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Discrete time crystals in many-body quantum chaos
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Discrete time crystals (DTCs) are phases of matter characterized by the presence of an observable evolving
with nT periodicity under a T -periodic Hamiltonian, where n > 1 is an integer insensitive to small parameter
variations. In particular, DTCs with n = 2 have been extensively studied in periodically quenched and kicked
spin systems in recent years. In this paper, we study the emergence of DTCs in a many-body system whose
semiclassical mean-field dynamics is nonintegrable, using a rather simple model depicting a harmonically driven
spin chain. We advocate to first employ a semiclassical approximation to arrive at a mean-field Hamiltonian
and then identify the parameter regime at which DTCs exist, with standard tools borrowed from studies of
classical chaos. Specifically, we seek symmetric-breaking solutions by examining the stable islands on the
Poincaré surface of section of the mean-field Hamiltonian. We then turn to the actual many-body quantum
system, evaluate the stroboscopic dynamics of the total magnetization in the full quantum limit, and verify the
existence of DTCs. Our effective and straightforward approach indicates that in general DTCs are one natural
aspect of many-body quantum chaos with mixed classical phase space structure. Our approach can also be
applied to general time-periodic systems, which is thus promising for finding DTCs with n > 2 and opening
possibilities for exploring DTCs properties beyond their time-translational breaking features.
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I. INTRODUCTION

Spontaneous symmetry breaking is a well-known concept
in physics which underlies the observation of various phe-
nomena such as ferromagnetism, superconductivity, and the
formation of solid crystal structures. Except for the time-
translational symmetry, the possibility for a ground state of a
certain system to spontaneously break any known symmetries
in this universe has been well studied for years. In 2012,
Wilczek put forward a proposal to realize a system exhibiting
time-translational symmetry breaking (TTSB), termed “a time
crystal,” in the framework of a particle in a ring threaded by
a magnetic flux [1]. By Faraday’s law, the act of switching on
the magnetic flux induces an electric field, which drives the
localized wave packet in the system to move steadily along
the ring, thus breaking the continuous time-translational sym-
metry of the Hamiltonian. Experimental proposal to observe
such a time crystal was then suggested by Ref. [2] through a
persistent rotation of trapped ions governed by a cylindrical
symmetric magnetic potential with fractional fluxes.

It was later pointed out in Ref. [3] that the moving wave
packet arising as a result of turning on the magnetic flux does
not correspond to the ground state, and that the real ground
state of the Hamiltonian is found to be time independent,
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which signifies the absence of spontaneous time translational
symmetry breaking in the system. Shortly after, a no-go
theorem was precisely defined and proved which forbids
the existence of (continuous) time crystals in the ground or
equilibrium state of a general Hamiltonian [4,5] (such a no-go
theorem can however be bypassed by the presence of long-
range interaction [6]).

In the following years, the quest for observing time crystals
has shifted towards time-periodic systems exhibiting discrete
TTSB, instead of continuous TTSB, thus avoiding the condi-
tions for which the previous no-go theorem [4,5] applies. Such
discrete time crystals (DTCs) were proposed by Ref. [7] in the
framework of cold atom setups. By bouncing ultracold atomic
clouds on an oscillating mirror under the influence of gravity
and initially preparing the system in its steady (Floquet) state,
it was shown that the induction of a small perturbation, such as
atomic losses or a measurement of particle positions [7,8], col-
lapses the system to a more stable state with higher periodicity
from the driving. The emergence of such a state is reminiscent
to the formation of Bloch states in spatial crystal structures,
which can thus be utilized to extend the theory of various
condensed-matter phenomena to the time domain, such as
the Mott-insulating phase [9], Anderson localization [9–12],
temporal-disorder induced many-body localization [13], and
interacting systems engineering [14].

