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Tunneling in projective quantum Monte Carlo simulations with guiding wave functions
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Quantum tunneling is a valuable resource exploited by quantum annealers to solve complex optimization
problems. Tunneling events also occur during projective quantum Monte Carlo (PQMC) simulations, and in a
class of problems characterized by a double-well energy landscape their rate was found to scale linearly with
the first energy gap, i.e., even more favorably than in physical quantum annealers, where the rate scales with the
gap squared. Here we investigate how a guiding wave function—which is essential to make many-body PQMC
simulations computationally feasible—affects the tunneling rate. The chosen test beds are a continuous-space
double-well problem, the ferromagnetic quantum Ising chain, and the recently introduced shamrock model. As
guiding wave function, we consider an approximate Boltzmann-type ansatz, the numerically exact ground state
of the double-well model, and a neural-network wave function based on a Boltzmann machine. Remarkably, for
each ansatz we find the same asymptotic linear scaling of the tunneling rate that was previously found in the
PQMC simulations performed without a guiding wave function. We also provide a semiclassical theory for the
double-well with exact guiding wave function that explains the observed linear scaling. These findings suggest
that PQMC simulations guided by an accurate ansatz represent a valuable benchmark for physical quantum
annealers and a potentially competitive quantum-inspired optimization technique.
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I. INTRODUCTION

Quantum annealers are special purpose adiabatic quantum
computers designed to solve complex optimization prob-
lems [1]. Compared to alternative classical optimization al-
gorithms, chiefly simulated annealing, they can additionally
exploit quantum tunneling to cross energy barriers and reach
lower energy solutions [2–5]. Their dominant bottlenecks are
the small energy gaps associated to avoided level crossings.
Such small gaps typically occur in disordered systems when
two well-separated competing states are connected by a tun-
neling process. This scenario frequently happens in the glassy
phases that characterize typical hard optimization problems.

Simulating the real-time dynamics of quantum annealers,
e.g., to identify classes of problems where they might outper-
form classical optimization methods, is possible only for rel-
atively small systems (say, around 30 spins). Quantum Monte
Carlo (QMC) simulations have emerged as a useful alternative
tool to simulate the quantum annealers’ behavior in configu-
rations where the sign problem does not occur [1,6–11]. This
is the case, e.g., of the devices currently commercialized by
D-wave systems (see, e.g., [1,12–15]. In particular, path-
integral Monte Carlo (PIMC) [16] and projective QMC
(PQMC) [17] algorithms have been adopted, beside other
techniques such as the stochastic series expansion algorithm
[18,19]. Tunneling events also occur during QMC simula-
tions, similarly to what happens during the quantum an-
nealers’ dynamics [20,21]. In various problems characterized

by a double-well energy landscape, the tunneling rate of finite-
temperature PIMC simulations was found to scale with the
system size, or with the height of the energy barrier, as the
square of the first energy gap [22–24]. This is the same scaling
predicted by the theory of incoherent quantum tunneling [25],
and it is also the scaling of the inverse of the annealing time
required by a coherent quantum annealer to avoid diabatic
transitions [26].

References [23,24,27] explained these results using a semi-
classical theory of instantons in PIMC simulations. In the case
of PQMC algorithms, the tunneling rate was found to scale
linearly with the gap, providing a quadratic speedup compared
to the expected behavior of a quantum annealer [28].1 Further-
more, the PQMC algorithms displayed this speedup even in
the so-called shamrock model [28], where frustrated interac-
tions cause an exponential slowdown of the finite-temperature
PIMC dynamics [29]. These findings suggest that PQMC sim-
ulations constitute a relevant benchmark for physical quantum
annealers and a competitive quantum-inspired classical opti-
mization algorithm [30–32]. In fact, they have recently been

1A linear scaling was identified also for PIMC simulations per-
formed with open boundary conditions in the inverse-temperature
direction [23,24]. However, significant deviations have later been
discussed [27]. Furthermore, the computational cost of zero-
temperature simulations based on open boundary PIMC algorithms
has not been analyzed in detail.
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employed to obtain better solutions in optimization problems
relevant for medical research, specifically, for pulse-sequence
optimization in magnetic resonance fingerprinting [33]. This
further highlights the importance of exhaustively characteriz-
ing their tunneling dynamics.

