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Reversible tuning of omnidirectional band gaps in two-dimensional magnonic
crystals by magnetic field and in-plane squeezing
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By means of the plane-wave method, we study nonuniform, i.e., mode- and k-dependent, effects in the spin-
wave spectrum of a two-dimensional bicomponent magnonic crystal. We use the crystal based on a hexagonal
lattice squeezed in the direction of the external magnetic field wherein the squeezing applies to the lattice and
the shape of inclusions. The squeezing changes both the demagnetizing field and the spatial confinement of
the excitation, which may lead to the occurrence of an omnidirectional magnonic band gap. In particular, we
study the role played by propagational effects, which allows us to explain the k-dependent softening of modes.
The effects we found enabled us not only to design the width and position of magnonic band gaps, but also to
plan their response to a change in the external magnetic field magnitude. This allows the reversible tuning of
magnonic band gaps, and it shows that the studied structures are promising candidates for designing magnonic
devices that are tunable during operation.
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I. INTRODUCTION

Magnonics is an important branch of research at present
[1–4]. The utilization of spin waves as information carriers
is tempting but also challenging from different viewpoints,
including basic research, application, and technology. In terms
of applications, one of the important features of magnonic
systems is the existence of the forbidden frequency range in
the spin-wave spectrum, the so-called magnonic gap, which
could be utilized as a stop band in spin-wave filters or trans-
ducers. From an application point of view, the crucial feature
of the gap is its tunability. The occurrence of a band gap
in the energy spectrum is the fundamental characteristic of
periodic structures, including magnonic crystals (MCs) [5,6].
There are many opportunities to design magnonic band gaps
in MCs by choosing their magnetic materials as well as their
structural parameters, such as dimensionality, periodic lattice
type, or the shape of the inclusions [7–19]. However, the
omnidirectional (complete) magnonic band gap opening in
thin-film MCs requires rather high magnetic fields in the out-
of-plane magnetized MCs [20] or very large magnetization
contrasts (Fe/Ni composites) [13]. In in-plane magnetized
permalloy or cobalt/permalloy MCs, only partial (directional)
magnonic band gaps have been reported so far [9,21–27].

The adjustment of material and structural parameters al-
lows us to tailor the spin-wave spectrum, however the proper-
ties of the MC are fixed and a challenging task is to provide
a tuning in operando. There are few approaches that address
this problem. One of these approaches is called electrically
controlled dynamic MCs [28]. The idea is to use the electric
current flowing through an array of parallel wires to create a
periodic external magnetic field in the vicinity of the uniform
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magnetic thin film. The field causes spin waves to propagate in
a periodic potential, the amplitude of which is tunable by the
current. The width of the reported band gaps is in the range
of a few tens of MHz, and the possibility of miniaturization
is very limited. An all-magnetic method for the operational
design of magnonic band gaps is to involve reprogrammable
MCs in the form of a periodic array of magnetic stripes
[29,30]. The system can be reversibly switched between a
ferro- and an antiferromagnetic configuration of the magne-
tization of particular stripes. The reported band gaps are up to
∼1 GHz wide, but the switching of these gaps is related to the
magnetization reversal caused by the change in the external
field direction. This results in hysteresis, large magnetic fields,
and rather long times for the magnetization switching. Direc-
tional band gaps that are tunable by an external magnetic field
without magnetization reversal were also reported in Fe/YIG
composites, however the change in the gap width by 30%
requires a magnetic field up to 1.0 T [31].

In our recent paper [32], we demonstrated another way
to open the complete magnonic band gaps by squeezing the
bicomponent MC structure. We found that in such structures,
the gap width can change significantly as a result of the small
change in the external magnetic field magnitude (50–200 mT)
without magnetization reversal. The mechanism involved is
nonuniform mode softening.

In different magnetic systems at low magnetic field, a
change in the field magnitude leads to a nonuniform fre-
quency shift of the spin-wave spectrum. This has already
been observed in one-dimensional MCs [29,30,33,34], in two-
dimensional (2D) lattices of interacting magnetic dots [35],
and in antidot lattices [36]. The nonuniformity appears in
two different effects. The first effect is a mode-dependent fre-
quency shift, and the second is a k-dependent shift within the
single band. The latter indicates a dependence on the direction
and length of the wave vector k. Such propagation effects can
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lead to several interesting features in planar magnetic systems,
e.g., the virtual separation of a thin film into subsystems
and the collapse of a band [37–39], the mirage effect [40],
spin-wave lensing, and flow control [41–45].