DTCs have also been independently proposed in periodi-
cally driven (pseudo)spin-1/2 chain systems by other groups
[15–18], which have stimulated followup studies [19–26]
and several experimental realizations [27–31]. The original
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proposal in Ref. [15] uses an interacting spin-1/2 chain
with sufficiently large disorders [thus resulting in many-body
localization (MBL)], subjected to a global spin flip at the
end of each period. Formation of DTCs is then signified
by the period doubling in the system’s total magnetization,
which is insensitive to small variations in the system param-
eters and persists for a long time (thus suggesting a stable
time-translational symmetry broken state). In particular, while
MBL was originally thought to be an essential ingredient for
creating such DTCs, some studies have demonstrated that for-
mation of DTCs in spin systems without disorder (and thus in
the absence of MBL) is possible [21–24,28–32]. In particular,
the long-range interaction considered in Ref. [22] and the Z2

gauge symmetry of the model considered in Ref. [32] are ar-
gued to prevent thermalization altogether. As such, these mod-
els arguably represent a true clean DTC in the strictest sense,
since the periodicity of a certain observable in such models
can in principle exist for an infinitely long time. On the other
hand, in most other studies such as Refs. [21,23,24,28–31],
the lack of these additional mechanisms implies that robust
period-doubling behavior of the total magnetization is limited
by thermalization that must eventually take place. However,
these studies also suggest that such thermalization may only
occur at a time scale longer than what is typically relevant in
experiments, and hence these models may also be categorized
as a valid DTC. In this paper, we adopt this slightly weaker
definition of DTCs, i.e., the expected DTC behaviors are ob-
served at an experimentally relevant time scale, but they may
eventually thermalize and lose all their expected signatures at
a longer time.

The discovery of clean DTCs in spin systems has shed
light on the similarity with the formulation of such DTCs in
cold atoms, since disorder is not necessary in the latter. In
particular, given that DTCs in spin systems are easier to be ex-
perimentally verified, whereas studying DTCs in cold atoms
allow the natural extension of condensed-matter physics to the
time domain, such a similarity between the two frameworks is
essential for combining these two aspects together, thus allow-
ing future experiments to access other promising features of
DTCs beyond their TTSB signatures, such as the realization
of condensed-matter phenomena in the time domain [9–14]
and quantum computing applications [33]. To further establish
another similarity between the two frameworks, we explore
the formation of DTCs in spin systems under a harmonic
driving of period T , which is typically used in the cold atoms
formulation of DTCs [7].

As a second and perhaps more important motivation of this
work, we advocate to use the language of classical chaos to fa-
cilitate our search for DTCs. Indeed, for a periodically driven
one-dimensional classical system with partially regular and
partially chaotic phase space structure, chains of stable islands
are representative features of the so-called Poincaré surface of
section. These chains of stable islands naturally represent dis-
crete TTSB solutions insofar as trajectories launched from one
of the islands will exhibit periodic hopping among them, with
the hopping period equal to a multiple of that of the driving
period. Specifically, to arrive at an effective one-dimensional
mean-field Hamiltonian, we employ a semiclassical treatment
of a continuously driven spin chain by varying the many-body
quantum Hamiltonian around a perfectly ordered state. Our

mean-field approach enables us to locate parameter regimes
at which period doubling of an appropriately constructed
operator is observed. Once such period-doubling parameter
regimes are identified, we then verify if DTC signatures,
namely the robust long-lasting 2T periodicity of the total
magnetization, indeed present in the full quantum system. The
full many-body quantum dynamics simulation is carried out
by the use of time-dependent density-matrix renormalization
algorithm. In the language of classical nonlinear dynamics,
the classical period-doubing islands are often surrounded by
stochastic layers. As such, the identified DTC signatures in
the full quantum dynamics represent special regular dynamics
associated with certain initial conditions, albeit in the pres-
ence of quantum chaos that can quickly delocalize other initial
quantum states [34].

Finally, we note that while the semiclassical descriptions
of DTCs and Poincaré map have also been employed in
previous work [22], such semiclassical studies are carried out
to further explain the period-doubling signature of DTCs. By
contrast, our semiclassical studies are performed to identify
DTC phases in an otherwise complicated quantum system.
This is relevant because in general, except for kicked or
periodically quenched systems (such as the kicked Lipkin-
Meshkov-Glick model considered in Ref. [22]), it may not
always be straightforward to determine if a particular system
exhibits DTC phases, and even if it can be done, finding an
appropriate class of initial states and observables capturing
its DTC signatures may also be very challenging. While a
harmonically driven spin-chain model [see Eq. (1) below]
will be the main focus of our paper due to the physical
motivation elucidated above, our approach can also be applied
to identify possible DTC phases in other more complicated
periodically driven systems, where other interesting features
and consequences of DTCs are expected to arise.