The tunneling-time studies mentioned above have con-
sidered PQMC algorithms implemented without a guid-
ing wave function (GWF). The GWF, usually a variational
ansatz that closely approximates the ground state, guides
the PQMC simulation towards the relevant regions of the
configuration space. This improves the algorithm’s accuracy
and efficiency [17]. In fact, without a sufficiently accurate
GWF, the computational cost of PQMC simulations increases
exponentially with the system size [28,34,35]. In princi-
ple, one might expect the GWF to significantly impact the
tunneling dynamics, since it alters both the sampling algo-
rithm and the probability distribution sampled at equilibrium.
In this paper, we analyze whether the GWF does indeed affect
the tunneling time in PQMC simulations, and if it does, to
what extent. As test beds, we consider a one-dimensional
continuous-space Hamiltonian describing a quantum particle
in a double well, the ferromagnetic quantum Ising chain,
and the shamrock model. Notice that, in the ferromagnetic
phase, also the Ising-type models can be described by an
effective double-well potential, with the two polarized states
with opposite magnetizations representing the two competing
potential minima. We consider different kinds of GWFs, in-
cluding a Boltzmann-type ansatz that mimics the equilibrium
distribution of a classical statistical ensemble and, for the
continuous-space model, the numerically exact representation
of the ground state. For the quantum Ising chain, we also
consider an ansatz that mimics the structure of a generative ar-
tificial neural network [36], specifically an unrestricted Boltz-
mann machine [37] or, in a different jargon, a shadow wave
function [38,39]. Remarkably, for all GWFs we consider, we
find the same linear scaling (to leading exponential order) of
the tunneling rate with the gap as previously found in PQMC
simulation performed without GWF. The choice of the GWF
only affects the prefactor. We also provide a semiclassical
theory based on the Wentzel-Kramers-Brillouin (WKB) ap-
proximation, valid for PQMC simulations of the double well
with exact GWF, that explains the observed linear scaling.

The rest of the paper is organized as follows: In Sec. II
we present the PQMC algorithm, implemented with and
without GWF, and the analysis of the tunneling time for the
continuous-space double-well model. In the same section, the
WKB semiclassical theory of the PQMC tunneling time is
reported. The algorithm and the tunneling-time analysis for
the quantum Ising chain and for the shamrock model are
presented in Sec. III. Our conclusions and the outlook are
reported in Sec. IV.

II. TUNNELING TIME IN CONTINUOUS-SPACE
DOUBLE-WELL SYSTEMS

In this section, we consider a quantum particle in one
spatial dimension, described by the following continuous-
space Hamiltonian:

Ĥ = −1

2

d2

dx2
+ V (x), (1)
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FIG. 1. Profile of the quartic double-well potential Eq. (2) (dot-
ted blue line), shifted for better comparison with the wave functions
of the ground state �0(x) and of the first excited state �1(x) (orange
and green solid lines, respectively).

with the quartic double-well potential

V (x) = x4

g
− x2. (2)

The profile of V (x) is visualized in Fig. 1, together with the
corresponding ground-state wave function �0(x) and the first
excited state �1(x). Units are chosen so that h̄/m = q = 1,
where h̄ is the reduced Planck constant, m is the particle
mass, and q = 1

2

√
V ′′(xL,R) fixes the curvature at the bottom

of the well. Here xL,R = ∓√
g/2 are the minimum points

of V (x). The dimensionless parameter g controls the height
of the barrier separating the two wells, V (0) − V (xL ) ∝ g,
and the distance between the minimum points, xR − xL ∝ √

g.
For large g, the barrier height increases relative to the wells’
separation and the energy spectrum becomes doubly degen-
erate, corresponding to the two wells being asymptotically
independent. For large but finite g, the two wells are connected
by tunneling processes. These processes lift the degeneracies,
leading to small tunneling gaps between the energy levels. An
approximate expression for the first energy gap � = E1 − E0

between the ground-state energy E0 and the first excited
level E1, valid in the large-g regime, can be determined via
the WKB semiclassical theory. One obtains [40]

� = 8

√
g

π
exp

(
−2g

3

)
. (3)

In an isolated double well, a quantum particle initially pre-
pared in one of the two states,

�L,R(x) = �0(x) ± �1(x)√
2

, (4)

which are localized in the left and right wells, respectively,
performs coherent periodic oscillations between the two states
at a rate proportional to �. As a reference, it is worth men-
tioning that, instead, a quantum particle coupled to a thermal
bath and subjected to a double-well potential would undergo
incoherent tunneling at a rate proportional to �2 [25].
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A. Diffusion Monte Carlo algorithm

We are interested in comparing the tunneling dynamics
generated by PQMC simulations to the quantum tunneling
time, and also in identifying their relation with the energy
gap �. Specifically, we consider simulations performed with
the diffusion Monte Carlo (DMC) method, which belongs to
the family of PQMC algorithms for continuous-space sys-
tems. The DMC algorithm aims at projecting out the ground
state by evolving the imaginary-time Schrödinger equation for
the time-dependent wave function �(x, t ). In one dimension,
this equation reads

∂�(x, t )

∂t
= 1

2

∂2�(x, t )

∂x2
− [V (x) − ET ]�(x, t ). (5)

