hidden order.

In theoretical studies, there are already many proposals
of the spin models that exhibit the spin nematic order at
low temperatures. A typical example in such models is the
spin-1 bilinear-biquadratic model [2–4], which includes bi-
linear (two-spin) and biquadratic (four-spin) exchange inter-
actions. The appearance of the spin nematic phase on the
cubic lattice was shown for sufficiently large biquadratic
interactions by a rigorous proof [5] and quantum Monte
Carlo simulations [6]. It has been also shown that the spin-1
bilinear-biquadratic model exhibits the spin-nematic ground-
state phases with ferro- or antiferroquadrupolar order on
various two-dimensional lattices [7–11]. Another example of
the models that show the spin nematic phase is a family of
spin-1/2 frustrated ferromagnets which include ferromagnetic
(FM) exchange interactions and competing antiferromagnetic
(AFM) ones [12–19]. In this case, the instability leading
to the spin nematic phase appears in the saturated state in
an external field, where two magnons form a bound state.
When the external field decreases below the saturation field,

those bound magnon pairs condense, which leads to spin
nematicity [12,20]. There are also a few other examples
which show the spin-nematic ground state in anisotropic
spin models [21–23], the Heisenberg model on Shastry-
Sutherland lattice [24,25], and models with multiple-spin ring
exchanges [20,26–28].

In real materials, however, candidate materials for the spin
nematic state are rather limited. The biquadratic interaction
in spin-1 systems is not very strong in general, but the
realization of the spin nematic state in the spin-1 systems
requires relatively strong biquadratic interaction comparable
to or larger than the bilinear exchange interaction. We note
that there are some proposals to enhance the ratio of the
biquadratic interaction to the bilinear one [29,30]. In the case
of spin-1/2 frustrated ferromagnets, the spin nematic phase
can appear only in a narrow parameter range at zero field and
it appears in a wider parameter space in a high magnetic field
[31], which is not easy to access in experiments. Nevertheless,
active studies on spin-1/2 frustrated ferromagnets are on go-
ing, for example, in the quasi-one-dimensional spin-1/2 frus-
trated ferromagnets LiCuVO4 [32,33] and Rb2Cu2Mo3O12

[34], and a two-dimensional kagome compound, volborthite
Cu3V2O7(OH)2 · 2H2O [35,36]. For stimulating further stud-
ies, it is desirable to search still more theoretical models for
describing the spin nematic phase at zero field in the systems
with only two-spin interactions, which are easier to access
experimentally.

Theoretical studies on spin nematics in spin-1/2 sys-
tems often face technical difficulties. The appearance of spin
nematic phases is usually understood from the bi-magnon
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FIG. 1. Schematic pictures of the model (1). In all panels, cir-
cles and rectangles represent the spin-1/2 spins and their dimers,
respectively. (a) Two-spin exchange interactions. Solid, dashed, and
dotted lines represent the exchange interactions of Jd, J‖, and J×,
respectively. (b) Four-spin interaction J4. (c) The model in the square
lattice. Only the two-spin interactions are drawn for clarity.

instability in the fully polarized state [12,27,37], where some
of the induced spin nematic phases are expected to remain
down to low magnetization regime. Nevertheless, even in
the spin-1/2 square-lattice J1-J2 model with ferromagnetic
J1, which is thought to be a typical model for spin nematic
ordering [12], there still exists a certain controversy if the
spin nematic order remains at zero field [13,38]. For a better
understanding of spin nematic ordering at zero field, it is
hence helpful to find some specific spin-1/2 models which
definitely show spin nematic phases at zero magnetic field.
In this context, the mechanism of spin nematics in spin-
1 systems is instructive. In the spin-1 bilinear-biquadratic
model, it is known that an SU(3) symmetry plays an important
role in the emergence of spin nematic phases at zero field
[39,40]. Referring to this, we also take into account the effect
of four-spin interactions in our spin-1/2 systems, to elucidate
mechanism of spin nematic ordering. We will see that an
SU(4) symmetry appearing in our model at a certain parameter
point serves as an origin of the spin-nematic phase.

The aim of this work is twofold. One is to propose a
spin-1/2 model that requires neither the four-spin interac-
tion nor magnetic field for realizing the spin nematic state.
The other is to clarify the mechanism of this spin nematic
ordering by considering four-spin interactions as well. For
these purposes, we introduce in this paper a spin-1/2 frus-
trated ferromagnetic model in two dimensions. The model
consists of ferromagnetically coupled dimers of S = 1/2 spins
forming a bilayer structure and contains frustrated bilinear
Heisenberg exchange interactions and a type of four-spin
interaction [see Eq. (1) and Fig. 1 in Sec. II]. The parameter
space of the model includes the effective spin-1 bilinear-
biquadratic model and an SU(4) symmetric model, which
enables us to show the mechanism of spin nematics. Using
analytical and numerical techniques, we obtain the following
results.

First, we analyze the strong ferromagnetic dimer limit.
Performing a perturbative calculation, we map the model to
the spin-1 bilinear-biquadratic model. With the help of former
studies on spin-1 systems, we can determine the ground-state
phase diagrams on various lattices, which include the spin
nematic phases in wide parameter regions. In particular, we
show that, even when the four-spin interaction is absent,
a second-order perturbation yields an effective biquadratic

interaction, which leads to the appearance of the spin nematic
phase with ferroquadrupolar order in a parameter regime
where all the first-order perturbations are canceled to each
other.

Second, we study how the spin nematic phase emerging
at the strong dimer limit is affected by decreasing the ferro-
magnetic intradimer coupling from infinite to finite values. We
use a mean-field approximation with product-state ansatz and
the many-variable variational Monte Carlo (mVMC) method
[41,42]. In the mean-field approximation, we determine the
ground-state phase diagram as a function of two-spin and
four-spin interactions. In addition to conventional magneti-
cally ordered phases, the spin nematic phase with the ferro-
quadrupolar order appears in a wide parameter region. In this
mean-field approximation, the spin nematic phase vanishes
when the four-spin interaction is deleted. The result also
reveals that this spin nematic phase connects with the SU(4)
symmetric point in our model. To further take account of
the effects of interdimer correlations, we study the model
with only the two-spin interactions using mVMC method.
The obtained phase diagrams for the square and triangular
lattices show that, for large but finite intradimer interac-
tions, the spin nematic phase emerges in a finite parame-
ter range. This result is consistent with our aforementioned
discussion from the second-order perturbation and thereby
confirms that our model exhibits the spin nematic phase
even when it does not include any four-spin interaction or
external field.

Lastly, we focus on the model around the SU(4) symmet-
ric point. From an exact symmetry argument, we find that
our model at the SU(4) point has degenerate ground states
including the spin nematic state and the vector chiral (also
known as p-type nematic [1]) state. It also shows that our
mean-field approximation indeed presents exact ground states
in the SU(4) model. Thus the SU(4) model is a source of
various exotic phases and one can realize each of them by
adding perturbative interactions. As an example of such a
perturbation, we show that an appropriate set of Ising-type
interactions can yield the spin nematic phase.

The rest of the paper is organized as follows. In Sec. II, we
introduce the model Hamiltonian, and also discuss symmetric
properties of the model and the order parameters studied. In
Sec. III, we present the results of the perturbation calculations
from the strong ferromagnetic dimer limit. We further present
the results of the mean-field approximation with a product
state and the mVMC method in Secs. IV and V, respectively.
In Sec. VI, we discuss the exact arguments on emerging
phases in the vicinity of the SU(4)-symmetric model and also
on the effect of perturbations of Ising interactions. Section VII
is devoted to summary and concluding remarks. Details of
the mean-field calculation, SU(4) transformation on dimers,
and nontrivial degeneracies in the mean-field solutions are
discussed in Appendices A, B, and C, respectively.

II. MODEL

Here we introduce the spin model studied in this paper.
We also present all local observables which concern us and
symmetries inherent in our model.
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A. Hamiltonian

We study the spin-1/2 frustrated quantum magnet consist-
ing of spin-dimer units, which form a two-dimensional bilayer
structure of spins. The model Hamiltonian has the form

H = Hd + H‖ + H× + H4, (1a)

Hd = Jd

∑
j

S1, j · S2, j, (1b)

H‖ = J‖
∑
〈 j, j′〉

(S1, j · S1, j′ + S2, j · S2, j′ ), (1c)

H× = J×
∑
〈 j, j′〉

(S1, j · S2, j′ + S2, j · S1, j′ ), (1d)

H4 = J4

∑
〈 j, j′〉

(S1, j · S1, j′ )(S2, j · S2, j′ ), (1e)

where Sl, j is the spin-1/2 operator of the lth spin (l = 1, 2)
in the jth dimer. The dimer sites, labeled with j or j′, form
two-dimensional lattices and the sum

∑
〈 j, j′〉 is taken for the

nearest-neighboring sites in the lattices. We consider sev-
eral lattices including the square, honeycomb, triangular, and
kagome lattices. Schematic pictures of the model are shown
in Fig. 1. Throughout this paper we consider the case that
the intradimer exchange interaction is ferromagnetic or zero,
Jd � 0, where two S = 1/2 spins in each dimer dominantly
form a spin triplet.

B. Local observables

We explore local order parameters measured with the fol-
lowing local observables: For a parallel spin order on a dimer
bond, we use the total spin operators on each dimer,

T α
j = Sα

1, j + Sα
2, j (2)

with α = x, y, z and, for an antiparallel spin order, Néel-spin
operators

Nα
j = Sα

1, j − Sα
2, j . (3)

For a spin quadrupolar order on a dimer bond, we use the five-
component spin quadrupolar operators

Q(1)
j = 2

(
Sx

1, jS
x
2, j − Sy

1, jS
y
2, j

)
, (4a)

Q(2)
j = 2√

3

(
2Sz

1, jS
z
2, j − Sx

1, jS
x
2, j − Sy

1, jS
y
2, j

)
, (4b)

Q(3)
j = 2

(
Sx

1, jS
y
2, j + Sy

1, jS
x
2, j

)
, (4c)

Q(4)
j = 2

(
Sy

1, jS
z
2, j + Sz

1, jS
y
2, j

)
, (4d)

Q(5)
j = 2

(
Sz

1, jS
x
2, j + Sx

1, jS
z
2, j

)
, (4e)

which act on two S = 1/2 spins on each dimer.
These quadrupolar operators are a natural extension of

the on-site quadrupolar operators in spin-1 systems; one can
obtain the above operators by inserting the total spin operators
T α

j into the spin-1 operators in the quadrupolar operators of
spin-1 systems. (For the definition of the spin-1 quadrupo-
lar operators, see, for example, Ref. [40].) This derivation
of Eq. (4) readily concludes that the commutation relations

between the total-spin operators T α
j and the quadrupolar op-

erators Q(n)
j are the same as those in spin-1 systems. Hence

the combined set of T α
j (α = x, y, z) and Q(n)

j (n = 1, . . . , 5)

forms SU(3) group; T α
j and Q(n)

j are eight-dimensional gener-
ators of su(3) algebra.

Incidentally, one can obtain the quadrupolar operators (4)
with a minus sign by substituting the Néel-spin operators Nα

j
into the S = 1 spin operators in the quadrupolar operators
of spin-1 systems. From this fact, it also follows that the
combined set of Nα

j (α = x, y, z) and −Q(n)
j (n = 1, . . . , 5)

also forms another SU(3) group.

C. Symmetries

In addition to the apparent SU(2) symmetry, the model
(1) has the following higher symmetries in specific parameter
spaces.

SU(3) symmetry. In the parameter space defined by

J‖ = J4/4, J× = 0 (5)

with any Jd, the total Hamiltonian (1) has a global SU(3)
symmetry. The eight generators of SU(3) rotation are given by∑

j T α
j (α = x, y, z) and

∑
j Q(n)

j (n = 1, . . . , 5). In particular,
in the Jd → −∞ limit, the model (1) in the broader parameter
space

J‖ − J4

4
+ J× = 0 (6)

also has the same SU(3) symmetry. We note that this space
(6) includes the aforementioned space (5). In this limit, as the
singlet state is gapped out in each dimer, the model is reduced
to a spin-1 model. The model in the space (6) is mapped to
the SU(3) symmetric spin-1 bilinear-biquadratic model (see
Sec. III).

SU(4) symmetry. In the case of Jd = 0 among the SU(3)
symmetric space (5), i.e.,

J‖ = J4/4, J× = Jd = 0, (7)

the total Hamiltonian has a global SU(4) symmetry; H com-
mutes with the operators

∑
j Sα

1, j ,
∑

j Sα
2, j (α = x, y, z), and∑

j Sα
1, jS

β

2, j (α, β = x, y, z), which are known as the fifteen
generators of SU(4) group. The SU(3) group mentioned above
is a subgroup of this SU(4) group. This SU(4) symmetry
also contains another SU(3) symmetry generated by

∑
j Nα

j

and −∑
j Q(n)

j . We present our analysis on the SU(4) sym-
metric model with ferromagnetic coupling (J‖ = J4/4 < 0)
in Sec. VI and further describe SU(4) transformation in
Appendix B.

We will see in the following sections that the above high-
symmetry models in a ferromagnetic coupling regime are on
an exact phase boundary or a multiple point in the ground-
state phase diagram. The SU(3) symmetric model in the space
(5) with ferromagnetic couplings Jd < 0 and J‖ < 0 is on an
exact phase boundary between the ferromagnetic phase and
the spin nematic phase with ferroquadrupolar order. Similarly,
in the Jd → −∞ limit, the SU(3) model with the parameters
(6) under the ferromagnetic condition J‖ + J× + J4

4 < 0 is
on the same phase boundary, which is shown in the next
section. The SU(4) symmetric model given by Eq. (7) in the
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TABLE I. Parameter ranges or regions of various phases in the ground state of the S = 1 bilinear-biquadratic models (Hbb and H(1))
on (a) square and honeycomb lattices and on (b) triangular and kagome lattices. FM and FQ, respectively, denote the ferromagnetic
and ferroquadrupolar phases, and AFM and AFQ respectively the antiferromagnetic and antiferroquadrupolar phases. PVBS and TVBC
respectively denote plaquette valence-bond solid and trimerized valence-bond crystal. Both AFM3 and AFQ3 represent phases with three-
sublattice structure, and AFM120◦ does the AFM phase with 120◦ structure. The results for Hbb are taken from Refs. [7–11].