This paper is structured as follows. In Sec. II we introduce
a harmonically driven spin-chain model and set up some no-
tations. In Sec. III A we derive its approximate single-particle
Hamiltonian in the classical limit, and plot its Poincaré surface
of section [35] to identify the location of its period-doubling
islands at several different system parameters. By appropri-
ately initializing the state based on the location of these
islands, we verify through the use of density-matrix renor-
malization algorithm that the total magnetization exhibits a
robust 2T periodicity in the full quantum regime in Sec. III B.
In Sec. IV, we conclude this paper and present some future
directions.

II. MODEL

Consider a harmonically driven spin-chain model de-
scribed by the time-dependent Hamiltonian

Ĥ (t ) = −h
N∑

i=1

σ̂ x
i cos2

(
ωt

2

)
− J

N−1∑
i=1

σ̂ z
i σ̂ z

i+1 + λV̂ (σ̂ ),

(1)

where σ̂ κ
i (κ = x, y, z) are the Pauli matrices describing spin

degree of freedom at site i, h is the strength of an external
time-periodic magnetic field along the x direction, ω is the
frequency of the drive, J is the nearest-neighbor spin-spin
interactions, and N is the number of spin sites. The last term
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V̂ (σ̂ ) = ∑N
i=1(σ y

i + σ z
i ), which is usually not considered in

previous literature, describes a possible static magnetic field
perturbation in the ŷ + ẑ direction. It allows us to further ex-
amine the stability of the observed DTC phase in the presence
of imperfection in the magnetic field direction (controlled
by λ), in addition to imperfection in the magnetic field
strength (controlled by h) which is more commonly consid-
ered in previous work. If λ = 0, Eq. (1) describes a peri-
odically driven Ising spin chain, which has been proposed
to be a candidate for exploring DTC phases [20–22,24]. In
all these previous works [20–22,24], however, a quenched or
Dirac-delta type of periodic driving is usually employed to
observe its DTC signatures. Despite its simplicity, such a dis-
continuous driving is not very natural, especially if one hopes
to utilize DTCs for some real life applications in the future.
This is what motivates us to instead employ a continuous time
dependence of the external magnetic field in our model, and in
the following we will present a recipe for identifying its DTC
phases.

For a given initial state |ψ (t0)〉, the state of system dynam-
ics |ψ (t )〉 = Û (t ; t0)|ψ (t0)〉 is dictated by the time evolution
operator from t0 to t as (take h̄ = 1)

Û (t ; t0) = T exp

[
−i

∫ t

t0

Ĥ (t ′) dt ′
]
, (2)

where T is the time-ordering operator. Since Ĥ (t ) and Ĥ (t ′)
with t �= t ′ do not generally commute with each other, a closed
form to Eq. (2) is not readily available. An exception to
this happens at special parameter values J = V̂ (σ̂ ) = 0, in
which case only Pauli matrices σ̂ x

i appear in Ĥ (t ). In this
noninteracting limit, its time evolution operator over a single
period T = 2π

ω
can be calculated by direct integration,

Û (T ; 0) = exp

⎡
⎣−i

N∑
j=1

∫ T

0
h cos2

(
ωt ′

2

)
σ̂ x

j dt ′

⎤
⎦,

= exp

⎡
⎣−

N∑
j=1

i
hT

2
σ̂ x

j

⎤
⎦. (3)

In particular, by further setting hT/2 = π
2 , two period-

doubling states can be immediately constructed as |ψ±(φ)〉 =
| ± ± · · · ±〉n, which satisfies σ n

j |ψ±〉n = ±|ψ±〉n with σ n
j =

cos φσy + sin φσz and φ is any phase factor.
We now define M̂ = 1

N

∑N
j=1 n̂ · σ̂ j as the total magnetiza-

tion in the n̂ = cos φŷ + sin φẑ direction. It is easy to verify
that 〈M̂〉, where 〈· · · 〉 is taken with respect to the time evolu-
tion of |ψ±(φ)〉, exhibits 2T periodicity in the noninteracting
case for any φ. At nonzero interaction, such 2T periodicity
will in general be lost, except possibly for a small range of
values of φ. At these φ values, the 2T periodicity of 〈M̂〉 is
insensitive to small variations in other parameter values h,
J , and λ and is persisting indefinitely in the thermodynamic
limit, thus establishing the DTC phase of our model [21,22].
At this point, our problem reduces to identifying this range of
φ values, if it exists to begin with.