Here, t is the imaginary time and ET is an energy threshold
introduced to stabilize the numerics, as explained later. Fol-
lowing the seminal work of Ref. [41], one can exploit the
analogy between Eq. (5) and a modified diffusion equation,
i.e., one including a source/sink process corresponding to the
second term on the right-hand side, to implement a stochastic
simulation. Due to the norm-nonconserving nature of this
source/sink term, the simulation has to evolve a large popu-
lation of equivalent instances of system configurations {xi}, in
jargon called walkers, subject to diffusion and to a killing and
replication process called branching. The sampling algorithm
is dictated by a short-time approximation of the Green func-
tion of Eq. (1). This is assumed to apply for a short imaginary-
time step τ . Long imaginary times t = NDMCτ can be reached
by iterating many DMC steps NDMC, each corresponding to
a time step τ . In the long imaginary-time limit, the walkers
sample configurations with a probability distribution propor-
tional to �(x, t → ∞) ∝ �0(x). Notice that �0(x) is assumed
to be a real and non-negative function. This is legitimate in
the case of stoquastic Hamiltonians, i.e., those not affected
by the negative-sign problem [42,43]. We adopt the linear
Trotter approximation for the short-time Green function. This
leads to the following sampling algorithm. After initializing,
say, Nw walkers in some configurations {xi}, at every DMC
step one applies to each walker i two processes: First, the
configuration update x′

i = xi + √
τδi, where δi is sampled

from a zero-mean, unit-variance Gaussian distribution; then,
one samples an integer number si = �wi + ri	, where wi =
exp [−τ (V (x′

i ) − ET )] is the walker weight and ri ∈ (0, 1) is
a uniform random variable, and creates si copies of the walker
to be included in the population for the next time step. The size
of the walker population can be tuned close to a desired target
value Nw by appropriately controlling ET . For this control, we
adopt the textbook recipe of Ref. [44]. Therein, the interested
readers will also find a more pedagogical description of
the DMC algorithm. The systematic bias due to the Trotter
approximation can be eliminated via zero time-step extrapo-
lation. A more subtle bias might originate also from the finite
walker population Nw [34,35,45]. Indeed, it has been shown
that in many-body systems, in order to keep this bias below
a chosen small threshold, Nw has to exponentially increase
with the system size [28]. In order to reduce or eliminate this
systematic bias and to reduce the statistical fluctuations, it is
standard practice to adopt an importance sampling approach
using a guiding wave function �G(x) [17]. Typically, �G(x) is

a parametrized variational ansatz, whose optimal parameters
are determined via energy expectation-value minimization.
Hence, one evolves the modified imaginary-time Schrödinger
equation for the product ρ(x, t ) = �(x, t )�G(x), which takes
the form of a Fokker-Planck–type equation with an additional
source/sink term. This equation reads

∂ρ

∂t
= 1

2

∂2ρ

∂x2
+ ∂

∂x
[Ṽ ′(x)ρ] − [EL(x) − ET ]ρ, (6)

where we wrote ρ for ρ(x, t ) to simplify the notation, the local
energy is

EL(x) = V (x) − 1

2�G(x)

d2�G(x)

dx2
, (7)

and we introduced the effective potential

Ṽ (x) = −ln�G(x). (8)

Adopting, again, a linear approximation for the Green func-
tion, the sampling algorithm is modified as follows: The
configuration update includes, beside the Gaussian random
term, a deterministic displacement computed as τ d

dx ln�G(x);
in the branching process, the potential V (x) is replaced by
EL(x) for the computation of the walker weight wi. In the
long imaginary-time limit, the walkers sample a probabil-
ity distribution proportional to ρ(x, t → ∞) = �0(x)�G(x).
One should notice that EL(x) is a constant function if �G(x)
is an exact eigenstate of the Hamiltonian. This completely
suppresses the fluctuations of the random walker popula-
tion, eliminating the finite-Nw bias. In fact, the algorithm’s
accuracy and efficiency are significantly improved even when
�G(x) is, albeit not exact, a reasonably good approximation
of the ground-state wave function.

B. Tunneling time in diffusion Monte Carlo simulations

Our goal is to analyze the relation between the DMC
tunneling time ξ , namely the imaginary time required by the
walkers to leak from one well to the other, and the physical
tunneling time of the real-time dynamics. More precisely, we
are interested in the scaling relation between ξ and the inverse
energy gap �−1. We measure ξ with a protocol analogous
to the one adopted in Refs. [23,24] for PIMC simulations.
All walkers are initially set at the bottom of the left well
x = xL. The DMC simulation is run until a percentage p
of the instantaneous walker population overcomes a position
threshold in the right well xth � 0. The final imaginary time
is recorded, and the process is repeated approximately 300
times to accumulate statistics. The fluctuations of the final
imaginary times turn out to be approximately normally dis-
tributed, and we take the average and its standard deviation
as the definition of ξ and of its error bar, respectively. In the
simulations reported here, the threshold is set at xth = xR/2
and the walker percentage at p = 25%. A careful analysis
shows that the asymptotic scaling of ξ is independent of this
specific choice up to a constant prefactor. Furthermore, the
chosen target walker population Nw ≈ 104 is large enough,
and the chosen time step small enough (e.g., τ = 0.007 for
1/� > 70), to eliminate any significant effect on ξ .