(a)
Square Honeycomb

Phase Hbb (Refs. [7,8]) H(1) Hbb (Ref. [9]) H(1)

FM π

2 < θ < 5
4 π J‖ + J× < −|J4|

4
π

2 < θ < 5
4 π J‖ + J× < −|J4|

4

FQ − 3
4 π < θ < − π

2
J4
4 < J‖ + J× < − J4

4 − 3
4 π < θ < − π

2
J4
4 < J‖ + J× < − J4

4

Néel − π

2 < θ < 0.189π J‖ + J× > max
(
0.49J4,− J4

4

) − π

2 < θ < 0.19π J‖ + J× > max
(
0.49J4,− J4

4

)
Haldane 0.189π < θ < 0.217π 0.49J4 > J‖ + J× > 0.37J4 – –

AFM3 0.217π < θ < π

4 0.37J4 > J‖ + J× >
J4
4 – –

AFQ3 π

4 < θ < π

2 − J4
4 < J‖ + J× <

J4
4 – –

PVBS – – 0.19π < θ < π

2 − J4
4 < J‖ + J× < 0.49J4

(b)
Triangular Kagome

Phase Hbb (Ref. [10]) H(1) Hbb (Ref. [11]) H(1)

FM π

2 < θ < 5
4 π J‖ + J× < −|J4|

4
π

2 < θ < 5
4 π J‖ + J× < −|J4|

4
FQ − 3

4 π < θ < −0.11π
J4
4 < J‖ + J× < −1.6J4 − 3

4 π < θ < −0.04π
J4
4 < J‖ + J× < −4.2J4

AFM120◦ −0.11π < θ < π

4 J‖ + J× > max
( J4

4 , −1.6J4

)
– –

AFQ3 π

4 < θ < π

2 − J4
4 < J‖ + J× <

J4
4 – –

TVBC – – −0.04π < θ < 0.37π J‖ + J× > max(−0.03J4,−4.2J4)
AFQ – – 0.37π < θ < π

2 − J4
4 < J‖ + J× < −0.03J4

ferromagnetic case J‖ < 0 is at a multiple point where many
phases coexist, which is further discussed in Sec. VI.

III. STRONG FERROMAGNETIC-DIMER LIMIT

In this section, we study the model (1) in the limit of strong
ferromagnetic intradimer coupling, Jd → −∞. Treating the
intradimer exchange term Hd as a unperturbed Hamiltonian
and the rest of terms as a perturbation, we derive an effective
Hamiltonian, which enables us to see the mechanism of spin
nematic ordering.

In the ground state of the unperturbed Hamiltonian Hd,
two S = 1/2 spins in each dimer form a spin triplet and the
ground states are 3N -fold degenerate, where N is the number
of dimers in the system. The first-order perturbation induces
state transitions between degenerate ground states, whose
matrix elements are written with the effective Hamiltonian

H(1) =
(

J‖ + J×
2

+ J4

8

) ∑
〈 j, j′〉

S̃ j · S̃ j′

+ J4

4

∑
〈 j, j′〉

(S̃ j · S̃ j′ )
2 + const., (8)

where S̃ j denote the spin-1 operators acting on the S = 1
triplet sector on the jth dimer. This first-order perturbation
Hamiltonian is nothing but the spin-1 bilinear-biquadratic
model.

The spin-1 bilinear-biquadratic model has been extensively
studied on various lattices. In Table I, we summarize the

obtained ground-state phases. Here, defining the Hamiltonian

Hbb = Jbb

∑
〈 j, j′〉

[cos θ S̃ j · S̃ j′ + sin θ (S̃ j · S̃ j′ )
2] (9)

with the parameter θ and Jbb > 0, we describe the phase
diagrams as functions of θ . For the square lattice the phase
diagram contains at least five phases, i.e., the ferromagnetic
(FM), ferroquadrupolar (FQ), Néel, three-sublattice antifer-
romagnetic (AFM3), and three-sublattice antiferroquadrupo-
lar (AFQ3) phases [7]. The emergence of a quasi-one-
dimensional Haldane phase in a narrow region between the
Néel and AFM3 phases was also reported [8]. The phase
diagram for the honeycomb lattice includes the FM, FQ, Néel,
and plaquette valence-bond-solid phases [9]. For the trian-
gular lattice, the phase diagram contains the FM, FQ, 120◦-
structure antiferromagnetic (120◦-AFM), and AFQ3 phases
[10]. For the kagome lattice, the phase diagram was found
to include the FM, FQ, antiferroquadrupolar, and trimerized
valence-bond-crystal phases [11]. The parameter ranges of θ

for these phases are shown in Table I for each lattice. It is
noteworthy that the FQ phases in the geometrically frustrated
(triangular and kagome) lattices appear in wider regions than
those in the bipartite (square and honeycomb) lattices because
of the suppression of antiferromagnetic ordering in the former
lattices.

From these results, we can derive the phase diagram for
the first-order perturbation Hamiltonian H(1) using the rela-
tion Jbb cos θ = (J‖ + J×)/2 + J4/8 and Jbb sin θ = J4/4. The
resultant regions of each phase are also presented in Table I
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FIG. 2. Ground-state phase diagram of the first-order perturba-
tion Hamiltonian H(1) on the (a) square and (b) triangular lattices.
Abbreviations of phases are the same as in Table I.

for the lattices considered. Again, we find that the regions of
the FQ phases in the triangular and kagome lattice systems are
wider than those in the square and honeycomb lattice systems.
The phase diagrams in the first-order perturbation for the
square and triangular lattices are shown in the J‖ + J× versus
J4 plane in Fig. 2. The quadrupolar phases appear in between
the ferromagnetic phase and antiferromagnetic phases. The
parameter regions of the FQ and AFQ3 phases appearing for
negative and positive J4, respectively, shrink with decreasing
|J4| and vanish at J4 = 0 (within the first-order perturbation).

In the case of J4 = 0, the first-order perturbation Hamil-
tonian contains only the two-spin exchange interactions and
they vanish at J‖ + J× = 0. In this situation, the second-order
perturbation, which induces further effective interactions, be-
comes relevant. From a standard procedure of perturbation
theory, the second-order perturbation Hamiltonian in the case
of J‖ + J× = J4 = 0 turns out to have a rather simple form
[43]

H(2) = J (2)
∑
〈 j, j′〉

[(S̃ j · S̃ j′ )
2 − 1] (10)

with

J (2) = − (J‖ − J×)2

8|Jd| = − J2
‖

2|Jd| = − J2
×

2|Jd| . (11)

Note that the coupling constant J (2) is always negative.
The second-order perturbation Hamiltonian (10) leads us

to an important conclusion for the case of J4 = 0. It is natural
to expect that, for strong ferromagnetic Jd, the biquadratic
interaction in Eq. (10) is still dominant over other interactions
in a finite parameter region around J‖ + J× = 0. As shown in
Table I, the pure-biquadratic model (10), which is equivalent
to the spin-1 bilinear-biquadratic model (9) with θ = −π/2,
has the ferroquadrupolar ground state on the triangular and
kagome lattices. We hence conclude that, in our model (1)
in the vicinity of J‖ + J× = 0 with strong ferromagnetic Jd,
the dominant effective biquadratic interaction leads to the
ferroquadrupolar ground state on the geometrically frustrated
lattices even in the case of J4 = 0, in which the original model
includes only the bilinear exchange terms. We will confirm
this conclusion numerically in Sec. V.

For the case of the square and honeycomb lattices, the spin-
1 biquadratic Hamiltonian (10) is just on the phase boundary
between the ferroquadrupolar and Néel ordered phases as

shown in Table I, where the ferroquadrupolar phase spreads
to a finite region with ferromagnetic bilinear interactions. If
we slightly shift the couplings J‖ and J× from the phase
boundary J‖ + J× = 0 into the region J‖ + J× < 0, they yield
a ferromagnetic bilinear interaction between the effective S =
1 spins S̃ j and S̃ j′ due to the first-order perturbation. We hence
expect that even when J4 = 0, our original model (1) on these
bipartite lattices realizes the ferroquadrupolar phase in a finite
parameter region in J‖ + J× < 0. We will confirm in Sec. V
that this is also the case.

IV. MEAN-FIELD APPROXIMATION WITH
PRODUCT-STATE ANSATZ

In this section, we employ a mean-field approximation
with product-state ansatz to determine the ground-state phase
diagram of the model (1). We consider the case of J4 � 0 and
Jd � 0. Some details of the method and results are presented
also in Appendix A.

A. Method

We employ the approximation in which the ground-state
wave function is expressed by a direct product of dimer states,

|�DP〉 =
∏

j

|ϕ〉 j, (12)

where the dimer states |ϕ〉 j can take an arbitrary state spanned
with the dimer bases. We further assume that the wave
function has two- and three-sublattice structures, respectively,
for the bipartite (square and honeycomb) lattice systems and
the triangular lattice system; namely, the dimers in the same
sublattice are in the same state,

|ϕ〉 j = |ϕ〉� =
∑
σ1,σ2

a�,σ1σ2 |σ1σ2〉 (13)

for j ∈ �, where � = A, B (A, B, C) denotes the two sub-
lattices (three sublattices) and |σ1σ2〉 denotes the dimer state
with the eigenvalues Sz

1, j = σ1 and Sz
2, j = σ2. Optimizing the

coefficients a�,σ1σ2 in Eq. (13) variationally, we obtain the
lowest-energy mean-field solution.

To obtain the ground state, we minimize the expectation
value of the bond Hamiltonian of the model (1),

H j j′ = Jd

z
(S1, j · S2, j + S1, j′ · S2, j′ )

+ J‖(S1, j · S1, j′ + S2, j · S2, j′ )

+ J×(S1, j · S2, j′ + S2, j · S1, j′ )

+ J4(S1, j · S1, j′ )(S2, j · S2, j′ ), (14)

where z is the coordination number. We note that the coordina-
tion number z is taken into account only through the coupling
constant Jd/z in Eq. (14). Using the resultant ground state, we
calculate the expectation values of local observables defined
in Sec. II B,

T MF
� = 〈T j〉, NMF

� = 〈N j〉, QMF
� = 〈Q j〉 (15)

for any j ∈ � for each sublattice �.
The similar mean-field approximation with site-decoupled

wave functions has been applied to the spin-1 bilinear-
biquadratic model (9) on the square, honeycomb, and
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triangular lattices. This approximation provides pretty
accurate results for π/2 < θ < 2π : For the square [7] and
honeycomb [9] lattices, the mean-field approximation yields
the phase diagram for π/2 < θ < 2π which is completely
the same as those obtained by other numerical approaches
such as exact diagonalization and tensor renormalization
group technique. For the triangular lattice [10], the phase
diagram obtained by the mean-field approximation is
essentially the same as that by the exact diagonalization;
the only discrepancy appears in the phase boundary between
the ferroquadrupolar and 120◦-AFM phases, where the
ferroquadrupolar phase region becomes narrower in the
mean-field approximation. On the other hand, for 0 < θ <

π/2, the mean-field approximation is rather unreliable at
least for the bipartite lattices since the direct-product wave
function is not able to describe the Haldane phase on the
square lattice and the plaquette valence-bond-crystal phase
on the honeycomb lattice, in which the entanglement between
different dimers is essential. In our calculation, we hence
restrict ourselves to explore the parameter region of J4 � 0,
which corresponds, in the limit Jd → −∞, to the region
of π � θ � 2π , where the mean-field approximation is
expected to be reliable. In the following, setting

J‖ = −1, (16)

we determine the ground-state phase diagram in J× versus J4

planes with J4 � 0 for several fixed values of Jd/z.

B. Two-sublattice case

First, we discuss the case of the two-sublattice structure.
From the expectation values of local observables we studied,
we found four distinct phases. These phases are characterized
with the expectation values T MF

� , NMF
� , and QMF

� on two
sublattices � = A, B, which are summarized as follows.

(i) Ferromagnetic (FM) phase. All spins are fully polarized,
pointing to the same direction,

T MF
A = T MF

B ,
∣∣T MF

�

∣∣ = 1,
∣∣NMF

�

∣∣ = 0 (17)

for � = A, B. The ground-state energy per bond of this phase
is given by

EFM = 1

2

(
Jd

z
+ J‖ + J×

)
+ 1

16
J4. (18)

(ii) A-type antiferromagnetic (A-type AFM) phase. Two
spins in each dimer are antiparallel to each other, and all of
the staggered moments 〈N j〉 are in the same direction,

NMF
A = NMF

B ,
∣∣T MF

�

∣∣ = 0,
∣∣NMF

�

∣∣ > 0 (19)

for � = A, B. This state can be also regarded as two ferro-
magnetic layers whose moments are antiparallel to each other.
The spin moments 〈Sl, j〉 may shrink, i.e., |NMF

� | � 1, due to
quantum fluctuation.