The exponential increase in the size of the Hilbert space
with the number of spins makes it computationally difficult
to tackle this problem directly in the full quantum picture.

Instead, in the next section we propose to first employ a
semiclassical approximation to obtain an effective nonlinear
single-particle Hamilton equations of motion. We then exam-
ine its Poincaré surfaces of section [35], especially period-
doubling stable islands that are sufficiently large in the phase
space. Although such a semiclassical approximation is based
on several assumptions that are only expected to approximate
the actual system for a specific class of initial wave functions
and at an early time scale (which will be elucidated further
in the next section), the obtained parameter regime at which
period-doubling stable islands occur allows us to more easily
identify the presence and signatures of DTCs in the full
quantum system, which are also presented in the next section.
Moreover, the range of φ values that gives rise to a 2T -
periodic 〈M̂〉 is expected to correspond to the phase space
locations within a period-doubling island, which we found to
be located in the vicinity of φ = 0. This information further
narrows down the initial states used in the full quantum picture
to verify its DTC behaviors.

III. FORMATION OF DISCRETE TIME CRYSTALS

A. Semiclassical approach

We first note that in the ideal case of zero interaction and
imperfections, a period-doubling state |ψ±(φ)〉 defined above
can be written in the spinor basis as a tensor product,

|ψ±(φ)〉 =
N⊗

j=1

(
ψ1, j

ψ2, j

)
, (4)

where ψ1, j =
√

1±sin φ

2 and ψ2, j = ±
√

1∓sin φ

2 for all j. In the
following, we will consider a class of tensor product states
defined in Eq. (4) with general values of ψ1, j = ψ1 and ψ2, j =
ψ2, for which the Hamiltonian expectation value becomes

〈H〉 = −Nh(ψ∗
1 ψ2 + ψ∗

2 ψ1) cos2
(ωt

2

)

− 2(N − 1)J (|ψ1|4 + |ψ2|4) + λV̂ (ψ1, ψ2, ψ
∗
1 , ψ∗

2 )

(5)

up to a term independent of ψ1 and ψ2, where we have also
employed the identity 1 − 2|ψ1|2|ψ2|2 = |ψ1|4 + |ψ2|4 as a
consequence of the normalization.

In the semiclassical limit N → ∞, the system dynamics is
governed by the Hamilton function H = 〈H〉

N , which can be
recast in terms of canonical variables Q = |ψ1|2 − |ψ2|2 and
P = ξ2 − ξ1, where ξ1(ξ2) is the phase of ψ1(ψ2) as

H = −h
√

1 − Q2 cos(P) cos2

(
ωt

2

)

− J (1 + Q2) + λV̂ (Q, P). (6)

Through plotting its Poincaré surface of section (PSOS),
which is obtained by solving the Hamilton equations of mo-
tion for Q and P and recording the phase-space coordinates at
each integer multiple of period T [22,35,36], we may probe
the DTC signatures of our model by first considering the
locations of the period-doubling islands. As depicted in Fig. 1,
such period doubling islands exist in the vicinity of (P, Q) =
(±π/2, 0), even in the presence of small deviation ε for which
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FIG. 1. PSOS governed by Eq. (6) at different imperfection
parameters, i.e., ε and λ (a)–(c), and interaction strength J (d)–(f).
Green marks denote the stroboscopic evolution of a state initially
prepared in (P0, Q0 ) = (π/2, 0). System parameters are chosen as
(a) JT = 1, λT = εT = 0, (b) JT = 1, λT = εT = 0.05, (c) JT =
1, λT = εT = 0.5, (d) JT = 2, λT = εT = 0.05, (e) JT = 3, λT =
εT = 0.05, and (f) JT = 4, λT = εT = 0.05.

hT/2 = π/2 + ε and nonzero λ. It should be also highlighted
that period-doubling islands on PSOS are highly typical in
classical systems with a mixed phase-space structure and in
this sense, discrete TTSB in the classical domain is somewhat
ubiquitous.

Next, we define a “semiclassical” spinor state as

ψ =
(

ψ1

ψ2

)
,

such that the phase-space coordinate (P, Q) = (±π/2, 0) cor-
responds to the states

ψ
(y)
± = 1√

2

(
1

e±iπ/2

)
, (7)

which can be identified as eigenstates of the Pauli matrix

σy =
(

0 −i
i 0

)
.