First, the DMC algorithm is run without a guiding wave
function (GWF). We measure the tunneling time ξ for
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FIG. 2. DMC tunneling time ξ for the quartic double-well po-
tential (2) as a function of the inverse energy gap �−1. Three
different DMC protocols are shown: The simple DMC algorithm
without a GWF (red circles), the DMC algorithm guided by a
Boltzmann ansatz (green empty squares), and the one guided by
the numerically exact representation of the ground state �0(x) (blue
empty diamonds). The dashed line represents the scaling ξ ∝ �−1.
Here and in all plots, if not visible, the error bars are smaller than the
symbol size.

different barrier heights, tuned by varying the parameter g.
In Fig. 2, ξ is plotted as a function of the inverse energy
gaps �−1, which we compute for the different g values we
consider using a standard finite-difference method. The dis-
cretization is fine enough to ensure that there is no sizable
finite-precision effect. In the large-g regime, corresponding
to large �−1, the tunneling times approach the scaling law
ξ ∝ �−1. This scaling relation has previously been identified
in Ref. [28] in PQMC simulations of Ising-type models, again
performed without a GWF. Next, we run DMC simulations
with a GWF. First, as GWF we consider the approximate
Boltzmann ansatz �G(x) = exp [−βV (x)]. The fictitious in-
verse temperature β is fixed by minimizing the variational
energy estimate. Second, we consider a numerical represen-
tation of the exact ground-state wave function, i.e., we set
�G(x) = �0(x). The ground-state wave function is obtained
via the finite-difference technique. Notice that this ansatz
represents the optimal GWF for equilibrium simulations. In
Fig. 2, the tunneling times obtained with these two GWFs are
compared with the results obtained without GWF. Remark-
ably, for large g, the same linear relation between ξ and �−1

is approached. By fitting the three data sets in the large-g
regime with the function ξ (�) = α�−b, where α and b are the
fitting parameters, we obtain the values reported in Table I. In
all three cases, the exponent b is consistent with the linear
relation corresponding to b = 1. The choice of GWF only
affects the prefactor α, though for this model the variations are
small enough to be masked by statistical uncertainties. These
findings indicate that the GWF does not affect the leading
scaling relation between tunneling time and inverse energy
gap. This is a surprising results, given that introducing the
GWF affects both the sampling algorithm and the equilibrium
probability distribution of the DMC simulation. A rough ex-
planation can be conjectured by considering the competition
between two effects originating from the introduction of the
GWF. The first is due to the deterministic drift, which pushes

TABLE I. Fitting parameters α and b, describing the small-gap
behavior of the DMC tunneling time ξ in the double-well poten-
tial (2) according to the fitting function ξ (�) = α�−b. For each
protocol, the five rightmost data points shown in Fig. 2 are included
in the fit.

DMC α b

No GWF 109(11) 0.99(2)
Boltzmann 98(16) 1.01(3)
Exact GWF 112(8) 0.99(1)

walkers away from the potential barrier, inhibiting inter-well
crossings. The second is the smoothing out of the weight
reduction that occurs when walkers encounter a bump in the
potential; this effect reduces the probability of those walkers
being eliminated from the population. Our numerical results
indicate that these two effects tend to compensate. A more
formal explanation of the linear relation between ξ and �−1

is given in the next subsection.
The double-well potential (2) is characterized by a specific

functional relation between the barrier’s height and width. In
order to verify that our findings do not rely on this particular
choice, we introduce an adjustable parameter that allows us
to vary the width of the barrier independently of its height.
Similarly to Ref. [24], we consider the potential

U (x) = (|x| − x0)4
+

g
− (|x| − x0)2

+, (9)

where f (x)+ ≡ max{0, f (x)} and x0 � 0. This potential fea-
tures a plateau of width 2x0 around the origin, and reduces
to V (x) for x0 = 0. In our study, the barrier height is kept
constant by fixing g to some value (we use g = 8), while x0

is increased in the interval x0 ∈ [0, 2]. This has the effect of
reducing the gap � as well as the tunneling rate 1/ξ . The
GWF chosen for this study is the numerically exact ground-
state wave function. Once again, a linear relation is found
between ξ and �−1, and fitting the dataset with the power
law ξ (�) = α�−b in the small-gap regime yields the values
α = 23(1) and b = 0.993(7) for the parameters.