The aim of the current work is to explain the influence of
squeezing and an external field change on mode softening in
the context of propagation effects. We study the mechanisms
of the k-dependent frequency shift in the spin-wave spectrum,
and we show these mechanisms to be useful for the design
and tuning of omnidirectional magnonic band gaps. We show
that taking into account Gilbert damping does not change our
main findings regarding both the existence of band gaps and
the possibility of their tuning in operando.

The structure is based on a squeezed hexagonal lattice
wherein the squeezing affects both the lattice and the shape
of the inclusions. We use the plane-wave method (PWM) to
calculate spin-wave spectra. In Sec. II we describe the basis of
this approach and the model of the considered MCs. In Sec. III
we examine the effect of squeezing on the spin-wave spec-
trum. We analyze the influence of the demagnetizing field, the
spatial confinement of the spin-wave profile, and its concen-
tration in cobalt/permalloy. In Sec. IV we study propagational
effects in the spin-wave spectrum. In particular, we explain the
k-dependent softening of modes. Finally, in Sec. V we provide
some examples of 2D MCs that can be fabricated using current
technology – the examples, for which the existence and the
behavior of omnidirectional band gaps are tailored by the
squeezing of the structure. Here, we demonstrate the possibil-
ity of reversibly tuning magnonic band gaps by changing the
external field magnitude, keeping the sample saturated. The
gap width changes gradually at the rate designed by the MC
structure. Section VI contains the conclusions of the paper.

II. THE MODEL

In this work, we study the spin-wave propagation in 2D
MCs consisting of cylindrical cobalt inclusions (also called
rods or dots) embedded in a thin-film permalloy matrix
[22,46]. The film thickness is 30 nm, and the material pa-
rameters used in this work are as follows: (i) a saturation
magnetization 1.39 × 106 A/m for Co and 0.81 × 106 A/m
for Py, (ii) an exchange stiffness constant 2.8 × 10−11 J/m in
Co and 1.1 × 10−11 J/m in Py, and (iii) the Gilbert damping
constant 0.002 for Co and 0.0063 for Py [47–49]. The dots
are arranged in sites of a 2D hexagonal lattice [Fig. 1(a)]. The
lattice constant is a = 600 nm and the dot diameter is R =
340 nm. We will refer to this structure as the base structure.
An external magnetic field H is applied in the plane of the
MC along the x direction, causing the demagnetizing field
to rise at the interfaces between Co and Py. To manipulate
this demagnetizing field, the base structure is squeezed in
the direction of the external field [Fig. 1(b)]. Although it is
conceivable to squeeze the MC in operando [50], the aim of
our work is to examine the influence of the demagnetizing
field in the static case, i.e., the squeezed MC means the MC
based on the squeezed structure (except for a short comment
in Sec. V). The squeezed structure will be described by the
ratio of the new lattice constant in the x direction to the
original one, which we will refer to as the structure ratio (s).
Squeezing affects both the lattice and the shape of the rods.
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FIG. 1. 2D MC based on the hexagonal lattice: cobalt rods (blue)
in a permalloy matrix (gray). (a) The base structure: a is the lattice
constant, R is the radius of Co rods. (b) The structure squeezed in the
x direction by the structure ratio s. (c,d) First Brillouin zone for the
base and squeezed structures, respectively. Squeezing of the structure
results in the proportional stretching of the FBZ. High-symmetry
paths are marked by blue lines.

In Figs. 1(c) and 1(d), the first Brillouin zone (FBZ) for the
base and squeezed structure is provided, respectively, with
blue lines used to mark the high-symmetry path. Please notice
that squeezing of the structure leads to the elongation of the
FBZ in the kx direction.

To describe the dynamics of the magnetization, we use the
classical continuous medium approach in which the equation
of motion is the Landau-Lifshitz-Gilbert (LLG) equation:

∂M
∂t

= γμ0M × Heff + α

MS
M × ∂M

∂t
.

Here M = M(r, t ) is the space- and time-dependent mag-
netization vector, γ is the gyromagnetic ratio, and μ0 is
the vacuum permeability. As in the case of free electrons,
we assume |γ |μ0 = 2.21 × 105 mA−1 s−1. The second term
describes the damping with the Gilbert damping parameter
α. In the effective magnetic field Heff we take into account
three components: magnetostatic field, exchange field, and
static external magnetic field H . Assuming H to be strong
enough to saturate the magnetization of the MC, we use the
linear approximation, thus M = [MS, my, mz], where MS is the
saturation magnetization and mz and my are two dynamic com-
ponents of the magnetization vector. All vectors are expressed
in the Cartesian coordinate system with the x axis oriented
along the external field, the y axis laying in the plane of the
MC, and the z axis pointing in the out-of-plane direction (see
the inset in Fig. 1).
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To solve the LLG equation we use the PWM, which is a
popular approach in magnonics that has already been eluci-
dated in several papers (see, e.g., Refs. [5,51–55]), therefore
here we recall only its main steps. After linearization of the
LLG equation, the method involves two transformations that
require ideal periodicity and allow us to consider only the
unit cell with the periodic boundary conditions. All material
parameters, such as saturation magnetization MS , exchange
stiffness constant A, exchange length λex, or damping parame-
ter α, are periodic in real space and thus are Fourier-expanded.
Bloch’s theorem applies to the dynamic functions, such as the
dynamic demagnetizing field components and the dynamic
components of the magnetization. The final set of equations
is equivalent to the following eigenvalue problem [56]:

�

[
1̂ −α̂

α̂ 1̂

][
my

mz

]
= M̂

[
my

mz

]
, (1)

with the matrices

α̂ =

⎡
⎢⎢⎣

. . . 0
α(Gii )

0
. . .

⎤
⎥⎥⎦

N×N

and

M̂ =
[

M̂yy M̂yz

M̂zy M̂zz

]
2N×2N

, (2)

N being the number of plane waves used in the Fourier and
Bloch expansion. For thin-film bicomponent MCs with the
external magnetic field applied in the plane of the film, the
elements of the matrix (2) are as follows [16,57,58]:

Mzz
i j = −Myy

i j = i
ky + Gj,y

|k + G j | S(k + G j, z)MS (Gi − G j ),

Myz
i j = (ky + Gj,y)2

|k + G j |2 [1 − C(k + G j, z)]MS (Gi − G j ) + M�
i j ,

Mzy
i j = −C(k + G j, z)MS (Gi − G j ) − M�

i j ,

where the following symbols are used:

M�
i j = Hδi j − (Gi,x − Gj,x )2

|Gi − G j |2 [1 −C(Gi − G j, z)]MS (Gi − G j )

+
∑

l

(k + G j ) · (k + Gl )MS (Gi − Gl )λ
2
ex(Gl − G j ),

S(k, z) = sinh(|k|z) exp(|k|d/2),

C(k, z) = cosh(|k|z) exp(|k|d/2).

Here, MS (G), λex(G), and α(G) are Fourier expansions of
the respective material parameters. The subscripts i, j, and
l are integer numbers from 1 to N , vectors G are reciprocal-
lattice vectors, and k is the Bloch wave vector of the SW. The
exchange length is defined as λex =

√
2A/μ0M2

S [59]. The
above formulas are valid for the excitations that are uniform
in the z direction, which is a reasonable assumption for a film
as thin as d = 30 nm, as it is in our case.

Fourier expansions of each material parameter Y
are Y (G) = (YCo − YPy) f 2J1(GR)

GR for G �= 0 and Y (0) =

(YCo − YPy) f + YPy for G = 0, where f is a filling fraction,
which for squeezed hexagonal MCs studied in this paper is
given by f = πR2

a2 sin(π/3) , and J1 is a Bessel function of the

first kind. The symbol GR = √
(GxRx )2 + (GyRy)2, with Rx

and Ry being semiaxes of the ellipse in the x and y direction,
respectively.

Providing a numerical solution of the eigenproblem (1),
one can calculate reduced frequencies (eigenvalues) � =
iω/|γ |μ0 and eigenvectors mk(G). The first provides infor-
mation about spin-wave frequency (the real part of ω) and
lifetime (the imaginary part of ω), which is approximately
equal to the full width at half-maximum of the spectral line
[60]. The second are coefficients of the Bloch expansion of
the dynamic magnetization component:

m(r) =
∑

G

mk(G) exp[i(k + G) · pr].

From this equation, one can calculate the spatial distribution
of the dynamic magnetization for a given mode and k, i.e., the
SW profile. Usually, distributions of the z and y components
obtained for the same mode are similar, so it is sufficient
to provide just one component (in-plane or out-of-plane) to
explain the character of the mode. In this work, we use N =
271 plane waves for Bloch and Fourier expansions, which is
large enough to ensure satisfactory convergence of the results.

Following Ref. [61] we introduce a concentration factor
that for rods reads

c fA = m̃A

m̃A + m̃B
. (3)

In the case of 2D MCs, the mean value of the squared
amplitude of the dynamic magnetization in the area SX is
m̃X = 1

SX

∫
SX

|m|2dS, where for rods X = A and for the matrix
X = B. The quantity given by Eq. (3) allows us to determine
the dominant excitation distribution in different materials of
any particular spin-wave mode, e.g., the in-rods concentration
factor above 0.5 means that the concentration of dynamic
magnetization is higher in Co rods than in the Py matrix.