Still within the semiclassical limit, we can then define an “ob-
servable” 〈σy〉(t ) = ψ†(t )σyψ (t ) = i(ψ∗

2 ψ1 − ψ∗
2 ψ1) to rep-

resent a quantity that resembles the total magnetization in
the y direction, the latter of which is used to probe DTC
signatures in the full quantum setting. In particular, this marks
the first difference between our model and that in previous
work [15–25,27–31] where a DTC phase is characterized by a
period-doubling of the magnetization in the z direction.

The origin of this difference can be easily understood
by comparing the locations of the period doubling islands
in the PSOS structure obtained above, i.e., Fig. 1, and that
arising from the semiclassical description of the DTC model
considered in Ref. [22], i.e., Fig. 10 of Ref. [22]. In the latter,

FIG. 2. (a)–(c) Stroboscopic time evolution of 〈σy〉 at εT =
λT = 0.05, ψ (t = 0) = ψ

(y)
+ , and different interaction strengths

(a) JT = 1, (b) JT = 3, and JT = 4 in the semiclassical setting.
(d)–(f) Power spectrum associated with panels (a)–(c) respectively.

period doubling islands are located around (P, Q) = (0,±1),
which correspond to the eigenstates of Pauli matrix σz upon
mapping these phase-space points to “semiclassical” spinor
states above. This explains why discrete TTSB in Ref. [22]
and other previous work is captured by the magnetization in
the z direction with all spins initially aligned in the z direction.
It is thus expected that the semiclassical analysis introduced
above can indeed be implemented in other more general com-
plicated periodically driven systems to identify the relevant
parameter regime, initial wave functions, and observables for
which DTC phases may be potentially observed.

In Figs. 2(a)–2(c), we present the stroboscopic evolution of
such an observable at nonzero imperfections up to 1200 peri-
ods for different interaction strengths, where ψ (t = 0) = ψ

(y)
+

and blue (red) marks show the value of 〈σy〉(t ) at even (odd)
multiples of the period. There, we find that 〈σy〉(t ) exhibits
2T periodicity at moderate interaction strengths and becomes
chaotic at stronger interaction strengths, which agrees with
the PSOS structures shown in Figs. 1(b), 1(e) and 1(f) respec-
tively. To further demonstrate its 2T periodicity, we also plot
in Figs. 2(d)–2(f) the associated power spectrum 〈σ̃y〉(�) =
1
N

∑N
n=1〈σy〉(t )ein�T , where N is the number period and

persisting 2T periodicity is signified by the existence of a
single sharp peak at � = ω

2π
.

Finally, in order to identify the possible DTC phase tran-
sition, we plot |〈σ̃y〉|2(ω/2) as the imperfection parameter
δ = ε = λ is varied in Fig. 3. We find that at moderate
interaction strengths, there exists a finite range of values for
which |〈σ̃y〉|2(ω/2) exhibits a sharp peak, thus signifying a po-
tential DTC phase. Moreover, increasing interaction strength
in general enlarges the regime in which our system exhibits a
subharmonic magnetization dynamics [see Figs. 3(a) and 3(b)
for comparison], while at the same time it also increases the
beating structure in the 〈σy〉(t ) profile, which causes an overall
reduction in the sharpness of |〈σ̃y〉|2(ω/2). As the system
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FIG. 3. Subharmonic peak [|〈σ̃y〉|2(ω/2)] as εT = λT = δ is
varied. (a) JT = 1, (b) JT = 2, (c) JT = 0, and (d) JT = 5.

enters a chaotic regime at large interaction strengths, the peak
at � = ω/2 becomes too small to resolve [Fig. 3(d)], leading
to the absence of DTC altogether. On the other hand, without
any interaction, the peak of |〈σ̃y〉|2(�) becomes extremely

sensitive to any arbitrarily small variations in δ [Fig. 3(c)],
which thus also implies the absence of DTC.