C. Semiclassical theory of the DMC tunneling dynamics

We present here a semiclassical theory to explain and
generalize our findings. As mentioned above, the DMC
algorithm with GWF is described by a Fokker-Planck equa-
tion, Eq. (6), containing both the usual drift and diffusion
terms, and an additional norm-nonpreserving term corre-
sponding to the branching process. When the GWF coincides
with the exact ground-state wave function �G(x) = �0(x),
this term can be eliminated and branching does not occur. The
resulting equation reads

∂ρ(x, t )

∂t
= 1

2

∂2ρ(x, t )

∂x2
+ ∂

∂x
[Ṽ ′(x)ρ(x, t )]. (10)

This equation describes the stochastic dynamics of a classi-
cal particle with distribution ρ(x, t ) subject to the effective
potential Ṽ (x) defined in Eq. (8). The tunneling time corre-
sponding to this stochastic dynamics can then be identified (to
exponential accuracy) with the activation time needed for this
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classical ensemble to overcome the effective barrier �Ṽ ≡
Ṽ (0) − Ṽ (xmin), with initial conditions ρ(x, 0) = δ(x − xL )
[the normalization can be set to one since the norm of ρ(x, t )
is conserved]. Here, xmin indicates the (left) minimum point
of Ṽ (x), in general different from xL, while x = 0 is its local
maximum point, as follows from the form of �0(x). The
computation of the classical activation over a potential barrier
is known as Kramers problem [46,47]. The corresponding
activation time reads

τact = 2π√
Ṽ ′′(xmin)|Ṽ ′′(0)|

exp(2�Ṽ ). (11)

The large-g scaling of τact is dominated by the exponential
function in Eq. (11), so we will focus on that term only.
Substituting Eq. (8) into Eq. (11), one obtains

τact ∼
(

�0(0)

�0(xmin)

)−2

∼ �0(0)−2. (12)

Here, we used the fact that �0(xmin) cannot be exponentially
small in g if the ground-state wave function is to be normal-
ized to unity [notice that, by definition, �0(x) achieves its
global maximum at xmin, and its amplitude is exponentially
small outside of a region of width O(

√
g)]. The value of

�0(0) can be estimated using WKB theory, which gives
�0(0) ∼ exp(−g/3) [48]. Substituting this into Eq. (12), and
combining with the WKB estimate of the gap, Eq. (3), we
finally get

ξ ∼ τact ∼ 1

�
, (13)

where the symbol ∼ denotes asymptotic equal scaling for
g → ∞, up to subexponential corrections.

The above argument can actually be generalized to double-
well–type potentials other than the quartic double well defined
in Eq. (2). In fact, Eq. (12) can be derived from Eq. (10) under
quite general assumptions on V (x), as long as a sufficiently
accurate approximant of the ground-state wave function is
available to use as a GWF, such that the effect of branching
may be neglected. Moreover, for a generic double-well po-
tential the ground-state gap in the large-barrier limit can be
expressed as [40,49]

� ∝ �R(0)� ′
R(0), (14)

where �R(x) is the ground-state wave function of a single
well, as defined in Eq. (4). The above relation holds in the only
hypothesis that �R(x) is asymptotically localized on x > 0,
such that the condition

∫ 0
−∞ [�R(x)�R(−x) − �R(x)2]dx � 1

is fulfilled for large enough g. We can now resort to WKB
theory, which gives the following expression for �R(x) (to
exponential accuracy):

�R(x) = exp

(
−

∫ a

x
ds

√
2[V (s) − E0]

)
, (15)

where E0 is the ground-state energy and a is the (posi-
tive) classical turning point, defined by V (a) = E0. This im-
plies that, up to subexponential corrections, � ∝ �R(0)2 ∝
�0(0)2. Upon substitution into Eq. (12), this leads to the
scaling relation (13). Therefore, in the assumption that WKB
theory holds in a neighborhood of the origin (e.g., assuming

that the turning points do not approach 0 in the infinite-
barrier limit), we see that the DMC tunneling time generically
exhibits a �−1 scaling regardless of the specific form of the
potential.

III. TUNNELING TIME IN DISCRETE-BASIS MODELS

In this section we investigate the tunneling time in PQMC
simulations of discrete-basis models, specifically, of quantum
spin models. The first model we consider is the quantum Ising
chain, described by the following Hamiltonian:

Ĥ = Ĥcl + Ĥkin, (16)

where Ĥcl = −J
∑N

i=1 σ z
i σ z

i+1 and Ĥkin = −

∑N

i=1 σ x
i . σ x

i ,
σ

y
i , and σ z

i denote Pauli matrices acting on spins at the lattice
site i. N is the total number of spins, and we use periodic
boundary conditions, i.e., σ a

N+1 = σ a
1 , with a = x, y, z. The

parameter J > 0 fixes the strength of the ferromagnetic in-
teractions between nearest-neighbor spins. In the following,
we set J = 1. 
 is the transverse field intensity. Given |xi〉
an eigenstate of σ z

i having eigenvalue xi = 1 when |x〉 = |↑〉
and xi = −1 when |x〉 = |↓〉, the quantum state of N spins
is indicated by |x〉 = |x1x2 . . . xN 〉. The set {|x〉} of 2N states
forms the computational basis.