III. CONSEQUENCES OF THE SQUEEZING

In Fig. 2 we show representative spin-wave spectra calcu-
lated over the FBZ along the high-symmetry path [Figs. 1(c)
and 1(d); please notice that the squeezing of the structure
leads to the elongation of the FBZ in the kx direction]. Since
we are interested in the widest band gaps that open at the
bottom part of the spectrum, only the ten lowest modes are
shown. Dispersion curves are colored to depict the concen-
tration factor in the rods/matrix [see Eq. (3)] of each mode
versus the wave vector [the color scale is given in the inset
in Fig. 2(a)]. Complete magnonic band gaps are marked by
dotted horizontal lines drawn for their bounding frequencies.
The spectra are arranged in two rows for two magnitudes of
the external field: 50 mT (upper row) and 100 mT (lower row).
Each row contains spectra for three structure ratios: 1.0 (base
structure), 0.6, and 0.4. There is a density of states (DOS)
plotted to the left of each spectrum, calculated over the entire
FBZ as a direct summation of states in each small range of
frequencies (all plots are in the same scale).
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FIG. 2. Ten lowest modes in spin-wave spectra of Co/Py 2D MCs along the high-symmetry path in the FBZ [Figs. 1(c) and 1(d)] for two
external magnetic field magnitudes: (a)–(c) 50 mT and (d)–(f) 100 mT, and for three squeezes: (a,d) the base structure (the structure ratio
s = 1), (b,e) s = 0.6, and (c,f) s = 0.4. Line colors depict the concentration factor calculated from Eq. (3) according to the color scale shown
in the inset of (a). Dotted horizontal lines represent the upper and lower band edges of complete band gaps. All graphs are accompanied by the
density of states calculated over the whole FBZ and plotted to the left—all on the same scale.

For the base structure at 50 mT [Fig. 2(a)], the bunch of
ten lowest modes fits in the range between 6 and 9 GHz.
The concentration factor slightly depends on the wave vector.
The spin-wave spectrum exhibits a very narrow band gap of
width 22 MHz just below 8 GHz. The gap occurs between the
sixth and seventh mode (we will refer to it as the sixth gap,
because it appears above the sixth mode). For the squeezed
structure [Fig. 2(b)] this gap does not occur, but two other
band gaps exist instead: the 961-MHz-wide second gap, and
the fifth gap, which is as narrow as 53 MHz. The spectrum,
except for the two lowest-frequency modes, is shifted up,
and now the top frequency is ∼10 GHz. The two lowest
modes behave completely differently: their frequency range
widens and shifts down. Additionally, there is a change in
the concentration factor that is notably visible for these two
modes (for the lowest mode in the FBZ center, c fA changes
from 0.53 to 0.73) and the variation of the concentration factor
with the wave vector increases. For a more squeezed structure
[s = 0.4, Fig. 2(c)], the concentration factor is much more
diverse, which results in a k-dependent shift of frequencies
and finally in the closing of the fifth gap. The in-rod concen-
tration of the two lowest modes continues to grow, however
only the lowest one moves down in the spectrum while the
second mode shifts up. As a consequence, the second gap
narrows down to 339 MHz, but the first gap appears around
6 GHz and its width is 273 MHz. The rest of the spectrum
again is shifted up. The similar behavior of the spin-wave

spectrum represents an external field of 100 mT [compare
Figs. 2(d)–2(f)].

Calculation of the DOS gives the same range of forbid-
den frequencies as the spectra over the high-symmetry path
(Fig. 2). Additionally, for isolated bands it reveals some
information about group velocity—a higher DOS means a
flattening of the frequency branch and a lower group velocity.
An interesting feature is that some of the DOS maxima are
located inside the frequency band instead of its border. The
different behavior of the two lowest modes upon squeezing is
clearly reflected in their DOS.

In our previous paper devoted to squeezed 2D MCs, we
noticed the influence of the growing demagnetizing field upon
the squeezing of the structure [32]. Due to the higher satu-
ration magnetization of Co, the demagnetizing field in rods
is negative while in the matrix it is positive. The squeezing
of the structure along the external field direction causes both
absolute values to grow, which leads to a stronger reduction in
the internal field (defined as the sum of the external magnetic
field and the demagnetizing field [62]) in rods, and it makes
spin waves easier to excite there. Thus, the intensification of
the demagnetizing field influences rod-concentrated modes
in two ways: by a direct lowering of the frequency due to
the reduction in the internal field, and by the growth of the
concentration factor, which enhances the first effect. Finally,
for s = 0.6 we can distinguish two modes separated from the
rest of the spectrum, causing an almost 1-GHz-wide gap to
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FIG. 3. Spin-wave profiles of three modes with the lowest frequency at the FBZ center for the structure ratio (a) s = 0.6 and (b) s = 0.4 at
the external field 50 mT calculated at three high-symmetry points in FBZ: M ′ (left column), � (central column), and K (right column). Profiles
in the same row correspond to each other and they are not always ordered according to their frequency in the spectrum (see mode number n).
Ellipses mark Co rod borders. Colors represent argument (phase), and their intensity indicates the modulus of the dynamic magnetization, as
is shown in the inset.