(iii) C-type antiferromagnetic (C-type AFM) phase. Two
spins in each dimer point to the same direction, and the total
spin moments T MF

A and T MF
B are antiparallel, forming the

Néel-type magnetic order in 〈T j〉,
T MF

A = −T MF
B ,

∣∣T MF
�

∣∣ = 1,
∣∣NMF

�

∣∣ = 0 (20)

for � = A, B. Each local spin is fully polarized. The ground-
state energy per bond of this phase (in the mean-field

FIG. 3. Schematic illustration of spin structures appearing in the
model (1) in (a) FM phase, (b) A-type AFM phase, (c) C-type AFM
phase, (d) spin nematic phase with ferroquadrupolar order, and (e)
C-type 120◦-AFM phase. FM, A-type AFM, and spin nematic phases
appear in both two- and three-sublattice cases, while the C-type AFM
(C-type 120◦-AFM) phase appears only in the two-sublattice (three-
sublattice) case.

approximation) is

EMF
C-AFM = 1

2

(
Jd

z
− J‖ − J×

)
+ 1

16
J4. (21)

(iv) Spin nematic phase with ferroquadrupolar order. All
the spin-dipole moments vanish, while the spin-quadrupolar
moments take the same finite value on all dimers,∣∣T MF

�

∣∣ = 0,
∣∣NMF

�

∣∣ = 0,

QMF
A = QMF

B ,
∣∣QMF

�

∣∣ =
√

4

3
(22)

for � = A, B. The quadrupolar moments are saturated. The
ground-state energy per bond of this phase (in the mean-field
approximation) is

EMF
SNf = 1

2

Jd

z
+ 3

16
J4. (23)

In the limit Jd → −∞, this phase corresponds to the ferro-
quadrupolar phase of the spin-1 bilinear-biquadratic model.

Schematic illustration of spin structures representing these
phases are shown in Figs. 3(a)–3(d). We note that the fully
saturated nature of the C-type AFM and spin nematic phases is
an artifact of the approximation with product-state ansatz. In-
deed, we will show in Sec. V that, in the mVMC calculations,
the quantum reduction in the magnetic and spin-quadrupolar
moments is observed also in these phases.
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FIG. 4. Phase diagrams for the two-sublattice structure. Param-
eters are set as J‖ = −1 and (a) Jd/z = 0, (b) −0.5, (c) −1.1,
(d) −1.2, (e) −1.8, and (f) −2.0. Solid and dashed lines, respectively,
denote first-order and continuous transitions. FM, A-AF, C-AF, and
SNf represent the ferromagnetic phase, the A-type antiferromagnetic
phase, the C-type antiferromagnetic phase, and the spin nematic
phase with ferroquadrupolar order, respectively. Grey area in (a),
labeled with “SNf + D”, is the boundary between the spin nematic
and dimer-singlet phases, which further has a nontrivial degeneracy.
Open circle in (a) represents the SU(4) symmetric point. Horizontal
dotted lines in (d) and (f) are the parameter lines shown in Fig. 5.

We have determined the phase diagrams for several values
of Jd/z. Figure 4 shows the results for some typical values of
Jd/z.

At Jd = 0, we find three regions; two are the FM and A-
type AFM phases and the other corresponds to the boundary
between the spin nematic phase, which appears for Jd <

0, and dimer-singlet phase for Jd > 0. The quadruple point
where these four phases coexist is the SU(4) symmetric point,
given by J‖ = −1, J4 = −4, and Jd = J× = 0. We further
show in Sec. VI, using exact symmetry arguments on a generic
model, that the spin nematic state is naturally generated by
SU(4) symmetry and the SU(4) model is on the multiple point
surrounded by, at least, five phases including the spin nematic

phase. The phase boundary between the FM and A-type AFM
phases is on the line J× = 0 for J4 > −4, while the region
of the phase boundary between the spin-nematic and dimer-
singlet phases is surrounded by the two lines J4 = ±4J× − 4.
On the boundary between the spin-nematic and dimer-singlet
phases, there exists additional nontrivial degeneracy in the
mean-field solution, which is a remnant of SU(2) × SU(2)
symmetry in the case of Jd = J× = 0. (See the Appendix C 2
for more details.)

When Jd is negative, the spin nematic state with ferro-
quadrupolar order is selected from the nontrivially degener-
ate ground states in the degenerate region, resulting in the
spin nematic phase defined in Eq. (22). Another signature
of high SU(4) symmetry remains on the boundary between
the FM and spin-nematic phases for Jd < 0 in the mean-
field approximation, where the boundary line J4 = 4J× − 4 is
obtained from the condition EFM = EMF

SNf . On this boundary,
the mean-field solution of the ground state has nontrivial
SU(3) degeneracy, which we further explain in Appendix C 1.

As |Jd|/z increases, the region of the spin nematic phase
enlarges toward smaller |J4| regime, and the boundary be-
tween the FM and A-type AFM phases also moves toward
large J× [see Figs. 4(b) and 4(c)]. Then, at Jd/z ∼ −1.15, the
C-type AFM phase enters the parameter space calculated [see
Fig. 4(d)]. The appearance of the C-type AFM phase is due to
the competition between the exchange interactions Jd and J‖.
Indeed, at the limit of J× → ∞ and J4 = 0, the interactions
Jd and J‖ lead to the A-type AFM phase for |Jd|/z < |J‖| = 1
and the C-type AFM phase for |Jd|/z > |J‖|.

With further increasing |Jd|/z, we see that the A-type AFM
phase shrinks while the other phases enlarge [See Fig. 4(e)].
The A-type AFM phase eventually vanishes at Jd/z � −2 and
the spin nematic phase touches with the C-type AFM phase
[See Fig. 4(f)]. The spin nematic phase extends to the line
of J4 = 0, but touches to the line J4 = 0 only at the single
point J× = 1. Hence in the case of Jd/z � −2 and J4 = 0, the
phase diagram contains only the FM and C-type AFM phases.
For Jd/z � −2, the phase diagram, which is unaltered at least
down to Jd/z = −10 in our calculation, is the same as the one
obtained for the limit Jd → −∞ in Sec. III. The boundary
lines of the spin nematic phase are J4 = ±4(J× − 1), which
are obtained from the conditions EFM = EMF

SNf and EMF
C-AFM =

EMF
SNf .

Among the transitions occurring in the present parameter
space, the transition between the spin-nematic and A-type
AFM phases is continuous. In contrast, the other transitions
are always of first order, accompanied with a jump in T MF

� .
(See the Appendix A 2 for detailed analysis of the order of
the transitions.) In Fig. 5, we plot J× dependence of the order
parameters on the parameter lines given by J4 = −0.5 and
−4.0 in the plane with Jd/z = −1.2 [dotted lines of Fig. 4(d)]
and the parameter line given by J4 = −3.0 in the plane with
Jd/z = −2.0 [dotted line in Fig. 4(f)]. In the case of Jd/z =
−1.2 and J4 = −0.5 [Fig. 5(a)], the system undergoes two
successive transitions from the FM phase to the A-type AFM
phase, and then, to the C-type AFM phase as J× increases.
At both transitions, the order parameters exhibit finite jumps,
showing first-order phase transitions. In the intermediate A-
type AFM phase, the Néel-spin moment NMF

� shrinks from the
saturated value due to the zero-point quantum reduction, while
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(c) Jd /z = −2.0, J4 = −3.0

FIG. 5. J× dependence of squared magnetic moments |T MF
A |2 and

|NMF
A |2 and normalized squared spin-quadrupolar moment 3|QMF

A |2/4
for the two-sublattice structure; (a) Jd/z = −1.2 and J4 = −0.5,
(b) Jd/z = −1.2 and J4 = −4.0, (c) Jd/z = −2.0 and J4 = −3.0.
FM, A-AF, C-AF, and SNf represent the ferromagnetic phase, the
A-type antiferromagnetic phase, the C-type antiferromagnetic phase,
and the spin nematic phase with ferroquadrupolar order, respectively.
Vertical dashed lines represent phase boundaries.

the total spin T MF
� on each dimer is fully polarized in the FM

and C-type AFM phases. When negative J4 becomes stronger
[see Fig. 5(b)], the system exhibits four phases, the FM, spin-
nematic, A-type AFM, and C-type AFM phases. It is found
that the transition between the spin-nematic and A-type AFM
phases is continuous while the other two transitions are of first

order. The Néel-spin moment exhibits the quantum reduction
in the A-type AFM phase and vanishes continuously at the
boundary to the spin nematic phase. For Jd/z = −2.0 and
J4 = −3.0 [Fig. 5(c)], there occur two first-order transitions
from the FM phase to the spin nematic phase, and then, to
the C-type AFM phase with increasing J×. Finally, we note
that the transition between the FM and C-type AFM phases
occurring on the line of J4 = 0 is of first order.

C. Three-sublattice case

Next, we discuss the case of three-sublattice structure on
the triangular lattice. Figure 6 presents the phase diagrams we
obtained for various Jd/z. We found four distinct phases; three
of them are the FM, A-type AFM, and spin-nematic phases,
which are translationally invariant and defined in the same
manners as those for the two-sublattice case, i.e., Eqs. (17),
(19), and (22), respectively. The other phase is as follows.

(iii’) C-type 120◦-structure antiferromagnetic (C-type
120◦-AFM) phase. Two spins in each dimer are parallel to
each other, ∣∣T MF

�

∣∣ > 0,
∣∣NMF

�

∣∣ = 0 (24a)

for � = A, B, C, and the total spins T MF
� on three sublattices

form a 120◦ structure,

T MF
� · T MF

�′ = − 1
2

∣∣T MF
�

∣∣ ∣∣T MF
�′

∣∣ (24b)

for different sublattices � and �′, which is the well-known
spin structure in the triangular-lattice antiferromagnet [44,45].
The local spins shrink due to quantum fluctuation.

A schematic picture representing this phase is shown in
Fig. 3(e).

For several values of Jd/z, we have determined the ground-
state phase diagrams, some of which are shown in Fig. 6.
For small |Jd|/z, the resultant diagrams are the same as
those for the two-sublattice case. At Jd = 0, the diagram
includes the FM phase, the A-type AFM phase, and the
region with the degenerate ground states which is the phase
boundary between the spin-nematic and dimer-singlet phases.
The phase boundaries are given by J4 = ±4J× − 4 (J4 < −4)
and J× = 0 (J4 > −4). The SU(4) point (J‖ = −1, J4 = −4,
Jd = J× = 0) is on the quadruple point, where the spin ne-
matic phase is generated by SU(4) symmetry as shown in
Sec. VI A. When a negative Jd is introduced, the spin nematic
phase with ferroquadrupolar order replaces the region of the
degenerate ground states. As |Jd|/z increases, the FM and
spin-nematic phases enlarge, while the A-type AFM phase be-
comes smaller. Then, at Jd/z ∼ −1.7, the C-type 120◦-AFM
phase appears from the region around 1 � J× � 2 and J4 = 0.
The appearance of this phase can be understood from the
strong coupling limit Jd → −∞, where 120◦-AFM phase ap-
pears in large J× regime. As |Jd|/z further increases, the spin
nematic and C-type 120◦-AFM phases extend and eventually,
around Jd/z ∼ −3.5, cover the A-type AFM phase region. For
Jd/z � −3.5, the phase diagram in our scope (−2 � J× � 4
and −6 � J4 � 0) does not depend on Jd/z, at least down to
Jd/z = −10 in our calculation. This phase diagram coincides
with the diagram obtained by the mean-field approximation
[10] to the spin-1 bilinear-biquadratic model (8) derived with
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FIG. 6. Phase diagrams for the three-sublattice structure. Param-
eters are set as J‖ = −1 and (a) Jd/z = 0, (b) −1.6, (c) −1.8, (d) =
−2.3, (e) −3.0, and (f) −3.5. Solid and dashed lines denote first-
order and continuous transitions, respectively. FM, A-AF, C-120◦,
and SNf represent the ferromagnetic phase, the A-type antiferro-
magnetic phase, the C-type 120◦-structure antiferromagnetic phase,
and the spin nematic phase with ferroquadrupolar order, respectively.
Grey area in (a), labeled with “SNf + D,” is the boundary between
the spin nematic and dimer-singlet phases, which further has a non-
trivial degeneracy. Open circle in (a) represents the SU(4) symmetric
point. Horizontal dotted lines in (d) and (f) are the parameter lines
shown in Fig. 7.

the first-order perturbation in Sec. III on the triangular lattice.
The spin nematic phase boundary touches to the J4 = 0 line
on the single point J× = 1. The two boundary lines are given
by J4 = 4(J× − 1) and J4 = −2(J× − 1).

We also show the order of phase transitions in Fig. 6. The
transitions from the FM phase to the other phases are of first
order, accompanied with jumps in T MF

� . The transitions from
the spin nematic phase to the two types of AFM phases, i.e.,
A-type AFM and C-type 120◦-AFM phases, are continuous
while the one between these two AFM phases is of first order.
(See also Appendices A 2–A 4 for detailed results.) Figure 7
presents the J× dependence of the order parameters on the
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(c) Jd /z = −3.5, J4 = −4.0

FIG. 7. J×-dependence of squared magnetic moments |T MF
A |2

and |NMF
A |2 and normalized squared spin-quadrupolar moment

3|QMF
A |2/4 for the three-sublattice structure; (a) Jd/z = −2.3 and

J4 = −1.0, (b) Jd/z = −2.3 and J4 = −4.0, (c) Jd/z = −3.5 and
J4 = −4.0. FM, A-AF, C-120◦, and SNf represent the ferromagnetic
phase, the A-type antiferromagnetic phase, the C-type 120◦-structure
antiferromagnetic phase, and the spin nematic phase with ferro-
quadrupolar order, respectively. Vertical dashed lines represent phase
boundaries.

parameter lines given by J4 = −1.0 and −4.0 in the plane
with Jd/z = −2.3 [dotted lines in Fig. 6(d)] and the line given
by J4 = −4.0 in the plane with Jd/z = −3.5 [dotted line in
Fig. 6(f)]. For Jd/z = −2.3 and J4 = −1.0 [Fig. 7(a)], there
appear four phases, the FM, spin-nematic, C-type 120◦-AFM,
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and A-type AFM phases. The magnetic moments exhibit
the quantum reduction in the C-type 120◦-AFM and A-type
AFM phases and vanish in the spin nematic phase. The order
parameters exhibit jumps at the phase transitions between
the FM and spin-nematic phases and between the C-type
120◦-AFM and A-type AFM phases, while they change con-
tinuously at the transition between the spin-nematic and C-
type 120◦-AFM phases. The continuous nature of the latter
transition is also confirmed clearly in the results for Jd/z =
−3.5 and J4 = −4.0 in Fig. 7(c). On the parameter line of
Jd/z = −2.3 and J4 = −4.0 [Fig. 7(b)], the system undergoes
two transitions from the FM phase to the spin nematic phase,
and then to the A-type AFM phase. We find again that the
transition between the FM and spin-nematic phases is of first
order, while the transition between the spin-nematic and A-
type AFM phases is continuous.