At zero temperature, in the ferromagnetic phase 
 < J , the
quantum Ising chain is characterized by an energy landscape
with an effective double-well potential, where the magneti-
zation per spin M/N plays the role of reaction coordinate.
The minima of the potential connected by the reaction coor-
dinate correspond to the classical states with magnetization
M � ±N . These two states are degenerate when 
 = 0. For
finite 
, provided 
 < J , quantum fluctuations induce tunnel-
ing processes between the two minima, lifting the degeneracy
in finite systems. The energy gap between ground state and
first excited state is exponentially small in the system size, i.e.,
� ∝ exp (−cN ), where the constant c depends on the trans-
verse field. This closing-gap scenario resembles the Landau-
Zener avoided level crossings one typically encounters in
adiabatic quantum optimization. There, the small gaps are as-
sociated to tunneling processes between competing solutions.
In order to avoid diabatic transitions to the first excited state,
the total annealing time has to scale as �−2. These small gaps
represent the bottleneck of adiabatic quantum computing,
since for hard optimization problems these gaps often close
exponentially fast with the system size [50–54].

A. PQMC simulations of discrete-basis models

Our PQMC simulations for discrete-basis models are based
on the continuous-time Green-function Monte Carlo algo-
rithm [55]. This method is exhaustively described in Ref. [56].
Here, we only sketch the main elements. The simulations
with importance sampling are implemented by stochastically
evolving the modified imaginary-time Schrödinger equation
for the product ρ(x, t ) = �(x, t )�G(x):

− ∂

∂t
ρ(x, t ) =

∑
x′

[Hx,x′ − ET δx,x′]
�G(x)

�G(x′)
ρ(x′, t ). (17)

Here, �(x, t ) ≡ 〈x|�(t )〉 is the amplitude of the ground-state
wave function at imaginary time t , which is assumed to
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be real and non-negative. The Hamiltonian matrix elements
are Hx,x′ = 〈x|Ĥ |x′〉. ET is again a reference energy used
to stabilize the simulations. When no GWF is used, which
corresponds to setting �G(x) = 1, Eq. (17) becomes the stan-
dard imaginary-time Schrödinger equation. Analogously to
the continuous-space simulations described in Sec. II A, one
evolves a population of walkers undergoing spin-flip updates
and branching. An accurate GWF favors updates toward
relevant regions of the configuration space and diminishes
walker killings and replications. In the infinite imaginary-time
limit t → ∞, attained by iterating many small time steps τ ,
the walkers sample spin configurations with a probability
distribution proportional to �0(x)�G(x), where �0(x) is the
ground-state wave function.

In this section we consider two types of GWF. The first is
the Boltzmann ansatz:

�G(x) = exp[−βEcl(x)]. (18)

It resembles the Boltzmann distribution of a classical Ising
model with Hamiltonian function Ecl(x) = 〈x|Ĥcl|x〉. The
fictitious temperature β is fixed by minimizing the varia-
tional energy 〈�G|Ĥ |�G〉

〈�G|�G〉 using the stochastic gradient descent
method [55]. The other GWF is based on a stochastic gener-
ative neural network, specifically an unrestricted Boltzmann
machine (uRBM) [37]; it is defined as

�G(x) =
∑

h

φ(x, h), (19)

where

φ(x, h) = exp

[
N∑

i=1

(K1xixi+1 + K2hihi+1 + K3xihi )

]
. (20)

The wave function amplitude in each physical, or visi-
ble, spin configuration x = (x1, x2, . . . , xN ) is obtained by
integrating over all configurations of the N hidden units
h = (h1, h2, . . . , hN ), which take the values hi = ±1 (with
i = 1, . . . , N). Periodic boundary conditions are considered
both in the visible and in the hidden layers, i.e., xN+1 = x1

and hN+1 = h1. The three coupling constants K1, K2, and
K3 fix the interaction strengths between nearest-neighbor
visible and hidden spins, and between visible-hidden pairs
with the same index, respectively. We determine them via
variational optimization using the stochastic reconfiguration
method. The analysis reported in Ref. [37] indicated that the
optimized uRBMs GWFs are sufficiently accurate to reduce
the computational cost of PQMC simulations of the quantum
Ising chain down to a polynomial scaling with system size.
Differently from the restricted Boltzmann machine originally
introduced as a variational ansatz in Ref. [36], the uRBM in-
cludes intralayer interactions. In general, this implies that one
cannot analytically trace out the hidden spin configurations.2

In order to use uRBMs as GWFs, we employ the extended

2As shown in Ref. [57], the uRBM can be mapped to a constrained
matrix product state. In one dimension, this representation allows for
an analytical treatment of the hidden degrees of freedom. However,
we aim at a general framework that could be applied irrespectively
of the dimensionality and the interaction range.