The above observation can also be understood from how
the PSOS structure behaves as a function of imperfection
parameter (δ) and interaction strength (J). That is, it is first
observed that nonzero J is necessary for the emergence of
period-doubling islands in Fig. 1, which are responsible for
the subharmonic magnetization dynamics above. As J is
fixed, increasing the imperfection parameter δ results in these
period-doubling islands moving towards each other. At large
enough δ, these period-doubling islands will then annihilate
each other, which results in the absence of the subharmonic
magnetization dynamics. As J increases, the rate at which
these period-doubling islands move towards each other de-
creases for a given increase in δ, which results in a larger
critical δ value, e.g., δc ≈ 0.2 in Fig. 3(b) as compared with
δc ≈ 0.2 in Fig. 3(a). On the other hand, increasing J also has
the side effect of shrinking the size of these period-doubling
islands, thus explaining the larger beating structure (smaller
peak at � = ω/2) in Fig. 3(b) as compared with Fig. 3(a). The
competition between these two effects explains why at very
large J , no subharmonic magnetization dynamics is observed
even at a very small δ, since in this case the period doubling
islands have become very small in size, so that a very specific
choice of initial wave function is required to observe 2T
periodicity. We expect that this discussion holds not only

FIG. 4. DMRG results for site number N = 30, M = 30, hT/2 = π/2, and t/T = 0.001. Stroboscopic time evolution of 〈σy〉 and
its corresponding power spectrum |〈σ̃y〉|2 at different parameters (a) and (d) JT = 0.0, εT = 0.0, λT = 0.0, (b) and (e) JT = 0.0, εT =
0.05, λT = 0.05, and (c) and (f) JT = 0.5, εT = 0.05, λT = 0.05. In (a)–(c), blue (red) dots represent the values of 〈σy〉 at even (odd)
multiples of the period, whereas vertical lines are to guide the eye at their respective dots.
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FIG. 5. DMRG results for site number N = 30, M = 30, hT/2 = π/2, t/T = 0.001. Power spectrum |〈σ̃y〉|2 at a fixed interaction
strength of JT = 1.0 for (a) εT = 0.05, λT = 0.05, (b) εT = 0.09, λT = 0.09, (c) εT = 0.13, λT = 0.13, (d) εT = 0.15, λT = 0.15, (e)
εT = 0.17, λT = 0.17, and (f) εT = 0.19, λT = 0.19.

for our model, but for other (potentially more complicated)
periodically driven systems, which means that moderate but
not too strong interaction is generally needed to observe
potential DTC phases.

Before ending this section, it is also worth commenting
that the results we obtained so far in this section should
not be interpreted as evidence of DTC phase in our model
yet. Unlike the semiclassical description which can be made
exact in the thermodynamic limit of a fully connected spin
chain such as that of Ref. [22], two additional assumptions
were made in our derivation of Eq. (6). That is, we first
assumed that the initial wave function comprises of all spins
aligned in the same direction due to the conditions ψ1, j = ψ1

and ψ2, j = ψ2, after which we then constructed an effective
Hamilton function from the full Hamiltonian such that all
spins remain aligned in the same direction at subsequent
times. Moreover, our semiclassical description effectively
corresponds to an all-to-all interacting system which does
not exhibit the thermalization effect [22], in contrast to our
actual quantum model which involves only nearest-neighbor
interaction and is expected to eventually thermalize. As such,
even in the thermodynamic limit, our semiclassical studies
above are only expected to approximate the full quantum
picture for a specific class of initial wave functions and at
an early time scale. However, similar to the studies of clean
DTCs in previous work [21,23,24,28–31], at sufficiently large
system sizes, it is expected that the DTC signatures observed
above survive in the full quantum picture at time scales

relevant to present experiments. To verify if this is really
the case, it is therefore necessary to further investigate our
model in the full quantum picture, which will be presented
in the next subsection. In this case, our semiclassical results
above are useful to narrow down the parameter regime, initial
wave functions, and observables for which a DTC phase
can be potentially observed, which simplifies greatly our
analysis below.

B. Full quantum approach

The semiclassical results obtained above allow us to probe
the parameter regime in which the DTC phase is expected
to emerge in the full quantum regime, which we will now
verify by calculating the stroboscopic dynamics of the total
magnetization in the y direction. To this end, we employ time-
dependent density matrix renormalization group (t-DMRG)
to numerically solve the many-body Schrödinger equation for
intermediate site number N [37–50].