D. Comments

Three comments are in order here. First, in our result by
the mean-field approximation with the product-state ansatz,
we find no finite region of the spin nematic phase in the case
of J4 = 0, contrary to the expectation from the perturbation
theory in Sec. III. This result is attributed to the fact that
the product-state ansatz, which completely ignores the entan-
glement between different dimers, is not able to include the
effect of the second-order perturbation sufficiently. Indeed, as
shown in the subsequent section, the mVMC method provides
a result that the spin nematic phase emerges in a finite region
in the J4 = 0 case.

Second, it has been shown that, when applied to the spin-1
bilinear-biquadratic model (9) on the triangular lattice, the
mean-field approximation yields an inaccurate result on the
phase boundary between the spin-nematic and 120◦-AFM
phases; the mean-field approximation gives the critical point
θc = arctan(−2) ∼ −0.35π , while the exact diagonalization
method, which can take the entanglement between different
sites into account, gives θc ∼ −0.11π [10]. Hence, in our
model (1) for large |Jd|/z, the phase boundary between the
spin-nematic and C-type 120◦-AFM phases is also expected
to move from the mean-field line J4 = −2(J× − 1) (corre-
sponding to θc ∼ −0.35π at Jd/z → −∞) toward the line
J4 = −0.61(J× − 1) (corresponding to θc ∼ −0.11π ), in the
direction to enlarge the spin nematic phase.

Third, we must be careful when applying the results for
the three-sublattice case to the kagome lattice system. For
the spin-1 bilinear-biquadratic model in the kagome lattice,
it was found that the 120◦-AFM phase is not present in
the ground-state phase diagram and, instead, the trimerized
valence-bond-crystal phase appears [11]. Therefore, in our
result, the C-type 120◦-AFM phase should be replaced by a
phase corresponding to the trimerized valence-bond-crystal
phase, and the boundary lines of the phase as well as the
nature of the phase transitions to the phase may also be
different from the mean-field results. We expect that our
results for the FM, A-type AFM, and spin nematic phases
remain valid semiquantitatively for the kagome-lattice case,
since the ground states of these ordered phases are described
rather well by the mean-field approximation.

V. MANY-VARIABLE VARIATIONAL MONTE
CARLO CALCULATION

In this section, we focus on the case of J4 = 0 and large
negative Jd. We numerically explore the ground-state phase
diagram using mVMC method, and establish the emergence of
the spin nematic phase with ferroquadrupolar order suggested
from the second-order perturbation calculation.

A. Method

To analyze the Hamiltonian defined in Eq. (1), we use the
mVMC method [41,42], which can include the spatial cor-
relations and quantum fluctuations beyond the direct product
of dimer states. The variational wave function in mVMC is
defined as

|ψ〉 = PG|φpair〉. (25)

Here, PG is the Gutzwiller factors defined as

PG = e−g
∑

l, j nl, j,↑nl, j,↓ , (26)

where nl, j,σ is the number operator of electron at the lth site in
the jth dimer with spin σ . By taking g → ∞, we completely
exclude the doubly occupied states and express the localized
spin-1/2 systems at half filling. The pair-product part |φpair〉
is the generalized pairing wave function defined as

|φpair〉 =
⎡
⎣ ∑

l, j,l ′, j′

∑
σ,σ ′

Fl, j,σ,l ′, j′,σ ′c†
l, j,σ c†

l ′, j′,σ ′

⎤
⎦

Ns/2

|0〉, (27)

where Fl, j,σ,l ′, j′,σ ′ denotes the variational parameters, c†
l, j,σ

represents the creation operator of electron at the lth site in
the jth dimer with spin σ , Ns = 2N is the number of spins
(electrons) in the system, and |0〉 is the vacuum of electrons.
In this form, we can express spin nematic states by using spin-
triplet pairing wave functions [13,46]. In our calculations,
we have imposed 2 × 2 (3 × 3) sublattice structure in the
pair-product part for the square lattice (triangular lattice) to
express the C-type AFM (C-type 120◦-AFM) state. All the
variational parameters are simultaneously optimized by using
the stochastic reconfiguration method [47,48].

We note that, if one takes Fl, j,σ,l ′, j′,σ ′ as

Fl, j,σ,l ′, j′,σ ′ =
{

a�,σσ ′ ( j = j′)
0 ( j �= j′) , (28)

the wave function becomes

|φpair〉 =
⎡
⎣∑

j

∑
σ,σ ′

a�c†
1, j,σ c†

2, j,σ ′

⎤
⎦

Ns/2

|0〉

∝
∏

j

[∑
σ,σ ′

a�c†
1, j,σ c†

2, j,σ ′

]
|0〉 = |�DP〉. (29)

This result shows that the pair-product state |φpair〉 includes
the dimer-product state defined in Eq. (12) as a special case.
Although the entanglement between dimers is completely
ignored in the dimer-product state, the mVMC can include
such entanglement.
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B. Square lattice

Here, by using mVMC, we examine stability of the spin
nematic phase around J‖ + J× = 0 in the square lattice. As
a typical case, we take Jd/z = −2 (Jd = −8), J‖ = −1, and
J4 = 0.

To make the initial states of the mVMC calculations, we
first impose the external fields that induce the candidate states
of the ground state. In this calculation, we consider the FM,
C-type AFM, and spin nematic states and take the external
fields defined as

Hex,FM = −hFM

∑
j

T z
j , (30)

Hex,CAFM = −hCAFM

∑
j

T z
j eiπ·r j , (31)

Hex,FQ = −hFQ

∑
j

Q(2)
j , (32)

where π = (π, π ) is the wave vector of the C-type AFM
ordering. We typically take the amplitude of the external
field as unity, i.e., hFM = 1 for example. We first optimize
the variational parameters using the stochastic reconfiguration
method under the external fields. Then, by turning off the
external fields, we again optimize the variational parameters
and obtain the FM, C-type AFM, and spin nematic states.
We have also checked that the A-type AFM state, whose
initial state can be prepared by imposing the external field
Hex,AAFM = −hAAFM

∑
j Nz

j , is unstable and becomes one of
the other states after the optimization without the external
field. We hence omit the result of the A-type AFM state in
the following.

Using the optimized wave functions of the FM, C-type
AFM, and spin nematic states, we compute the energies, the
local total-spin moment T defined by

T = 1

N

∑
j

√
〈T j〉2, (33)

and the local spin-quadrupolar moment Q defined by

Q = 1

N

∑
j

√
〈Q j〉2, (34)

for each state. The calculation was performed for finite
systems with N = L × L sites under the periodic boundary
condition. We found that the finite-size effects are small for
the FM and spin-nematic states, so that we could achieve
convergence to thermodynamic-limit values with the data for
the systems with up to L = 10. For the C-type AFM state,
however, the system-size dependencies of T and Q are large.
We therefore performed the calculation for the systems with
up to L = 14 and extrapolated the data of T (L) and Q(L)
using the least-square fitting with linear functions of 1/L, such
as T (L) = T (L = ∞) + a/L. We note that, in our calculation,
only Q(2) becomes finite in the collinear magnetic ordered
phases (FM phase and C-type AFM phase) and the spin
nematic phase.

Figure 8(a) shows J× dependence of the energies for the
FM, C-type AFM, and spin nematic states, while Fig. 8(b)
shows the local total-spin moment T and the ferroquadrupolar
moment Q in the ground state. The nonzero T in Fig. 8(b)
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FIG. 8. (a) J× dependence of the energies for the FM, spin
nematic, and C-type AFM states for the square-lattice model on
the parameter line with Jd/z = −2 (Jd = −8), J‖ = −1, and J4 = 0.
The dotted line with positive (negative) slope shows the energy
of the direct product of dimer states for the FM (C-type AFM)
state, which is given by J‖ + Jd/4 + J× (−J‖ + Jd/4 − J×). (b) J×
dependence of the squared local total-spin moment T 2 and the
normalized squared spin-quadrupolar moment 3Q2/4 in the ground
state. For the FM and spin-nematic phases, the data for L = 10 are
plotted as the thermodynamic-limit values, while the extrapolated
values are plotted for the C-type AFM phase. Solid and broken lines
connecting the data points are guide for the eye. In both (a) and (b),
the vertical broken line at J× = 1 represents the degenerate point
(J‖ + J× = J4 = 0) in the mean-field solutions.

indicates the appearance of the magnetic ordered phase such
as the FM or C-type AFM phase. The spin nematic phase is
characterized by finite spin-quadrupolar moment (Q > 0) and
absence of the magnetic order (T = 0).

As shown in Fig. 8(a), for J× � 0.88, we find that the
FM state is the ground state. Its local moment is still fully
polarized (T = 1) even when we seriously take into account
the interdimer correlations.

For 0.89 � J× < 1.00, we find that the spin nematic state
becomes the ground state even when J4 = 0. In the spin
nematic state, we confirm that no spontaneous polarization
occurs in the spin degrees of freedom (T = 0) and the spin-
quadrupolar moment Q becomes finite as shown in Fig. 8(b).
This result shows that effects of the interdimer correlations
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included in mVMC actually stabilize the spin nematic phase.
The spin nematic phase widely extends for J× < 1 while it
does not for J× > 1. This is consistent with the result of the
second-order perturbation theory, which indicates the stability
of the spin nematic phase for J‖ + J× < 0.

At J× = 1.00, the energy of the spin nematic state is
slightly smaller than that of the C-type AFM state within
the system size treated, but they are almost equal, suggesting
that the transition point between the phases is in the range
1.00 � J× < 1.01. We note that the C-type AFM state is not
stable for J× < 1, i.e., even if we choose the C-type AFM state
as an initial state, the final state after optimization becomes
a spin nematic state, which has no spin order. We therefore
conclude that the spin nematic phase exists at least for J× < 1.

For J× � 1.01, the C-type AFM state is the ground state.
In contrast to the FM state, the C-type AFM state is largely
affected by the interdimer correlations. Due to the quantum
fluctuations, the energy of the C-type AFM state obtained by
the mVMC method is significantly lower than that of the direct
product of the dimer states. The local spin moment T in the
mVMC result is also reduced from the saturated value.

From the results above, we conclude that the system with
J4 = 0 and sufficiently large negative Jd exhibits the spin
nematic phase in addition to the FM and C-type AFM phases.
Both transitions between the FM and spin-nematic phases
and between the spin-nematic and C-type AFM phases are of
first order accompanied by a jump of the magnetic moment.
These transition properties are the same as the results of the
mean-field approximation for those transitions occurring at
J4 < 0.

C. Triangular lattice

For the triangular lattice, we perform basically the same
calculations as the case of the square lattice. As a typical case,
we take Jd/z = −2 (Jd = −12), J‖ = −1, and J4 = 0.

In the triangular lattice, it is expected that the C-type
120◦-AFM state becomes the ground state in addition to the
FM and spin nematic states. To prepare the initial state of the
C-type 120◦-AFM state, we impose the external field defined
as

Hex,C120 = −hC120

∑
j

[
T z

j cos φ(r j ) + T x
j sin φ(r j )

]
, (35)

where φ(r j ) = φ(x j, y j ) = 2πx j/3 + 2πy j/3. We have
checked by the mVMC that the A-type AFM state is unstable
for Jd/z = −2.

We performed the calculation for finite systems with N =
6 × 6, 12 × 6, and 12 × 12 sites under the periodic boundary
condition. As in the case of the square lattice, the system-size
dependencies of the data are small for the FM and spin-
nematic states, so that we could obtain a good convergence in
the data for the systems with up to N = 12 × 12 sites. For the
C-type 120◦-AFM state, sizable system-size dependences still
remain in the results of T and Q. We hence extrapolated the
data of T (N ) and Q(N ) by using least-square fitting to linear
functions of 1/

√
N , e.g., T (N ) = T (N = ∞) + a′/

√
N . We

note that in our calculation, only Q(2) is finite in the FM and
spin-nematic phases while Q(1) and Q(2) become finite in the
C-type 120◦-AFM phase with the coplanar magnetic order.
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FIG. 9. (a) J× dependence of the energies for the FM, spin-
nematic, and C-type 120◦-AFM states for the triangular-lattice
model on the parameter line with Jd/z = −2 (Jd = −12), J‖ = −1,
and J4 = 0. The dotted line with positive (negative) slope shows
the energy of the direct product of dimer states for the FM (C-
type 120◦-AFM) state, which is given by 3J‖/2 + Jd/4 + 3J×/2
(−3J‖/4 + Jd/4 − 3J×/4). (b) J× dependencies of the squared local
total-spin moment T 2 and the normalized squared spin-quadrupolar
moment 3Q2/4 in the ground state. The values for N = 12 × 12 are
plotted for the FM and spin-nematic phases as the thermodynamic-
limit values, while the extrapolated values are shown for the C-type
120◦-AFM phase. Solid and broken lines connecting the data points
are guide for the eye. In both (a) and (b), the vertical broken line
at J× = 1 represents the degenerate point (J‖ + J× = J4 = 0) in the
mean-field solutions.

In Fig. 9(a), we show J× dependence of the energies for
the FM, C-type 120◦-AFM, and spin nematic states, while we
show in Fig. 9(b) the local total-spin moment T and the spin-
quadrupolar moment Q in the ground state.