PQMC algorithm described in Ref. [37]. It includes a certain
number of additional single-spin Metropolis updates of the
hidden spins at every PQMC time step. This number has
to be made large enough to eliminate spurious correlations
among successive walker configuration, which in turn affect
the finite-Nw bias. It is quite important to test if and how the
possible residual statistical correlations between successive
hidden-spin configurations affect the tunneling dynamics.

B. Tunneling times in quantum Ising chains

The tunneling time simulations are performed in the fer-
romagnetic phase, where the quantum Ising chain is char-
acterized by a double-well potential profile. To measure the
PQMC tunneling time ξ , we adopt the protocol of Ref. [28].
All walker configurations are initialized with all spin pointing
up, corresponding to the classical state with magnetization
M = ∑

i xi = N . This state is close to one of the minima of
the effective double-well potential. The PQMC simulation is
run until 10% of the walkers has crossed the potential barrier,
reaching negative magnetization M < 0. The measurement
is repeated about 1000 times, taking the average and its
standard deviation as definition of ξ and of its error bar, re-
spectively. The PQMC simulations are performed with Nw =
5000–10 000, which is found to be sufficient to eliminate any
systematic error on ξ .

Figure 3 displays the tunneling time ξ obtained with the
Boltzmann GWF, as a function of the number of spins N , for
different transverse field intensities 
. In the large system-size
regime, where the energy gap � is small, the exponential
growth of ξ closely matches the scaling of the inverse energy
gap α�−1, where α is an appropriate prefactor. The energy
gap values are computed using the exact formula obtained
from the free fermion representation of the quantum Ising
chain. The tunneling times obtained with the Boltzmann GWF
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Γ = 0.8

FIG. 3. Tunneling time ξ in PQMC simulations performed with
the Boltzmann GWF (open symbols) as a function of the number
of spins N in the ferromagnetic Ising chain. Different data sets
correspond to different transverse field intensities 
, with the cou-
pling parameter J = 1. The dashed lines represent exponential fitting
functions valid in the large-N regime. The closed symbols represent
the inverse gap values �−1 computed with the exact formula obtained
from the free fermion representation of the quantum Ising chain and
rescaled by an appropriate prefactor α = O(1).
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FIG. 4. Tunneling times ξ of the PQMC algorithm implemented
without GWF (blue pentagons), with the uRBM GWF (red triangles),
and with the Boltzmann GWF (green diamonds), as a function of the
inverse energy gap �−1, for the quantum Ising chain at 
 = 0.6. The
dashed lines represent the fitting function ξ (�) = α�−b, valid in the
large �−1 regime. In all three cases, the fitted exponent is b � 1 (see
Table II).

and with the uRBM GWF are plotted in Fig. 4 as a function
of the corresponding inverse energy gap �−1. They are also
compared with the results obtained without a GWF (data from
Ref. [28]). In all three cases, ξ appears to scale asymptotically
linearly with the inverse gap. By fitting the three data sets, in
the large �−1 regime, with the scaling law ξ (�) = α�−b, we
obtain the values of the fitting parameters α and b reported in
Table II. In all cases, the exponent is consistent with the linear
scaling b = 1.

Shamrock model

To further study the PQMC tunneling dynamics, we ad-
dress a more challenging quantum spin Hamiltonian, namely
the so-called shamrock model. It is described by the following
Hamiltonian:

Ĥ = −Jσ z
1

N∑
i=2

σ z
i + (J − ε)

K∑
i=1

σ z
2iσ

z
2i+1 − 


N∑
i=1

σ x
i . (21)

The N spins are grouped in K rings, which form the leaves
of the shamrock. A central spin interacts with a ferromagnetic
coupling J with all the other spins in the system. The outer
spins in each ring interact antiferromagnetically with interac-
tion energy J − ε where ε � J indicates a small interaction
energy. 
 is the intensity of the transverse magnetic field. The

TABLE II. Fitting parameters α and b, describing the small-
gap behavior of the PQMC tunneling time ξ in the ferromagnetic
quantum Ising chain (16), according to the fitting function ξ (�) =
α�−b. The error bars also take into account the fluctuations due to
choosing different fitting windows.