open [Fig. 2(b)]. Both modes are highly concentrated in Co
rods. For stronger squeezing, the lowest mode continues to
soften while the second mode stops softening and shifts up
[Fig. 2(c)]. In Ref. [32] we explain this behavior by examining
the spin-wave profiles for the modes in question: the fre-
quency of higher-order modes, which have more nodal lines in
their profiles, shifts up while the structure is squeezed due to
the quantization in a smaller area (an effect similar to the wave
confined in the potential well). Thus, the final frequency shift
is the result of the competition between two opposite effects,
namely “softening” of cobalt rods and growing of the spatial
confinement. These findings helped us to formulate a rough
explanation of the mode-dependent shift of frequencies in the
spin-wave spectrum visible in Fig. 2.

We will now explore the problem in greater detail. In
Fig. 3 we plot spin-wave profiles for two squeezed structures:
s = 0.6 [panel (a)] and s = 0.4 [panel (b)]. In both panels,
there are three columns corresponding to three high-symmetry
points in the FBZ [see Fig. 1(c)]. The left column is for point
M ′, i.e., the FBZ border for the propagation in the y direction
(bottom-up in the pictures), the central column is for the FBZ
center (�, k = 0), and the right column is for point K lying

at the FBZ border for propagation in the x direction—the
direction of the external field H (left-right in the picture). The
profiles of the same mode are organized in rows. The central-
column profiles are for modes with successive frequencies in
the FBZ center (n = 1, 2, 3). Due to the mode crossing at
points M ′ and K , the mode order can be different, as in the
case of Fig. 3(a). For s = 0.4, the modes are well separated
and their order does not change.

For both structure ratios, two lowest modes in point � (cen-
tral column) are strongly concentrated in Co rods, and their
profiles are similar. The lowest one is a fundamental mode—a
counterpart of the uniform excitation having magnetization
precessing all in phase (which is not necessarily the lowest
mode in the spectrum) [63–65]. The second mode exhibits two
nodal lines and a phase change 2π between neighboring rows
of Co in the x direction (going from left to right crosses nodal
lines), i.e., the direction of the squeezing. However, within
a single rod the phase changes by π , leading to one nodal
line (while there are two in the matrix). This supports our
previous conclusion concerning the mode-dependent shift of
the frequency upon squeezing: this phase change makes the
frequency more sensitive to spatial confinement, and thus it
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forces it to increase for stronger squeezing. The third mode
(in �) for s = 0.6 [n = 3 in Fig. 3(a)] can be treated as a
next-order mode inside rods. The profile exhibits one full
period of oscillation between adjacent lines of rods in the
x direction: the phase changes by 2π with two nodal lines.
This is similar to the profile of the mode n = 2, but now
antinodal lines are shifted close to the position of the nodal
lines for n = 2, and two nodal lines occur resulting in phase
changes by 2π inside a single rod. Thus, the mode is more
sensitive to the spatial in-rod confinement, which pushes up its
frequency more than for n = 1 or 2. Further squeezing shifts
this mode in the spectrum more than other modes, causing
mode reordering, and for s = 0.4 another mode is the third
one in � [n = 3, Fig. 3(b)]. This mode is concentrated mostly
in the matrix. Its profile has one nodal line inside rods, but
in the y direction (and another one in the matrix in the x
direction). So there is a full 2π phase change every two rows
of rods in both directions.

IV. PROPAGATIONAL EFFECTS

First, let us introduce some abbreviations: RD denotes the
row of Co dots (rods), while ND denotes neighboring Co
dots; both can be counted in the x, y, or o (oblique, ±60◦)
direction. For instance, RDy means a row of rods along the y
direction (a vertical row in Fig. 3), while NDo means two rods
neighboring in an oblique direction.