We find that the FM state is the ground state for small
J× (J× � 0.9). With increasing J×, the system undergoes a
first-order transition into the spin nematic phase, accompanied
with a level cross of the ground states, around J× ∼ 0.9. At
the other side of the spin nematic phase, it has turned out that
the C-type 120◦-AFM state is unstable for J× � 1.1. We can
thus conclude safely the appearance of the spin nematic phase
for 0.9 � J× � 1.1. In contrast to the square lattice, the spin
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nematic phase emerges for both J× > 1 and J× < 1. This is
consistent with the result of the perturbation theory, which
indicates that the spin nematic phase extends to both sides of
J‖ + J× = 0.

At J× = 1.1, the energies of the spin nematic and C-type
120◦-AFM states are almost degenerate, and their slopes also
seem to be equal. Furthermore, the local spin moment T
in the C-type 120◦-AFM state for J× > 1.1 decreases with
decreasing J× and seems to gradually vanish at J× � 1.1.
These results indicate that the continuous phase transition oc-
curs between the C-type 120◦-AFM and spin nematic phases,
which is consistent with the conclusion obtained by the mean-
field approximation.

VI. VICINITY OF THE SU(4) SYMMETRIC POINT

In this section, we present an exact analysis on the SU(4)
symmetric point of the model (1) with ferromagnetic cou-
pling. We show emergence of various phases including the
spin nematic phase and the vector chiral (p-type nematic)
phase, by adding perturbations to this symmetric point. All
of these phases are transformed to each other through SU(4)
rotation. We further argue that the spin nematic state can be
stabilized, out of the ground-state manifold at the SU(4) point,
by adding a set of Ising interactions as a perturbation.

A. Degenerate ground states of the SU(4) symmetric model

The SU(4) symmetric model with ferromagnetic coupling
is given by J4 = 4J‖ < 0 and Jd = J× = 0, as mentioned in
Sec. II. The Hamiltonian reads

Hsu4 = −Jsu4

∑
〈 j, j′〉

[S1, j · S1, j′ + S2, j · S2, j′

+ 4(S1, j · S1, j′ )(S2, j · S2, j′ )], (36)

where we set Jsu4 = −J‖ = −J4/4 > 0. In this paper we call
Eq. (36) ferromagnetic SU(4) model. We note that the overall
coupling constant is negative opposed to the SU(4) spin-
orbital model for the two-orbital Hubbard model at quarter
filling [49,50], whose quantum criticality has been extensively
investigated in one dimension [51–56]. We rigorously show
in the following that the model (36) has various degenerate
ground states which are transformed to each other through
the SU(4) rotation. One of them is a spin nematic state with
ferroquadrupolar order.

To analyze the SU(4) model, we use the following fifteen
local generators of SU(4) group on each dimer. We first adopt
the spin dipole operators T α

j and Nα
j (α = x, y, z), and the

quadrupolar operators Q(n)
j (n = 1, . . . , 5). We further use the

vector chiral operators (or p-type nematic operators [1])

χα
j = 2

∑
β,γ

εαβγ Sβ

1, jS
γ

2, j (37)

(α = x, y, z), where εαβγ is the Levi-Civita tensor, and the
Heisenberg exchange operator

O j = 2
√

2√
3

S1, j · S2, j . (38)

All of these fifteen operators, T α
j , Nα

j , χα
j (α = x, y, z), Q(n)

j
(n = 1, . . . , 5), and O j , are the generators of SU(4) group on
dimers [56]. This is a useful representation of SU(4) genera-
tors for our analysis of emerging phases. We note that O j is
also the generator of the spin-chirality dual transformation on
dimers [54]. See also Appendix B for a convenient definition
of SU(4) generators.

Let us start our argument from the fact that the SU(4)
Hamiltonian can be expressed in terms of permutation opera-
tors,

Hsu4 =−Jsu4

∑
〈 j, j′〉

⎡
⎣ ∑

σ1σ2σ
′
1σ

′
2

|σ ′
1σ

′
2〉 j |σ1σ2〉 j′ 〈σ1σ2| j〈σ ′

1σ
′
2| j′ − 1

4

⎤
⎦.

(39)

From this, it immediately follows that eigenenergies of the fer-
romagnetic SU(4) model are lower-bounded by −3Jsu4Nb/4,
where Nb ≡ zN/2 is the number of nearest-neighbor dimer
pairs.

A trivial ground state with the energy −3Jsu4Nb/4 is the
state in which all spins are down,

|FM〉 =
∏

j

|↓ ↓〉 j . (40)

Due to SU(4) symmetry, any state obtained through global
SU(4) rotation to Eq. (40) also belongs to the ground states.
We summarize below five typical states of degenerate ground
states and their order parameters. Among these states, the anti-
ferromagnetic state and the vector chiral state are transformed
to each other through the spin-chirality dual relation [54,57],
whereas the rest of states are invariant, i.e., self dual. We note
that, since all of these states have product wave functions,
the mean-field approximation presented in Sec. IV gives exact
ground states in the ferromagnetic SU(4) model.

1. Ferromagnetic state

In the ferromagnetic state |FM〉, all spins are ferromagnet-
ically ordered. The order parameter is given by

∑
j T j . In this

state, spin SU(2) and time-reversal symmetries are broken.

2. Antiferromagnetic state

Applying the SU(4) rotation U = ∏
j (−i) exp

(iπT x
j /2) exp(iπNx

j /2) to |FM〉, we obtain the A-type
antiferromagnetic state

|A-AF〉 =
∏

j

|↑ ↓〉 j . (41)

The spins have an antiferromagnetic order detected with∑
j N j . In this state, spin SU(2) and time-reversal symmetries

are broken.
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3. Spin nematic state

Applying the rotation U = ∏
j exp(iπQ(3)

j /4) to |FM〉, we
obtain the spin nematic state with ferroquadrupolar order,

|SNf〉 =
∏

j

1√
2

(|↑↑〉 j + |↓ ↓〉 j ). (42)

This state does not have any spin order

〈SNf|Sl, j |SNf〉 = (0, 0, 0), (43)

while has a ferroquadrupolar order

〈SNf|Q j |SNf〉 = (1, 1/
√

3, 0, 0, 0). (44)

Thus only spin SU(2) symmetry is broken.

4. Vector chiral state

Applying the duality transformation [54] U =∏
j exp[iπ (−√

6O j + 1)/8] to |A-AF〉, we obtain the vector
chiral (p-type nematic) state

|VC〉 =
∏

j

1√
2

(eiπ/4|↑ ↓〉 j + e−iπ/4|↓ ↑〉 j ). (45)

Each dimer state is a linear combination of the spin singlet
state and a spin triplet state with the complex coefficients. The
vector chiral state does not have any spin order

〈VC|Sl, j |VC〉 = (0, 0, 0), (46)

while it has a vector chiral order

〈VC|χ j |VC〉 = (0, 0, 1). (47)

Thus SU(2) and reflection symmetries are broken. This vector
chiral order is also accompanied with a quadrupolar order,
which corresponds to a quadrupolar moment of the vector
chirality.

5. Dimer singlet state

The dimer singlet state∏
j

1√
2

(|↑↓〉 j − |↓↑〉 j ) (48)

is also obtained, for example, through the SU(4) transforma-
tion

∏
j e−i3π/4 exp(iπNz

j /4)|VC〉. No symmetry is broken in
this state.

B. Perturbations to lift the degeneracy

A weak perturbation to the ferromagnetic SU(4) model
can stabilize one of these degenerate ground states, making
its phase realize in a finite parameter region. For example,
the ferromagnetic phase is realized in the vicinity of the
ferromagnetic SU(4) model by adding a weak ferromagnetic
Heisenberg interaction on interdimer bonds,

Hsu4 − λ
∑
〈 j, j′〉

T j · T j′ (49)

with λ > 0. The fully polarized state (40) still belongs to
the lowest-energy eigenstates of this perturbed Hamiltonian.
Another example of exact results is the stability of the dimer

singlet phase. One can show that the dimer singlet state (48)
is the lowest-energy eigenstate of the perturbed Hamiltonian

Hsu4 − λ′ ∑
j

S1, j · S2, j (50)

with λ′ > 0. The other states are, however, not eigenstates
usually, if we add SU(2) symmetric perturbations. In the case
of the spin nematic state (42), we infer that the spin nematic
phase with the ferroquadrupolar order is stabilized by adding
a perturbation of biquadratic interactions,

Hsu4 − λ′′ ∑
〈 j, j′〉

5∑
n=1

Q(n)
j Q(n)

j′

= Hsu4 − 4λ′′ ∑
〈 j, j′〉

[
(S1, j · S1, j′ )(S2, j · S2, j′ )

+ (S1, j · S2, j′ )(S2, j · S1, j′ ) − 2

3
(S1, j · S2, j )(S1, j′ · S2, j′ )

]
(51)

with λ′′ > 0, though the state (42) is not an exact eigenstate of
this perturbed Hamiltonian any more.

In the rest of this section, we consider an Ising anisotropic
perturbation and prove that adding some Ising couplings to
the ferromagnetic SU(4) model can stabilize the spin nematic
phase. We use the Hamiltonian of the ferromagnetic SU(4)
model with additional Ising couplings

H′ = Hsu4 + Hz
d + Hz

int, (52)

where

Hz
d = −Jz

d

∑
j

Sz
1, jS

z
2, j, (53a)

Hz
int =

∑
〈 j, j′〉

⎡
⎣Jz

‖
∑
l=1,2

Sz
l, jS

z
l, j′ + Jz

×
(
Sz

1, jS
z
2, j′ + Sz

2, jS
z
1, j′

)⎤⎦
(53b)

with Jz
d > 0. This Hamiltonian conserves the number of

dimers having the state |σ1σ2〉 j , which we denote by Nσ1σ2 ,
and hence is block-diagonalized into subspaces characterized
by the quantum numbers {Nσ1σ2} = {N↑↑, N↓↓, N↑↓, N↓↑}. In
the following, we consider the case that the number of dimers,
N = ∑

σ1σ2
Nσ1σ2 , is even.

Our argument has some analogies to the derivation of the
so-called η-pairing superconductivity in an extended Hubbard
model [58–60]. We introduce η operators of spins

ηx
j ≡ 1

2
Q(1)

j = Re(S+
1, jS

+
2, j ), (54a)

η
y
j ≡ 1

2
Q(3)

j = Im(S+
1, jS

+
2, j ), (54b)

ηz
j ≡ 1

2
T z

j = 1

2

(
Sz

1, j + Sz
2, j

)
. (54c)

The operators ηα
j satisfy the commutation relation[
ηα

j , η
β
j

] = i
∑

γ

εαβγ η
γ
j , (55)
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and form an SU(2) group. The two-dimensional fundamental
representation of this SU(2) is spanned with two states |↑↑〉 j

and |↓↓〉 j . These two states carry pseudo-spin-1/2 degrees of
freedom [61]

ηz
j |↑↑〉 j = 1

2 |↑ ↑〉 j, ηz
j |↓ ↓〉 j = − 1

2 |↓ ↓〉 j, (56)

and η+
j ≡ ηx

j + iηy
j (η−

j ≡ ηx
j − iηy

j) is the raising (lowering)
operator between them, while the rest of states, |↑ ↓〉 j and
|↓ ↑〉 j , are doubly degenerate singlet states,

ηα
j |↑ ↓〉 j = ηα

j |↓ ↑〉 j = 0. (57)

Since ηα
j (α = x, y, z) are parts of SU(4) generators,

∑
j η

α
j

commutes with Hsu4. For later use, we rewrite Hsu4 and Hz
int

with SU(4) generators and η operators introduced in Eqs. (54),

Hsu4 = −Jsu4

2

∑
〈 j, j′〉

(
4η j · η j′ +

∑
α=x,y

T α
j T α

j′ + N j · N j′

+
∑

n=2,4,5

Q(n)
j Q(n)

j′ + χ j · χ j′ + O jO j′

)
, (58)

Hz
int = 1

2

∑
〈 j, j′〉

[
4
(
Jz
‖ + Jz

×
)
ηz

jη
z
j′ +

(
Jz
‖ − Jz

×
)
Nz

j N
z
j′
]
. (59)

The degenerate ground states of the ferromagnetic SU(4)
model come from all subspaces of distinct {Nσ1σ2}. We first
consider the case that only the intradimer Ising coupling
term Hz

d is added to the SU(4) model. Since Hsu4 is block
diagonalized for each subspace of {Nσ1σ2} and the eigenvalue
of Hz

d is −(Jz
d/4)(N↑↑ + N↓↓ − N↑↓ − N↓↑), this Ising term

partially lifts the ground-state degeneracy of the SU(4) model.
Hence, only the states in the subspace with N↑↓ = N↓↑ = 0
have the lowest energy among the degenerate ground states of
the SU(4) model. All other states in the subspaces with N↑↓ +
N↓↑ > 0 acquire finite energy costs of Jz

d (N↑↓ + N↓↑)/2 com-
pared to the lowest-energy states with N↑↓ = N↓↑ = 0 and are
gapped out of the ground-state manifold. We note that the role
of Hz

d in our argument is only to wipe out the states with
N↑↓ + N↓↑ > 0 from the ground states. Hence, Jz

d does not
have to be small and can be comparable to or larger than Jsu4.