Such a t-DMRG algorithm can be summarized as fol-
lows. First, we write the initial state in the matrix product
state form. Next, we perform a third-order Suzuki-Trotter
expansion [51–53] to separate the one-period time-evolution
operator into products of time-evolution operators at small
time interval t associated with terms in the Hamiltonian
acting on either even or odd lattice sites only. This in turn
allows us to write such a one-period time-evolution operator in
the matrix product operator form. Applying such an operator
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FIG. 6. DMRG results for site number N = 30, M = 30, hT/2 = π/2, t/T = 0.001, εT = 0.05, and λT = 0.05. Stroboscopic time
evolution of 〈σy〉 and its corresponding power spectrum |〈σ̃y〉|2 at different interaction strengths (a) and (b) JT = 0.1, (c) and (d) JT = 0.9, (e)
and (f) JT = 1.5, (g) and (h) JT = 2.0. In (a), (c), (e), (g), blue (red) dots represent the values of 〈σy〉 at even (odd) multiples of the period,
whereas vertical lines are to guide the eye at their respective dots.

to the initial state then amounts to the modification of the ma-
trices within the matrix product state formalism, thus creating
a new time-evolved state. The process can then be repeated
to further evolve our state by one period. In general, however,
the bond dimension of such a state (the maximum dimension
of the matrices generating such a state) increases with each
application of the one-period time-evolution operator, leading
to the increase in complexity as the state evolves at longer
times. To reduce the computational time required to execute
such an algorithm, a truncation of the bond dimension to
a maximum value of M is made. Ideally, higher accuracy
is achieved by increasing M and/or decreasing t , which
however comes at the cost of longer computational time.
It is thus necessary to appropriately choose the values of
M and t to ensure that our results are obtained with a
sufficiently good accuracy and completed within a reasonable
computational time. To this end, we first observe that M and
t have different effects on the stroboscopic dynamics of the
total magnetization in the y direction. That is, variations in
M generally affect the decay rate of the total magnetization
at early time, whereas variations in t affect its late time
decay. Based on these characteristics, we choose an optimum
value for M (t) by making sure that some variations in such
a value have insignificant effects on the initial (late) time
decay rate.

Figure 4 shows the time-evolved total magnetization in the
y direction (〈M̂y〉) at several interaction strengths and their

corresponding power spectrum, with all spins initially aligned
in the positive y direction. In particular, we observe from
Figs. 4(b) and 4(c) that finite interaction is indeed necessary
to maintain its 2T periodicity in the presence of small per-
turbations, which agrees with our semiclassical prediction.
That is, while 〈M̂y〉 shows a perfect 2T periodicity in the
noninteracting limit at exactly hT/2 = π/2, a small imperfec-
tion can already destroy this periodicity, which results in the
splitting of the central peak in its power spectrum as shown in
Fig. 4(b). By contrast, at moderate interaction strength, such
a 2T periodicity remains even in the presence of the same
imperfection [see Fig. 4(c)].

To verify the DTC phase boundary obtained previously
in the semiclassical setting through Fig. 3, we also plot
|〈σ̃y〉|2 at a fixed interaction strength of JT = 1.0 and var-
ious imperfection strengths (ε = λ = δ) in Fig. 5. While
|〈σ̃y〉|2(ω/2) observed there is generally smaller than that
observed in Fig. 3 due to finite-size effect, it shows a sim-
ilar dependence on δ as that predicted in the semiclassical
setting. In particular, |〈σ̃y〉|2 initially decays as δ increases.
At δ = 0.13, i.e., beyond the phase boundary observed in
Fig. 3(a), two additional peaks emerge in the vicinity of
� = ω/2, thus signifying the absence of DTC. As δ further
increases, |〈σ̃y〉|2(ω/2) remains almost constant at a very
small value, while the additional peaks tend to spread over all
values of �, thus removing any periodic structure in the total
magnetization.
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FIG. 7. DMRG results for the maximum order of reduced density matrix M = 30, hT/2 = π/2, JT = 1.0, t/T = 0.001, εT = 0.05,
and λT = 0.05. Stroboscopic time evolution of 〈σy〉 and its corresponding power spectrum |〈σ̃y〉|2 at different site numbers (a) and (d) N = 30,
(b) and (e) N = 50, and (c) and (f) N = 80. In (a)–(c), blue (red) dots represent the values of 〈σy〉 at even (odd) multiples of the period, whereas
vertical lines are to guide the eye at their respective dots.