PQMC α b

No GWF 0.7(2) 0.97(3)
uRBM 0.32(9) 1.00(2)
Boltzmann 0.28(5) 0.96(3)

FIG. 5. The shamrock, a model of N frustrated spins in a trans-
verse field. It is made of K = (N − 1)/2 leaves, each having three
spins. The solid dark-green lines represent ferromagnetic interactions
(with interaction strength J) between the central spin and all the other
N − 1 spins. The dashed light-green lines indicate the antiferromag-
netic interactions (with interaction strength J − ε) between the outer
spins of the same leaf. The overall effect is to create 2K tunneling
paths between the degenerate classical ground states.

connectivity structure of the shamrock model is visualized in
Fig. 5. This model was introduced in Ref. [29] as a paradig-
matic case where finite-temperature PIMC algorithms cannot
efficiently simulate quantum annealing. This was interpreted
as an indication that quantum annealing devices have a high
potential to provide a quantum speedup in certain classes
of optimization problems. It was indeed shown that in this
model the PIMC tunneling time scales as ξ ∝ 2K�−2, i.e.,
exponentially worse than the incoherent quantum tunneling
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FIG. 6. Tunneling time ξ in the shamrock model as a functions of
the system size N . The PQMC results obtained with the Boltzmann
GWF (green diamonds) and without GWF (blue pentagons) are
compared with the scaling of the incoherent quantum tunneling time
1/�2 (black triangles), and with the scaling of the finite-temperature
PIMC tunneling time ξ = 2K/�2 [29], where K is the number of
leaves in the shamrock. The values of the gap � are obtained from
exact diagonalization. The model parameters are 
 = 0.5, J = 6, and
ε = 0.2.
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times ∝�−2. This slowdown of the PIMC tunneling dynam-
ics originates from the emergence of multiple homotopy-
inequivalent paths for tunneling processes between the
competing states. We measure the PQMC tunneling times in
the shamrock model using the Boltzmann GWF. Notice that in
this case the classical energy function in Eq. (18) includes the
first two terms of the shamrock Hamiltonian (21). In Fig. 6,
these tunneling times are compared with the PQMC results
obtained without GWF (data from Ref. [28]), with the scaling
of incoherent quantum tunneling, and with the scaling of the
PIMC tunneling times. In the large �−1 regime, the PQMC
data with GWF are well described by the fitting function
ξ (�) = α�−b, where the fitting parameters are α = 0.32(7)
and b = 1.04(3). A similar fit, with b = 0.98(2), applies also
to the previously reported data, obtained without GWF. These
results indicate that even in the shamrock model the PQMC
tunneling times asymptotically scale with the inverse gap,
independently on the choice of GWF, confirming the quadratic
speedup compared to incoherent quantum tunneling.

IV. CONCLUSIONS

We have investigated how guiding wave functions affect
the tunneling dynamics of PQMC simulations, considering
as test beds a continuous-space double-well problem, the
ferromagnetic quantum Ising chain, and the shamrock model
with frustrated couplings. As GWFs, both approximate vari-
ational Ansätze and the numerically computed exact ground-
state wave function have been addressed. Remarkably, for all
GWFs we find a linear relation between tunneling rate and
first energy gap in the asymptotic regime of large tunneling
time, corresponding to a high potential barrier in the double
well, or to large system sizes in the two Ising-type models.
The semiclassical theory we provided explains this linear
relation in the case of double-well–type potentials when the
exact ground-state wave function is chosen as GWF. It is
worth stressing that this linear relation represents a quadratic
speedup compared to the expected tunneling rate of a physical
quantum annealer. The proof we presented relies on the local
validity of the semiclassical approximation for the ground-
state wave function. It is an interesting challenge to try to
formulate a more general derivation which does not invoke
WKB theory, or to instead exhibit a counterexample where a
violation of the �−1 scaling may be observed.

Analyzing if and to what extent QMC algorithms can ef-
ficiently simulate quantum tunneling is of critical importance

to understand if quantum annealing devices can outperform
classical optimization methods. It is well known that accurate
PQMC simulations of the equilibrium properties of large-
scale systems are only feasible if a sufficiently accurate GWF
is used for importance sampling [17]. Indeed, it has been
shown that in the quantum Ising chain the GWF can even
change the scaling of the computational cost from being
exponential to being polynomial in the system size [37]. The
results reported here show that an accurate GWF does not alter
the quadratic speedup previously reported for PQMC simu-
lations performed without GWF [28]. Considered together,
these findings indicate that PQMC simulations performed
with accurate GWFs allow one to efficiently simulate both
the equilibrium ground-state properties and also the tunnel-
ing dynamics of quantum annealers. Therefore, they can be
used as a relevant benchmark in the development of novel
quantum annealing devices, and they represent a promising
quantum-inspired optimization algorithm [33]. Clearly, more
challenging models should be addressed to further benchmark
the efficiency of the PQMC tunneling dynamics. Relevant
test beds could be Ising spin glasses in higher dimensions.
Indeed, one expects that it is harder to obtain accurate vari-
ational Ansätze for such models. Suitable candidates are re-
stricted [36,58] and unrestricted Boltzmann machines [37,59].
Indeed, both have been shown to be amenable to be used
as GWFs in PQMC simulations [37,60]. Deeper neural net-
work Ansätze, e.g., the deep convolutional neural networks
of Ref. [61] or the recurrent neural networks of Ref. [62],
might also be adopted. We leave these studies for future
investigations.
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