To see the nature of the ground states of the Hamiltonian
Hsu4 + Hz

d, we consider the projection P to the subspace
with N↑↓ = N↓↑ = 0, to which the ground states belong. In
this projected space, the terms containing η spins in the
Hamiltonian give nontrivial operators and the rest of terms
give constants. As a result, the Hamiltonian Hsu4 + Hz

d in this
subspace reduces to a “ferromagnetic” Heisenberg model of η

spins,

P
(
Hsu4 + Hz

d

)
P = −2Jsu4

∑
〈 j, j′〉

Pη j · η j′P, (60)

except for a constant. Thus the ground states of Hsu4 + Hz
d are

the perfectly ferromagnetic states of η spins.
We next add an interdimer Ising coupling term Hz

int. Note
that Hz

int also preserves the quantum numbers {Nσ1σ2}. In
a subspace with N↑↓ + N↓↑ > 0, the change of the lowest
energy induced by Hz

int (compared to that in the subspace with
N↑↓ = N↓↑ = 0) is, at most, of order O(N↑↓ + N↓↑). There-
fore, if the intradimer Ising term Hz

d is sufficiently strong
compared to the interdimer Ising term Hz

int , i.e., |Jz
‖|, |Jz

×| �

Jz
d, the ground state of total Hamiltonian H′ [in Eq. (52)] still

belongs to the subspace with N↑↓ = N↓↑ = 0.
To consider the ground state in the thermodynamic limit,

a careful treatment of low-lying excited states is needed here.
With increasing the system size, quasi-degenerate low-lying
states (also known as Anderson tower states) in finite-size sys-
tems whose excitation energies decay in the form of O(1/N )
also join to the lowest-energy state, forming a symmetry
broken ground state in the thermodynamic limit [62–64]. In
our model, if the coupling Jz

d is sufficiently strong so that
the energy gap from the ground states to the lowest excited
states with N↑↓ + N↓↑ > 0 is of order unity, these excitations
do not contribute to the formation of ground states in the
thermodynamic limit and hence the ground states are properly
reproduced by the Hamiltonian in the projected space.

In the projected space with N↑↓ = N↓↑ = 0, only η oper-
ators remain nontrivial and the effective total Hamiltonian is
written as

PH′P = −2Jsu4

∑
〈 j, j′〉

P
(
ηx

jη
x
j′ + η

y
jη

y
j′ + �ηη

z
jη

z
j′
)
P (61)

with

�η = 1 − Jz
‖ + Jz

×
Jsu4

. (62)

We thus find that the ground state of H′ is described with η

spins and the effective Hamiltonian is equivalent to the fer-
romagnetic XXZ model. When |�η| < 1, i.e., 0 < Jz

‖ + Jz
× <

2Jsu4, the anisotropy is of easy-plane type, and in the ground
state all η spins point to the same direction in the xy plane of
the η spin space. This ground state is indeed a spin nematic
state: η spins have an order 〈η j〉 = (ρ cos ϑ, ρ sin ϑ, 0) with
finite positive constant ρ, which corresponds to the ferro-
quadrupolar order,〈

Q(1)
j

〉 = 2ρ cos ϑ,
〈
Q(3)

j

〉 = 2ρ sin ϑ, (63)

and 〈Sz
1, j + Sz

2, j〉 = 0. This order is accompanied with the
spontaneous breaking of the global spin-rotation symmetry
around the spin z axis. Furthermore, since the ground state
belongs to the subspace with N↑↓ = N↓↑ = 0, the expectation
values of Sx

l, j , Sy
l, j (l = 1, 2), and Nz

j = Sz
1, j − Sz

2, j are always
zeros and hence the ground state does not have any spin
(dipole) order,

〈S1, j〉 = 〈S2, j〉 = (0, 0, 0). (64)

In this argument, the ferromagnetic Ising couplings Jz
d on

dimers are important and the choice of the other couplings Jz
‖

and Jz
× is relatively free inside the region 0 < Jz

‖ + Jz
× < 2Jsu4

(and |Jz
‖|, |Jz

×| � Jz
d).

To summarize, we have shown that the ferromagnetic
SU(4) model [Eq. (36)] has the degenerate various ground
states including the spin nematic state with ferroquadrupolar
order and the vector chiral state. Each phase extends to a finite
parameter region of a generalized model around the SU(4)
symmetric point. Furthermore, adding some appropriate Ising
couplings to the SU(4) model can also stabilize the spin
nematic phase out of the degenerate ground states of the SU(4)
model.
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VII. CONCLUDING REMARKS

In this paper, we have studied the frustrated spin-
1/2 dimer model (1) composed of ferromagnetic dimers
on two-dimensional lattices with a bilayer structure, to
explore the spin nematic phase. We have used various
approaches—perturbative calculations, a mean-field approx-
imation, mVMC method, and exact arguments. We have
succeeded to show the appearance of the spin nematic phase
with ferroquadrupolar order in a wide parameter range, which
includes the model with only two-spin interactions and also
the SU(4) symmetric model. All the spin nematic states found
in this paper are adiabatically connected to each other on each
lattice, forming the single spin nematic phase.

The appearance of the spin nematic phase in our model can
be understood from two mechanisms, which are active in two
distinct regimes in the phase. One is attributed to the effective
biquadratic interactions between spin-triplet states in dimers,
which couple the spin-quadrupolar degrees of freedom on
neighboring dimers. This mechanism is elucidated by the per-
turbative analysis in the strong ferromagnetic dimer-coupling
regime. In this limit, our spin-1/2 model is mapped to the
effective spin-1 bilinear-biquadratic model. The effective bi-
quadratic interaction derived perturbatively comes from the
four-spin exchange interaction in the original model in the
first-order process and also from the two-spin interactions
in the second-order process. When this effective biquadratic
interaction dominates the effective bilinear interaction, the
spin nematic phase emerges.

This mechanism opens a possibility to realize the spin
nematic phase in the model with only two-spin interactions.
When there is no four-spin interaction in the original model,
the effective biquadratic interaction is usually not strong as
it comes from the second-order perturbation. However, when
the interdimer two-spin interactions in the original model
have a strong competition between ferromagnetic and anti-
ferromagnetic couplings, the effective bilinear interaction be-
comes very weak because of the cancellation in perturbations
and hence the effective biquadratic interaction becomes the
strongest one. The spin nematic phase thus appears in be-
tween the ferromagnetic and antiferromagnetic phases, even
if the original Hamiltonian does not contain any four-spin
interaction. We note that a similar mechanism to surpress the
bilinear interaction was argued for the multi-orbital Hubbard
model [29,30]. To confirm the emergence of the spin nematic
phase in the model with only two-spin interactions, we have
performed large-size numerical mVMC calculations for our
model (1) with only two-spin interactions (J4 = 0) and mod-
erately strong ferromagnetic Jd. The resultant phase diagrams
for the square and triangular lattices indeed exhibit the ferro-
quadrupolar spin-nematic phases in finite parameter ranges in
between the ferromagnetic and antiferromagnetic phases.

The other mechanism to realize the spin nematic phase is
found in the ferromagnetic SU(4) symmetric model. Applying
exact arguments, we have shown that a spin-nematic product
state becomes one of the exact ground states on the ferromag-
netic SU(4) model, because the spin nematic order parameters
are given by the generators of SU(4) symmetry. This result
suggests that the mean-field approximation with product-state
ansatz becomes exact on the ferromagnetic SU(4) model. Due

to the SU(4) symmetry, various phases are generated in the
vicinity of this high-symmetry point. In addition to the spin
nematic phase, the vector chiral (p-type nematic) phase as
well as the conventional ferromagnetic and antiferromagnetic
phases and the dimer singlet phase appear in the vicinity of the
SU(4) symmetric point if appropriate perturbative interactions
are added. Using an argument similar to the one on the η-
pairing superconductivity, we have also proven that our model
at the SU(4) point with appropriate Ising couplings can exhibit
the spin nematic phase.

The spin nematic state found in this paper is stable in a
wide parameter region of the SU(2) symmetric model without
any magnetic field. This is because both the mechanisms for
spin nematic ordering we showed are valid at zero field. This
is a clear contrast to the spin nematic state found in spin-1/2
frustrated ferromagnets [12,15,16,18,31], which is caused by
the two-magnon instability [12,14,37] at the saturation field
and hence usually more stable in a strong external magnetic
field. Furthermore, the spin nematic phase in our model
remains to exist even without any four-spin interaction in con-
trast to the spin nematic state in the spin-1 bilinear-biquadratic
model, which requires a strong biquadratic coupling.

Our analysis also revealed that the phase transition be-
tween the ferroquadrupolar spin nematic and antiferromag-
netic phases is continuous in many cases. For example, on
the triangular lattice, the transition between the spin ne-
matic phase and the C-type antiferromagnetic phase with
120◦ structure is always continuous, as far as we studied.
This is consistent with the former analysis in the Jd → −∞
limit [10].

Though our model is a toy model, there are a few candidate
materials which might capture some features of our model. We
can find possible candidates in organic magnets, which realize
spin systems with high flexibility in the control of exchange
interactions [65,66]. In particular, several organic biradical
molecules are known to contain dimer structure of two S =
1/2 spins coupled ferromagnetically [67–69]. Arranging these
dimers in a two-dimensional lattice with a bilayer structure
may provide a playground for searching for the spin nematic
state. Another candidate is an SU(4)-symmetric system. It
was recently proposed that a Coulomb-impurity lattice on
a graphene substrate can realize an SU(4)-symmetric spin-
orbital model with a tunable coupling constant [70].

Even after a material exhibiting the spin nematic phase
is prepared, the direct experimental detection of the phase is
not easy, but we can manage to find it by combining various
experiments. One of the most striking features of the spin
nematic phase is the absence of the spin order down to zero
temperature, which we can observe by neutron scattering
and nuclear magnetic resonance measurements. In addition,
spin-wave analyses revealed that the ferroquadrupolar state in
the spin-1 bilinear-biquadratic models has gapless excitations
with a linear dispersion [10,39]. These low-energy excitations
result in algebraic temperature dependence in thermodynamic
properties, e.g., T 2 dependence in specific heat data in two
dimensions. Those properties are also expected to appear in
the spin nematic phase in our spin-1/2 dimer models. As
for the detection of the spin-quadrupolar order, although it
is a challenging task, a few theories were recently proposed
for inelastic light scattering [71], resonant inelastic x-ray
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scattering [72], and electron spin resonance [73]. We hope that
our study stimulates further the search for the spin nematic
phase in real materials.
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APPENDIX A: NUMERICAL RESULTS OF THE
MEAN-FIELD APPROXIMATION

In this Appendix, we present details of the numerical
procedure in the analysis of the mean-field approximation
discussed in Sec. IV as well as the results of phase transitions
in the approximation.

1. Details of the calculation

The mean-field solution was obtained by optimizing nu-
merically the complex coefficients {a�,σ1σ2} in the product
state |�DP〉 defined in Eqs. (12) and (13) so that the state
has the minimum expectation value of the bond Hamiltonian
H j j′ [Eq. (14)]; the minimized function is 〈�DP|H j j′ |�DP〉
( j ∈ A, j′ ∈ B) for the two-sublattice case and 〈�DP|(H j j′ +
H j′ j′′ + H j′′ j )|�DP〉 ( j ∈ A, j′ ∈ B, j′′ ∈ C) for the three-
sublattice case. In the calculation, the normalization condition∑

σ1σ2
|a�,σ1σ2 |2 = 1 for each sublattice � was imposed. From

the arbitrariness of the global phase factor of |�DP〉, we further
imposed the constraint that a�,↓↓ is real for each �, without
loss of generality.

The minimization was achieved by using the steepest de-
scent method. Since the optimization process often becomes
slow and is trapped in a local minimum in the steepest de-
scent method, we performed 1000 calculations starting from
randomly prepared initial states for each parameter point. The
calculations were continued until the optimization converged
or the method reached 10 000 iterations. We note that we
achieved the convergence for all the 1000 runs for most of the
parameter points treated and for 165 runs even at the worst
case. We then adopted the state giving the lowest energy as
the ground state.

For determining the phase diagrams, we performed the
calculation on J× versus J4 planes with several values of Jd/z,
varying J× and J4 with intervals of 0.1. (Note that J‖ is fixed
to be J‖ = −1.) Figures 4 and 6 show typical examples of
the obtained phase diagrams. In order to explore the nature of
the phase transitions, we performed the calculation on several
parameter lines with fixed Jd/z and J4 (J×), varying J× (J4)
with intervals of 0.01 or 0.001.
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M
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FIG. 10. Squared Néel-spin moment |NMF
A |2 for the two-

sublattice structure for the cases Jd/z = 0, −0.01 and −0.10 as a
function of J× − J×,c1, where J×,c1 is the critical value of J× at
the boundary between the spin nematic phase and the A-type AFM
phase. The other parameters are set as J‖ = −1 and J4 = −6.0.

2. Transition between spin-nematic
and A-type AFM phases

The phase transition between the spin nematic phase and
the A-type AFM phase appears in both two- and three-
sublattice cases. We find that this transition is continuous
for all parameter lines studied. Figure 10 shows the J×-
dependence of the Néel-spin moment around the transition
in the parameter lines J4 = −6.0 and Jd/z = 0,−0.01,−0.10
in the two-sublattice case. For Jd/z � −0.10, the Néel-spin
moment rises from zero continuously with a moderate slope.
The slope is steeper as |Jd|/z is smaller, however, the transition
is still continuous even for Jd/z = −0.01. At Jd = 0, the
spin nematic phase reaches to the boundary region between
the spin-nematic and dimer-singlet phases with degenerate
ground states, and the order parameters exhibit finite jumps
when the system moves from this region into the A-type AFM
phase. We note that the steep rise of the Néel-spin moment
at Jd/z → −0 was observed in both two- and three-sublattice
cases. For not too small |Jd|/z, |NMF

� |2 rises linearly with
a moderate slope, suggesting |NMF

� | ∝ √
J× − J×,c1, where

J×,c1 is the critical value.