Finally, we investigate the power spectrum of the total
magnetization as the interaction strength is varied. As shown
in Fig. 6, while the peak at � = ω/2 continues to exist
at larger interaction strength, it gets smaller as the latter
increases. This is consistent with the semiclassical prediction
that the system may undergo a transition from the DTC
phase to the chaotic regime at sufficiently large interaction
strength. On the other hand, while the DTC to chaotic phase
transition seems to occur around JT = 3 in the semiclassical
description, it shifts to a smaller value of around JT ≈ 1.5
in the full quantum setting as evidenced by the extremely
small peak in Figs. 6(e)–6(h). This discrepancy arises due to
the thermalization effect which is not taken into account in
the semiclassical description and becomes more significant
at larger interaction strength. Indeed, while DTC signatures
are observed at small to moderate interaction strength both in
semiclassical and full quantum settings, they have different to-
tal magnetization dynamics even in the thermodynamic limit
where the semiclassical approximation was made. In Fig. 7,
we plot the time evolution of the total magnetization as the
system size increases. In contrast to our semiclassical result in
Fig. 2(a), where the magnetization simply oscillates between
roughly 1 and −1 over a very long time, we observe that at
all system sizes considered in Fig. 7, the total magnetization
undergoes an initial decay for the first ten periods, before
it continues to oscillate between two smaller values over a
sufficiently long time.

IV. CONCLUDING REMARKS

In this paper, we propose a method for identifying the
presence of DTCs in a harmonically driven spin chain. The
parameter regime at which DTC phase emerges can be found
by invoking a mean-field (semiclassical) approximation to
turn the many-body interacting spin system into an effective
one-body nonlinear system. By solving the effective one-
body Hamilton equations of motion, the parameter regime,
initial wave functions, and observables relevant for observing
potential DTC phases can be identified from the presence and
location of the period-doubling islands in its PSOS structure,
whose robustness depends on their size. Small to moderate in-
teraction strength is required to observe such period-doubling
islands, while larger interaction strength leads to fully chaotic
structure. In the presence of general one-body perturbations,
two period-doubling islands tend to get closer to each other
and eventually merge at large enough perturbations. Still
within the mean-field regime, we further define a mean-field
magnetization operator and evolve it with time to predict the
total magnetization dynamics in the full quantum setting and
estimate the largest perturbation strength for which our DTC
phase can withstand.

In the full quantum case, we utilize t-DMRG to obtain the
time evolution of the total magnetization in the DTC regime
predicted by the semiclassical approach, and indeed observe
the expected DTC signatures for small perturbation strength.
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On the other hand, such a DTC phase seems to be destroyed by
a smaller interaction strength in the full quantum case due to
thermalization effect which is not captured by the mean-field
theory. Our results thus suggest that while a semiclassical
approximation can be employed to find a regime at which
a DTC phase exists for a general time-periodic system, the
actual DTC signatures in the full quantum limit may be
different from those predicted by the semiclassical theory due
to quantum effects. This finding should therefore also be of
interest to many-body quantum chaos community.

As a potential future direction, the idea of identifying
DTC phases in any interacting time-periodic system from its
PSOS structure in the semiclassical limit can also be applied
to finding higher-periodicity DTCs (those characterized by
observables with nT periodicity where n > 2), an aspect
necessary to realize certain condensed-matter phenomena in
the time domain [9–14]. While it is natural to expect that they
may emerge in spin-(n − 1)/2 systems due to their inherent
Zn symmetry, or in certain interacting bosonic systems [54],
the possibility of realizing such nT -periodic DTCs within the
framework of spin-1/2 systems is perhaps more surprising
and is thus an interesting topic to explore in the future. For
example, the period-quadrupling islands observed in Fig. 1(e)
may provide a good starting point along this direction, al-
though presently we are unable to observe the corresponding
period-quadrupling total magnetization in the full quantum
setting. There are two reasons behind this. First, such period-

quadrupling islands are quite small in size and hence may
not be large enough to “accommodate” a many-body quan-
tum state. Second, these islands in our model only occur at
larger interaction strength, where thermalization effect be-
comes significant. Nevertheless, these are not fundamental
obstacles. Rather, we expect that period-quadrupling DTCs
can be observed in certain variants of our simple model with
period-quadrupling islands in its semiclassical PSOS structure
at smaller interaction strength. Indeed, a very recent study [55]
has investigated this possibility, where period-quadrupling
and other higher-periodicity DTCs are observed also in the
full quantum picture due to the long-range interaction nature
of the model studied, which allows one to escape thermaliza-
tion and establish exact correspondence with the semiclassical
picture [22].
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