In the case of propagating modes (columns M ′ and K in
Fig. 3), an additional phase change appears due to the nonzero
wave vector. This change depends on the direction and length
of the wave vector and the interaction with the phase distri-
bution for k = 0, and it has a big impact on the spin-wave
frequency. Both of the lowest modes (n = 1) presented in
Figs. 3(a) and 3(b) are all-in-phase in the FBZ center. The
point M ′ stands for the propagation in the y direction with the
wave vector at the FBZ border, i.e., in the middle between two
neighboring sites of the reciprocal lattice. So, there should be
an additional π phase change between two successive RDx’s.
Indeed, inside rods from neighboring RDx’s there is a phase
change by π , but due to the shift in the x direction by half
of the lattice constant the opposite phases are shifted also in
the x direction. (Because the mode is strongly concentrated
in rods, the profile in the matrix is less important.) The final
effect is that the profile consists of all-in-phase oscillations
along RDy’s with alternating phase in the x direction (even
if the propagation is in the y direction). The alternation of
the phase causes the frequency to increase, and this effect
depends on the squeezing (spatial confinement): the increase
in the frequency between points � and M ′ for s = 0.6 is
∼1 GHz while for s = 0.4 it is around 3 GHz [Figs. 2(b) and
2(c)]. At point K , one reaches the FBZ border for the wave
propagation in the x direction. In the reciprocal space, this
point is located at a distance of 2/3 between two neighboring
sites. Thus the additional phase change due to the nonzero
wave vector is 2π every three RDy’s. Combining this with
the fundamental mode for s = 0.6 results in a continuous
change in the phase seen in the bottom-right panel of Fig. 3(a).
The phase is changing both in the rods and the matrix,
albeit more rapidly in the rods. This causes the frequency to
increase but to a lesser extent than at point M ′ [Fig. 2(b)].

For a more squeezed structure (s = 0.4), the phase inside
the rods changes little, therefore a rapid change in the phase
appears between neighboring RDy’s [the bottom-right panel
in Fig. 3(b)] and the frequency increases much more than in
the previous case [Fig. 2(c)].

The second mode at point � consists of excitations strongly
concentrated inside the rods and in close vicinity for both
squeezed structures [n = 2, Figs. 3(a) and 3(b)]. In each rod
there is a nodal line in the middle in the x direction (the x
direction crosses the nodal line). Since all rods have the same
phase on the left and the opposite phase on the right, there is
an extra nodal line in the matrix separating any pair of NDo’s.
At point M ′, an additional phase change by π (resulting
from the propagation) flips excitations in neighboring RDx’s.
Again, due to the lateral shift of neighboring RDx’s, the
flipped phase is shifted in both Cartesian directions. There-
fore, the phase does not change between neighboring RDy’s
(only in the middle of the RDy), and the nodal line between
NDo’s is removed. Fewer nodal lines in the matrix result in the
lowering of the frequency at point M ′ [Figs. 2(b) and 2(c)]. In
combination with the rise of the frequency of the first mode,
this results in a mode order change for s = 0.6. (For s = 0.4,
the separation of these modes is large enough to prevent a
change in their order.) The propagation in the x direction
(point K in the FBZ) brings two features: a continuous change
in the phase and the disappearance of nodal lines—the phase
changes smoothly. These two features have the opposite effect
on the frequency, which results in its slight change on the path
from � to K in the FBZ.

The third mode for s = 0.6 joins the higher part of the
spin-wave spectrum, and due to its frequency change over the
FBZ the mode ascends in the spectrum in both directions of
propagation: at M ′ it becomes the fifth mode and at K the
fourth one. The change in its profile is shown in the upper
row of Fig. 3(a). The profile for point � in the x direction
exhibits one full period of oscillation between adjacent RDy’s:
the phase changes by 2π with two nodal lines in the matrix
but also inside of any rod. Because there is the same phase
at both sides of every rod (green areas), the maxima of this
phase form lines not only in rods but also in the matrix
connecting NDy’s. At point M ′, the additional phase change
by π in the y direction causes a change in the phase around the
rods from neighboring RDx’s. As a result, there are no more
antinodal lines connecting NDo’s—the additional nodal line
appears in the matrix, which causes the frequency to increase.
At point K , similarly to the second mode, nodal lines are
removed and the phase changes smoothly. However, the phase
change is more rapid, especially inside rods, which pushes
the frequency up. The third mode for s = 0.4 is different
[Fig. 3(b)], which we explain in Sec. III, but again, at point
M ′ an additional nodal line appears in the matrix shifting the
frequency up [Fig. 2(c)]. At point K the nodal line in the
matrix is retained with an additional phase change in-between
neighboring RDx’s, so the frequency increases.

Also, the in-rod concentration is nonuniform and
anisotropic, i.e., it depends on both the length and the direc-
tion of the wave vector. This is related to the in-plane structure
of the MC, so for higher squeezing it should be stronger,
resulting in a much more diverse concentration factor. Of
course, the final result depends on the mode profile: any
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additional nodal line in the rods makes the excitation of the
spin wave more difficult and pushes the profile out. The same
applies to the matrix.