3. Transition between spin-nematic and
C-type 120◦-AFM phases

The phase transition between the spin nematic phase
and the C-type 120◦-AFM phase occurs in the three-
sublattice case for large |Jd|/z. This transition is found to
be continuous. Figure 11 presents the data of the squared
total-spin moment in a dimer, |T MF

A |2, for Jd/z = −3.5 and
J4 = −0.1,−0.5,−1.5. When |J4| is not too small, the total-
spin moment rises from zero continuously with a finite slope,
indicating T MF

� ∝ √
J× − J×,c2, where J×,c2 is the critical

value. The slope becomes steeper as J4 approaches zero. At
J4 = 0, the spin nematic phase vanishes (within the mean-field
approximation) and there occurs a direct transition between
the FM and C-type 120◦-AFM phases via a special point
with the degenerate ground states at J× = −J‖ = 1. (See
Appendix C 3.)
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FIG. 11. Squared local total-spin moment |T MF
A |2 for the three-

sublattice structure for the cases J4 = −0.1, −0.5, and −1.5 as a
function of J× − J×,c2, where J×,c2 is the critical value of J× at
the transition point between the spin nematic phase and the C-type
120◦-AFM phase. The other parameters are set as J‖ = −1 and
Jd/z = −3.5.

4. Transition between A-type AFM
and C-type 120◦-AFM phases

The phase transition between the A-type AFM phase and
the C-type 120◦-AFM phase occurs in the three-sublattice
case for large |Jd|/z. Figure 12 shows the J4 dependence of
the total-spin and Néel-spin moments on the parameter line
with Jd/z = −3.0 and J× = 4.0. The order parameters exhibit
a clear jump at the transition. The transition thus turns out
to be the first-order one, occurring between two magnetically
ordered phases with distinct symmetries.

APPENDIX B: SU(4) TRANSFORMATION ON DIMERS

In this Appendix, we briefly describe SU(4) transformation
on a dimer. The fifteen generators of SU(4) group [56] on a
dimer are given by the spin operators T α

j and Nα
j , the vector

chiral operators χα
j (α = x, y, z), the quadrupolar operators
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FIG. 12. J4 dependence of squared magnetic moments |T MF
A |2

and |NMF
A |2 for the three-sublattice structure. The other parameters

are set as J‖ = −1, J× = 4.0, and Jd/z = −3.0. Vertical dashed line
represents the transition point between the A-type AFM phase and
the C-type 120◦-AFM phase.

Q(n)
j (n = 1, . . . , 5), and the spin exchange operator O j . Here-

after we omit the dimer index j. Using these operators, we
conveniently define the fifteen generators λn (n = 1, . . . , 15)
of SU(4) group as follows:

λ1 = −Q(3), λ2 = T z, λ3 = −Q(1), λ4 = −Q(5),

λ5 = −T y, λ6 = −Q(4), λ7 = T x, λ8 = Q(2),

λ9 = −Nx, λ10 = −χ x, λ11 = −Ny, λ12 = −χ y,

λ13 = −Nz, λ14 = −χ z, λ15 = O. (B1)

As for the orthonormal bases on a dimer, we use the following
states:

|x〉 = 1√
2

(|↑ ↑〉 − |↓ ↓〉), |y〉 = 1√
2i

(|↑ ↑〉 + |↓ ↓〉),

|z〉 = − 1√
2

(|↑ ↓〉 + |↓ ↑〉), |0〉 = 1√
2

(|↑ ↓〉 − |↓ ↑〉).

(B2)

Using these definitions, one can explicitly show that the 4 × 4
matrix representation of the generators λn on the basis vector
(|x〉, |y〉, |z〉, |0〉) coincides with the 4 × 4 generalized Gell-
Man matrices [74] which generate SU(4) algebra,

λ1 =

⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦, λ2 =

⎡
⎢⎣

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦,

λ3 =

⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦, λ4 =

⎡
⎢⎣

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎦,

λ5 =

⎡
⎢⎣

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎤
⎥⎦, λ6 =

⎡
⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤
⎥⎦,

λ7 =

⎡
⎢⎣

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎤
⎥⎦, λ8 = 1√

3

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎤
⎥⎦,

λ9 =

⎡
⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎦, λ10 =

⎡
⎢⎣

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎤
⎥⎦,

λ11 =

⎡
⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎤
⎥⎦, λ12 =

⎡
⎢⎣

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎤
⎥⎦,

λ13 =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦, λ14 =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎤
⎥⎦,

λ15 = 1√
6

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎤
⎥⎦. (B3)
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Arbitrary SU(4) transformation is given by these generators
parameterized by generalized Euler angles [75].

APPENDIX C: NONTRIVIAL DEGENERACIES IN THE
MEAN-FIELD APPROXIMATION

We describe nontrivial degeneracies in the mean-field so-
lutions in the two types of phase boundaries and a triple point
found in Sec. IV. One boundary exists between the ferro-
magnetic and spin-nematic phases, which indicates emergent
SU(3) symmetry. The other exists in the boundary between
the spin-nematic and dimer-singlet phases.

1. Emergent SU(3) symmetry in the boundary between the FM
and spin-nematic phases

In the phase boundary between the FM phase and the
spin nematic phase with ferroquadrupolar order, the ground
state manifold has nontrivial degeneracy corresponding to
SU(3) rotation. We first briefly summarize SU(3) rotation
on a dimer. The eight generators λn (n = 1, . . . , 8) of SU(3)
rotation are given by T α (α = x, y, z) and Q(n) (n = 1, . . . , 5)
as in Eqs. (B1). Using these generators, we can write arbitrary
SU(3) rotation in the form [76]

U (α, β, γ , θ, a, b, c, φ)

= exp
(−iαQ(1)

j

)
exp

(
iβT z

j

)
exp

(−iγ Q(1)
j

)
exp

( − iθT y
j

)
× exp

(−iaQ(1)
j

)
exp

(
ibT z

j

)
exp

(−icQ(1)
j

)
exp

(
iφQ(2)

j

)
(C1)

with parameters (α, β, γ , θ, a, b, c, φ). This gives arbitrary
unitary transformation among the spin triplet. As an initial
state, we use the state |z〉 j . Since this state is invariant under
the last (right) four rotations, the transformed state is simply
written as

U (α, β, γ , θ, a, b, c, φ)|z〉 j

= e− 2√
3

iφ{cos θ |z〉 j

+ eiγ sin θ (eiα cos β|x〉 j − e−iα sin β|y〉 j )}. (C2)

In the mean-field approximation performed in Sec. IV,
the FM state and the spin nematic state are degenerate in
energy in the boundary between these two phases. We further
find that, in the mean-field solutions, any state obtained by
arbitrary global SU(3) rotation to the FM state, which is
a translationally invariant product state of Eq. (C2), also
takes the exactly same energy. This is emergent nontrivial
degeneracy associated with the global SU(3) rotation. As

mentioned in Sec. II C, the Hamiltonian has the exact global
SU(3) symmetry and the corresponding degenerate ground
states only in the parameter space (5), which exists inside of
the mean-field phase boundary. This degeneracy thus remains
in the whole phase boundary in the mean-field approximation
even though the model Hamiltonian does not possess the
SU(3) symmetry.

2. Boundary between the spin-nematic and dimer-singlet phases

In the mean-field approximation, the spin nematic phase
touches with the dimer singlet phase in a finite parameter
plane at Jd = 0, as shown in Figs. 4(a) and 6(a). In this phase
boundary, the ground state manifold has nontrivial degeneracy
corresponding to SU(2) × SU(2) rotation, even though the
Hamiltonian does not have this symmetry except for the
special case of Jd = J× = 0. Among the spin-nematic ground
states, we consider the product state of |z〉 without loss of
generality. All other states are related with the global SU(2)
rotation. We next apply SU(2) rotation only to one spin of
each dimer,

exp(iω · S1, j )|z〉 j = cos
|ω|
2

|z〉 j + sin
|ω|
2

(−ω̂ · ŷ|x〉 j

+ ω̂ · x̂|y〉 j − iω̂ · ẑ|0〉 j ), (C3)

where α̂ (α = x, y, z) denotes the unit vector parallel to α-axis
and ω̂ the unit vector parallel to ω. The quadrupolar state
(|ω| = 0) is continuously transformed to the vector chiral
states (0 < |ω| < π ) and the dimer singlet state (|ω| = π )
when ω̂ ‖ ẑ. By a straightforward calculation, one can show
that the translationally invariant product state of these dimer
bases also has the same energy as the ferroquadrupolar state.
Thus the ground state manifold has the same degrees of
freedom as global SU(2) × SU(2) rotation. This degeneracy
exists in the whole phase boundary between the spin-nematic
and dimer-singlet phases in the mean-field approximation.

3. Triple point for the FM, spin nematic,
and C-type AFM phases

For large |Jd|/z, the triple point for the FM, spin nematic,
and C-type (120◦-)AFM phases exists at J× = −J‖ and J4 =
0 in both two-sublattice and three-sublattice cases in the
mean-field approximation. On this triple point, any product
state in which each dimer independently take an arbitrary
superposition of spin-triplet states has the same energy to
form the massively degenerate ground state manifold in the
mean-field level.
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S. Krämer, M. Horvatić, C. Berthier, K. Matsui, T. Goto, S.
Kimura, T. Sasaki, J. Yamaura, H. Yoshida, Y. Okamoto, and
Z. Hiroi, Phys. Rev. B 96, 180413(R) (2017).

[36] Y. Kohama, H. Ishikawa, A. Matsuo, K. Kindo, N. Shannon,
and Z. Hiroi, Proc. Natl. Acad. Sci. 116, 10686 (2019).

[37] L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev. B 76,
060407(R) (2007).

[38] J. Richter, R. Darradi, J. Schulenburg, D. J. J. Farnell, and H.
Rosner, Phys. Rev. B 81, 174429 (2010).

[39] N. Papanicolaou, Nucl. Phys. B 305, 367 (1988).
[40] K. Penc and A. M. Läuchli, in Introduction to Frustrated Mag-

netism: Materials, Experiments, Theory, edited by C. Lacroix,
P. Mendels, and F. Mila (Springer, Berlin, Heidelberg, 2011),
pp. 331–362.

[41] T. Misawa, S. Morita, K. Yoshimi, M. Kawamura, Y.
Motoyama, K. Ido, T. Ohgoe, M. Imada, and T. Kato, Comput.
Phys. Commun. 235, 447 (2019).

[42] https://github.com/issp-center-dev/mVMC.
[43] T. Hikihara and O. A. Starykh, Phys. Rev. B 81, 064432 (2010).
[44] S. Miyashita and H. Shiba, J. Phys. Soc. Jpn. 53, 1145 (1984).
[45] H. Kawamura and S. Miyashita, J. Phys. Soc. Jpn. 53, 4138

(1984).
[46] R. Shindou and T. Momoi, Phys. Rev. B 80, 064410 (2009).
[47] S. Sorella, Phys. Rev. B 64, 024512 (2001).
[48] S. Sorella, M. Casula, and D. Rocca, J. Chem. Phys. 127,

014105 (2007).
[49] K. I. Kugel’ and D. I. Khomskii, Zh. Eksp. Teor. Fiz. 64, 1429

(1973) [Sov. Phys. JETP 37, 725 (1973)].
[50] Y. Q. Li, M. Ma, D. N. Shi, and F. C. Zhang, Phys. Rev. Lett.

81, 3527 (1998).
[51] Y. Yamashita, N. Shibata, and K. Ueda, Phys. Rev. B 58, 9114

(1998).
[52] P. Azaria, A. O. Gogolin, P. Lecheminant, and A. A. Nersesyan,

Phys. Rev. Lett. 83, 624 (1999).
[53] P. Azaria, E. Boulat, and P. Lecheminant, Phys. Rev. B 61,

12112 (2000).
[54] T. Momoi, T. Hikihara, M. Nakamura, and X. Hu, Phys. Rev. B

67, 174410 (2003).
[55] P. Lecheminant and K. Totsuka, Phys. Rev. B 71, 020407(R)

(2005).
[56] P. Lecheminant and K. Totsuka, Phys. Rev. B 74, 224426

(2006).
[57] T. Hikihara, T. Momoi, and X. Hu, Phys. Rev. Lett. 90, 087204

(2003).
[58] C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989).
[59] F. H. L. Essler, V. E. Korepin, and K. Schoutens, Phys. Rev.

Lett. 68, 2960 (1992).
[60] F. H. L. Essler, V. E. Korepin, and K. Schoutens, Phys. Rev.

Lett. 70, 73 (1993).
[61] T. Hikihara, T. Tonegawa, K. Okamoto, and T. Sakai, J. Phys.

Soc. Jpn. 86, 054709 (2017).
[62] P. W. Anderson, Phys. Rev. 86, 694 (1952).
[63] B. Bernu, C. Lhuillier, and L. Pierre, Phys. Rev. Lett. 69, 2590

(1992).
[64] T. Koma and H. Tasaki, J. Stat. Phys. 76, 745 (1994).
[65] H. Yamaguchi, Y. Tamekuni, Y. Iwasaki, and Y. Hosokoshi,

Phys. Rev. B 97, 201109(R) (2018).
[66] H. Yamaguchi, Y. Sasaki, T. Okubo, M. Yoshida, T. Kida, M.

Hagiwara, Y. Kono, S. Kittaka, T. Sakakibara, M. Takigawa, Y.
Iwasaki, and Y. Hosokoshi, Phys. Rev. B 98, 094402 (2018).

[67] D. Shiomi, M. Tamura, H. Sawa, R. Kato, and M. Kinoshita,
J. Phys. Soc. Jpn. 62, 289 (1993).

[68] Y. Hosokoshi, Y. Nakazawa, K. Inoue, K. Takizawa, H. Nakano,
M. Takahashi, and T. Goto, Phys. Rev. B 60, 12924 (1999).

[69] K. Iwase, H. Yamaguchi, T. Ono, T. Shimokawa, H. Nakano, A.
Matsuo, K. Kindo, H. Nojiri, and Y. Hosokoshi, J. Phys. Soc.
Jpn. 82, 074719 (2013).

[70] X. Dou, V. N. Kotov, and B. Uchoa, Sci. Rep. 6, 31737 (2016).
[71] F. Michaud, F. Vernay, and F. Mila, Phys. Rev. B 84, 184424

(2011).
[72] L. Savary and T. Senthil, arXiv:1506.04752 [cond-mat.str-el].
[73] S. C. Furuya and T. Momoi, Phys. Rev. B 97, 104411 (2018).
[74] W. Greiner and B. Müller, Quantum Mechanics: Symmetries

(Springer-Verlag, Berlin, Heidelberg, 1994).
[75] T. Tilma, M. Byrd, and E. C. G. Sudarshan, J. Phys. A: Math.