V. OMNIDIRECTIONAL BAND-GAP TAILORING

In Fig. 4 we illustrate the influence of squeezing on com-
plete magnonic band gaps for three magnitudes of the external
magnetic field (50, 75, and 100 mT). Only the two lowest band
gaps are presented because in the studied range of an external
field other band gaps occur occasionally and their width is
restricted to few tens of MHz. Figure 4(a) gives the overall
view of the evolution of band gaps with their position and
width. Additionally, in Figs. 4(b)–4(d) the dependence of the
gap width on the squeezing is plotted for both band gaps and
all three external field magnitudes (scales are the same in all
three graphs). The influence of Gilbert damping is shown as
red bars depicting the maximal blurring of band gaps.

For very strong squeezing (s < 0.25) there are no band
gaps at all. Above this value for all three external field
magnitudes, the first gap occurs and its width increases with
increasing s up to s = 0.34, where the maximum of the width
is reached. The maximum of the gap width depends on the
external field—the highest one is for 50 mT and the lowest is
for 100 mT. The gap disappears for s > 0.44 independently
of the external field magnitude, thus at the low external field
(up to ∼200 mT) the range of s for which the first gap
exists does not depend on the field magnitude. For weaker
squeezing (s > 0.35) the second gap appears. The structure
ratio range of its existence clearly depends on the external
field, albeit the maximum of its width stands for s = 0.6 at
all fields. At 100 mT the gap occurs even for a structure that is
stretched instead of squeezed (s = 1.17) while at lower fields
it disappears for s > 0.82. On the other hand, at low fields
there is a range of s for which both band gaps coexist.

These properties allow us to manipulate the pass-bands
(bands) and stop-bands (band gaps) of the eventual magnonic
filter by in operando squeezing or stretching of the sam-
ple. For instance, if the original structure is based on the

s = 0.4 MC at H = 50 mT, the stretching by ∼8% closes the
first gap and widens the second gap twice [see Fig. 4(d)]. One
can achieve the opposite effect with 8% squeezing—the sec-
ond gap closes and the first one widens twice. Simultaneously,
the pass-band between these two band gaps is shifted in the
frequency scale [see Fig. 4(a)].

The possibility of squeezing and stretching 2D MCs is def-
initely conceivable at present. There are few types of materials
that can be utilized for this purpose, e.g., piezoelectrics [66]
and ferroelastics [67,68]. Introducing such materials (or their
composites [69]) as an element of a substrate, similarly to
so called magnon-straintronic systems [50], should lead to
“stretchable magnonics.”

The above picture of the dependence of a band gap and
its width on the squeezing of the MC gives us the possibility
to design the band-gap behavior also with the external field.
The change in the external magnetic field magnitude shifts
the spin-wave spectrum in the frequency range, and for the
high magnetic field the common scenario is that this shift is
uniform. The situation is much different in the case of low
fields, especially when the softening of modes takes place
[29,30,35]. The behavior of the spin-wave spectrum in the
low magnetic field exhibits features similar to those caused
by squeezing. We address this problem in the context of
the increasing importance of the demagnetizing field with a
decreasing external field.

In Fig. 5 the evolution of the two lowest band gaps ver-
sus the external magnetic field is shown for four squeezed
structures: s = 0.34 (maximal width of the first gap), s = 0.42
(two band gaps coexisting), s = 0.6 (maximal width of the
second gap), and s = 0.85 (no band gaps below 80 mT). In all
cases, both band gaps shift toward high frequencies quickly
while H increases, but these structures have a very different
sensitivity of the gap width to the external field magnitude.
At 50 mT the widest gap appears for s = 0.6 [Fig. 5(c)].
This is the second gap, which starts with a width 961 MHz
but gets narrow rapidly with increasing H ; at 100 mT it
reaches 397 MHz. For higher magnetic field its narrowing
slows down, and finally the gap disappears above 200 mT.
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Also for s = 0.34 [Fig. 5(a)] at 50 mT the broad gap occurs:
the first gap is 744 MHz wide. Its width reduces much more
slowly than in the previous case, and at 100 mT it becomes
555 MHz. The gap closes at 238 mT. In Fig. 5(b) we present
an example of the coexistence of both band gaps (s = 0.42)
at the same frequency. At 50 mT the first gap is as narrow
as 137 MHz but its width changes very little up to 100 mT.
Here, the gap is 126 MHz wide. It closes above 212 mT. The
behavior of the second gap is much different. At 50 mT the
gap is 461 MHz wide (3.4 times wider than the first gap) but it
shrinks rapidly at almost constant speed and closes at 87 mT.
In the last example [s = 0.85, Fig. 5(d)] at 50 mT there is no
gap, but the second gap appears for higher field. It starts at
82 mT, reaches the maximal width at 124 mT (169 MHz), and
vanishes above 224 mT. Again, the narrowing of band gaps
due to the Gilbert damping is shown as red bars.

The squeezed MCs makes it possible to manipulate the
eventual magnonic filter properties by the external field. Let
us consider, for example, a frequency equal to 7 GHz (the
horizontal dashed line in Fig. 5). For s = 0.34 at a field below
56 or above 67 mT, the frequency in question is in the band,
so it should propagate with no restrictions, while at a field
ranging from 56 to 67 mT the frequency fits the band gap
and should be strongly suppressed [Fig. 5(a)]. For s = 0.42
this frequency is allowed in the field range 57–66 mT and
suppressed in ranges 50–57 and 66–70 mT [Fig. 5(b)]. So, the
particular squeezing of the structure allows us to designing
the response of the spin-wave spectrum to the external field
change.

Gilbert damping has almost no effect on the calculated real
parts of the frequencies, but it introduces nonzero imaginary
parts, i.e., it causes the broadening of spectral lines. This
leads to the blurring of band gaps, which depends on several
parameters, such as concentration factor and frequency. In
Figs. 4 and 5 we show a maximal uncertainty of band gaps

caused by the assumed Gilbert damping. Even for the worst
possible scenario, all gaps still exist, although in the narrower
range of external field values. This result influences tight band
gaps [see, e.g., Figs. 5(b) and 5(d)], while broad band gaps
suffer just a little [Figs. 5(a) and 5(c)], thus the effect of
Gilbert damping does not cancel our findings.

All of the examples presented above are 2D MCs based
on a squeezed hexagonal lattice and containing Co elliptical
dots immersed in the Py matrix. The usage of the squeezed
structure makes it possible to tailor omnidirectional band gaps
and their behavior via a demagnetizing field design. Then the
external magnetic field can be applied for the reversible con-
trol of the band gaps. This makes squeezed MCs a promising
candidate for tunable spin-wave filters and transducer design.
In fact, all of the considered structures can be fabricated using
the current technology. Also, band gaps can be determined
using standard experimental techniques such as Brillouin light
scattering or transmission measurements with vector network
analyzer-ferromagnetic resonance (VNA-FMR) [1].

VI. CONCLUSIONS

In the paper, we have used the PWM to study theoretically
2D MCs consisting of cobalt rods embedded in the thin-film
permalloy matrix and based on the squeezed hexagonal lattice.
As demonstrated by our results, omnidirectional band gaps in
the spin-wave spectrum can open as a result of both squeezing
of the structure and changing of the in-plane external magnetic
field magnitude. In both cases, the crucial role is played
by the demagnetizing field and the distribution of spin-wave
amplitude.

The squeezing along the direction of the external field has
a great impact on the magnitude of the demagnetizing field.
The negative demagnetizing field in cobalt is stronger if MC
is based on a more squeezed structure along the magnetic

214410-8



REVERSIBLE TUNING OF OMNIDIRECTIONAL BAND … PHYSICAL REVIEW B 100, 214410 (2019)

field direction. This leads to the lowering of the effective field
and, as a consequence, to the increasing of the spin-wave
concentration in rods. Also, the spatial confinement of the
excitation depends on squeezing. The confinement influences
spin-wave frequencies with regard to the mode profile, which
causes the effect of squeezing to be mode-dependent. For
propagating spin waves, the profile changes with the direction
and the length of the wave vector, which makes the effect
k-dependent and finally changes the bandwidth. This leads to
broadening or shrinking of the band in accordance with the
mode profile in the FBZ center. At the low external field, the
demagnetizing field gains importance so these effects become
stronger. The mode- and k-dependent softening of spin waves
may lead to the reversible opening and closing of different
magnonic band gaps without magnetization reversal.

These features make squeezed 2D MCs useful for tailoring
the spin-wave spectrum in the context of omnidirectional
band-gap existence and the behavior of band gaps with the
external field change. As an example, we have provided four
cases in which one to two band gaps can be opened and
closed by a change of the external field: a single wide gap
or two coexisting band gaps that close with different speed
while an external field grows, or one gap that occurs for

intermediate fields and disappears if the field is too low or
too high. Taking into account Gilbert damping leads to the
broadening of bands and thus to a narrowing of band gaps,
however our main findings are still valid, even if they are for
a narrower range of an external magnetic field. On the other
hand, our main results should be independent of the choice of
any particular materials as long as the magnetization contrast
is ensured to provide a negative demagnetizing field inside
dots. All proposed structures should be possible to fabricate
with state-of-the-art technology, which makes squeezed 2D
MCs considerable candidates for designing tunable magnonic
devices.
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