Gen. 35, 10445 (2002).
[76] M. Byrd, arXiv:physics/9708015 [math-ph].

214414-20

https://doi.org/10.1103/PhysRevB.91.060403
https://doi.org/10.1103/PhysRevB.91.060403
https://doi.org/10.1103/PhysRevB.91.060403
https://doi.org/10.1103/PhysRevB.91.060403
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevB.84.134414
https://doi.org/10.1103/PhysRevB.84.134414
https://doi.org/10.1103/PhysRevB.84.134414
https://doi.org/10.1103/PhysRevB.84.134414
https://doi.org/10.1103/PhysRevB.44.4693
https://doi.org/10.1103/PhysRevB.44.4693
https://doi.org/10.1103/PhysRevB.44.4693
https://doi.org/10.1103/PhysRevB.44.4693
https://doi.org/10.1103/PhysRevB.78.144404
https://doi.org/10.1103/PhysRevB.78.144404
https://doi.org/10.1103/PhysRevB.78.144404
https://doi.org/10.1103/PhysRevB.78.144404
https://doi.org/10.1103/PhysRevB.80.140402
https://doi.org/10.1103/PhysRevB.80.140402
https://doi.org/10.1103/PhysRevB.80.140402
https://doi.org/10.1103/PhysRevB.80.140402
https://doi.org/10.1209/0295-5075/92/37001
https://doi.org/10.1209/0295-5075/92/37001
https://doi.org/10.1209/0295-5075/92/37001
https://doi.org/10.1209/0295-5075/92/37001
https://doi.org/10.1103/PhysRevB.87.144417
https://doi.org/10.1103/PhysRevB.87.144417
https://doi.org/10.1103/PhysRevB.87.144417
https://doi.org/10.1103/PhysRevB.87.144417
https://doi.org/10.1103/PhysRevLett.117.037206
https://doi.org/10.1103/PhysRevLett.117.037206
https://doi.org/10.1103/PhysRevLett.117.037206
https://doi.org/10.1103/PhysRevLett.117.037206
https://doi.org/10.1143/PTPS.159.72
https://doi.org/10.1143/PTPS.159.72
https://doi.org/10.1143/PTPS.159.72
https://doi.org/10.1143/PTPS.159.72
https://doi.org/10.1103/PhysRevB.34.6372
https://doi.org/10.1103/PhysRevB.34.6372
https://doi.org/10.1103/PhysRevB.34.6372
https://doi.org/10.1103/PhysRevB.34.6372
https://doi.org/10.1103/PhysRevB.67.104401
https://doi.org/10.1103/PhysRevB.67.104401
https://doi.org/10.1103/PhysRevB.67.104401
https://doi.org/10.1103/PhysRevB.67.104401
https://doi.org/10.1103/PhysRevLett.97.067202
https://doi.org/10.1103/PhysRevLett.97.067202
https://doi.org/10.1103/PhysRevLett.97.067202
https://doi.org/10.1103/PhysRevLett.97.067202
https://doi.org/10.1103/PhysRevB.62.15067
https://doi.org/10.1103/PhysRevB.62.15067
https://doi.org/10.1103/PhysRevB.62.15067
https://doi.org/10.1103/PhysRevB.62.15067
https://doi.org/10.1103/PhysRevLett.120.247201
https://doi.org/10.1103/PhysRevLett.120.247201
https://doi.org/10.1103/PhysRevLett.120.247201
https://doi.org/10.1103/PhysRevLett.120.247201
https://doi.org/10.1143/JPSJ.77.014709
https://doi.org/10.1143/JPSJ.77.014709
https://doi.org/10.1143/JPSJ.77.014709
https://doi.org/10.1143/JPSJ.77.014709
https://doi.org/10.1103/PhysRevLett.108.057206
https://doi.org/10.1103/PhysRevLett.108.057206
https://doi.org/10.1103/PhysRevLett.108.057206
https://doi.org/10.1103/PhysRevLett.108.057206
https://doi.org/10.1103/PhysRevB.97.180404
https://doi.org/10.1103/PhysRevB.97.180404
https://doi.org/10.1103/PhysRevB.97.180404
https://doi.org/10.1103/PhysRevB.97.180404
https://doi.org/10.1007/s100510070242
https://doi.org/10.1007/s100510070242
https://doi.org/10.1007/s100510070242
https://doi.org/10.1007/s100510070242
https://doi.org/10.7566/JPSJ.87.023702
https://doi.org/10.7566/JPSJ.87.023702
https://doi.org/10.7566/JPSJ.87.023702
https://doi.org/10.7566/JPSJ.87.023702
https://doi.org/10.1088/1742-6596/145/1/012048
https://doi.org/10.1088/1742-6596/145/1/012048
https://doi.org/10.1088/1742-6596/145/1/012048
https://doi.org/10.1088/1742-6596/145/1/012048
https://doi.org/10.1103/PhysRevB.96.134423
https://doi.org/10.1103/PhysRevB.96.134423
https://doi.org/10.1103/PhysRevB.96.134423
https://doi.org/10.1103/PhysRevB.96.134423
https://doi.org/10.1103/PhysRevLett.118.247201
https://doi.org/10.1103/PhysRevLett.118.247201
https://doi.org/10.1103/PhysRevLett.118.247201
https://doi.org/10.1103/PhysRevLett.118.247201
https://doi.org/10.1103/PhysRevB.96.220402
https://doi.org/10.1103/PhysRevB.96.220402
https://doi.org/10.1103/PhysRevB.96.220402
https://doi.org/10.1103/PhysRevB.96.220402
https://doi.org/10.1103/PhysRevB.96.180413
https://doi.org/10.1103/PhysRevB.96.180413
https://doi.org/10.1103/PhysRevB.96.180413
https://doi.org/10.1103/PhysRevB.96.180413
https://doi.org/10.1073/pnas.1821969116
https://doi.org/10.1073/pnas.1821969116
https://doi.org/10.1073/pnas.1821969116
https://doi.org/10.1073/pnas.1821969116
https://doi.org/10.1103/PhysRevB.76.060407
https://doi.org/10.1103/PhysRevB.76.060407
https://doi.org/10.1103/PhysRevB.76.060407
https://doi.org/10.1103/PhysRevB.76.060407
https://doi.org/10.1103/PhysRevB.81.174429
https://doi.org/10.1103/PhysRevB.81.174429
https://doi.org/10.1103/PhysRevB.81.174429
https://doi.org/10.1103/PhysRevB.81.174429
https://doi.org/10.1016/0550-3213(88)90073-9
https://doi.org/10.1016/0550-3213(88)90073-9
https://doi.org/10.1016/0550-3213(88)90073-9
https://doi.org/10.1016/0550-3213(88)90073-9
https://doi.org/10.1016/j.cpc.2018.08.014
https://doi.org/10.1016/j.cpc.2018.08.014
https://doi.org/10.1016/j.cpc.2018.08.014
https://doi.org/10.1016/j.cpc.2018.08.014
https://github.com/issp-center-dev/mVMC
https://doi.org/10.1103/PhysRevB.81.064432
https://doi.org/10.1103/PhysRevB.81.064432
https://doi.org/10.1103/PhysRevB.81.064432
https://doi.org/10.1103/PhysRevB.81.064432
https://doi.org/10.1143/JPSJ.53.1145
https://doi.org/10.1143/JPSJ.53.1145
https://doi.org/10.1143/JPSJ.53.1145
https://doi.org/10.1143/JPSJ.53.1145
https://doi.org/10.1143/JPSJ.53.4138
https://doi.org/10.1143/JPSJ.53.4138
https://doi.org/10.1143/JPSJ.53.4138
https://doi.org/10.1143/JPSJ.53.4138
https://doi.org/10.1103/PhysRevB.80.064410
https://doi.org/10.1103/PhysRevB.80.064410
https://doi.org/10.1103/PhysRevB.80.064410
https://doi.org/10.1103/PhysRevB.80.064410
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1063/1.2746035
https://doi.org/10.1063/1.2746035
https://doi.org/10.1063/1.2746035
https://doi.org/10.1063/1.2746035
https://doi.org/10.1103/PhysRevLett.81.3527
https://doi.org/10.1103/PhysRevLett.81.3527
https://doi.org/10.1103/PhysRevLett.81.3527
https://doi.org/10.1103/PhysRevLett.81.3527
https://doi.org/10.1103/PhysRevB.58.9114
https://doi.org/10.1103/PhysRevB.58.9114
https://doi.org/10.1103/PhysRevB.58.9114
https://doi.org/10.1103/PhysRevB.58.9114
https://doi.org/10.1103/PhysRevLett.83.624
https://doi.org/10.1103/PhysRevLett.83.624
https://doi.org/10.1103/PhysRevLett.83.624
https://doi.org/10.1103/PhysRevLett.83.624
https://doi.org/10.1103/PhysRevB.61.12112
https://doi.org/10.1103/PhysRevB.61.12112
https://doi.org/10.1103/PhysRevB.61.12112
https://doi.org/10.1103/PhysRevB.61.12112
https://doi.org/10.1103/PhysRevB.67.174410
https://doi.org/10.1103/PhysRevB.67.174410
https://doi.org/10.1103/PhysRevB.67.174410
https://doi.org/10.1103/PhysRevB.67.174410
https://doi.org/10.1103/PhysRevB.71.020407
https://doi.org/10.1103/PhysRevB.71.020407
https://doi.org/10.1103/PhysRevB.71.020407
https://doi.org/10.1103/PhysRevB.71.020407
https://doi.org/10.1103/PhysRevB.74.224426
https://doi.org/10.1103/PhysRevB.74.224426
https://doi.org/10.1103/PhysRevB.74.224426
https://doi.org/10.1103/PhysRevB.74.224426
https://doi.org/10.1103/PhysRevLett.90.087204
https://doi.org/10.1103/PhysRevLett.90.087204
https://doi.org/10.1103/PhysRevLett.90.087204
https://doi.org/10.1103/PhysRevLett.90.087204
https://doi.org/10.1103/PhysRevLett.63.2144
https://doi.org/10.1103/PhysRevLett.63.2144
https://doi.org/10.1103/PhysRevLett.63.2144
https://doi.org/10.1103/PhysRevLett.63.2144
https://doi.org/10.1103/PhysRevLett.68.2960
https://doi.org/10.1103/PhysRevLett.68.2960
https://doi.org/10.1103/PhysRevLett.68.2960
https://doi.org/10.1103/PhysRevLett.68.2960
https://doi.org/10.1103/PhysRevLett.70.73
https://doi.org/10.1103/PhysRevLett.70.73
https://doi.org/10.1103/PhysRevLett.70.73
https://doi.org/10.1103/PhysRevLett.70.73
https://doi.org/10.7566/JPSJ.86.054709
https://doi.org/10.7566/JPSJ.86.054709
https://doi.org/10.7566/JPSJ.86.054709
https://doi.org/10.7566/JPSJ.86.054709
https://doi.org/10.1103/PhysRev.86.694
https://doi.org/10.1103/PhysRev.86.694
https://doi.org/10.1103/PhysRev.86.694
https://doi.org/10.1103/PhysRev.86.694
https://doi.org/10.1103/PhysRevLett.69.2590
https://doi.org/10.1103/PhysRevLett.69.2590
https://doi.org/10.1103/PhysRevLett.69.2590
https://doi.org/10.1103/PhysRevLett.69.2590
https://doi.org/10.1007/BF02188685
https://doi.org/10.1007/BF02188685
https://doi.org/10.1007/BF02188685
https://doi.org/10.1007/BF02188685
https://doi.org/10.1103/PhysRevB.97.201109
https://doi.org/10.1103/PhysRevB.97.201109
https://doi.org/10.1103/PhysRevB.97.201109
https://doi.org/10.1103/PhysRevB.97.201109
https://doi.org/10.1103/PhysRevB.98.094402
https://doi.org/10.1103/PhysRevB.98.094402
https://doi.org/10.1103/PhysRevB.98.094402
https://doi.org/10.1103/PhysRevB.98.094402
https://doi.org/10.1143/JPSJ.62.289
https://doi.org/10.1143/JPSJ.62.289
https://doi.org/10.1143/JPSJ.62.289
https://doi.org/10.1143/JPSJ.62.289
https://doi.org/10.1103/PhysRevB.60.12924
https://doi.org/10.1103/PhysRevB.60.12924
https://doi.org/10.1103/PhysRevB.60.12924
https://doi.org/10.1103/PhysRevB.60.12924
https://doi.org/10.7566/JPSJ.82.074719
https://doi.org/10.7566/JPSJ.82.074719
https://doi.org/10.7566/JPSJ.82.074719
https://doi.org/10.7566/JPSJ.82.074719
https://doi.org/10.1038/srep31737
https://doi.org/10.1038/srep31737
https://doi.org/10.1038/srep31737
https://doi.org/10.1038/srep31737
https://doi.org/10.1103/PhysRevB.84.184424
https://doi.org/10.1103/PhysRevB.84.184424
https://doi.org/10.1103/PhysRevB.84.184424
https://doi.org/10.1103/PhysRevB.84.184424
http://arxiv.org/abs/arXiv:1506.04752
https://doi.org/10.1103/PhysRevB.97.104411
https://doi.org/10.1103/PhysRevB.97.104411
https://doi.org/10.1103/PhysRevB.97.104411
https://doi.org/10.1103/PhysRevB.97.104411
https://doi.org/10.1088/0305-4470/35/48/315
https://doi.org/10.1088/0305-4470/35/48/315
https://doi.org/10.1088/0305-4470/35/48/315
https://doi.org/10.1088/0305-4470/35/48/315
http://arxiv.org/abs/arXiv:physics/9708015

