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Anomalous subdiffusion from subsystem symmetries
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We introduce quantum circuits in two and three spatial dimensions which are classically simulable, despite
producing a high degree of operator entanglement. We provide a partial characterization of these “automaton”
quantum circuits and use them to study operator growth, information spreading, and local charge relaxation
in quantum dynamics with subsystem symmetries, which we define as overlapping symmetries that act on
lower-dimensional submanifolds. With these symmetries, we discover the anomalous subdiffusion of conserved
charges; that is, the charges spread slower than diffusion in the dimension of the subsystem symmetry. By
studying an effective operator hydrodynamics in the presence of these symmetries, we predict the charge
autocorrelator to decay (i) as ln(t )/

√
t in two dimensions with a conserved U(1) charge along intersecting lines

and (ii) as 1/t3/4 in three spatial dimensions with intersecting planar U(1) symmetries. Through large-scale
studies of automaton dynamics with these symmetries, we numerically observe charge relaxation that is
consistent with these predictions. In both cases, the spatial charge distribution is distinctly non-Gaussian and
reminiscent of the diffusion of charges along a fractal surface. We numerically study the onset of quantum
chaos in the spreading of local operators under these automaton dynamics and observe power-law broadening
of the ballistically propagating fronts of evolving operators in two and three dimensions and the saturation of
out-of-time-ordered correlations to values consistent with quantum chaotic behavior.
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I. INTRODUCTION

The dynamics of interacting, quantum many-body systems
provide a rich source of open problems in theoretical physics.
Recent developments include advances in our understanding
of quantum thermalization [1–3] and many-body localization
[4–7], which have provided new paradigms for nonequilib-
rium quantum matter. The study of quantum dynamics has
recently been revolutionized by the study of random quantum
circuits [8–14], which have been a source of theoretically
tractable problems that shed light on the dynamics of more
general quantum systems.

A richer set of quantum dynamical phenomena arise in
the presence of conservation laws. A global U(1) symme-
try leads to the diffusion of the conserved charges [11,12].
Overlapping conservation laws lead to more striking features
in quantum dynamics. For example, the conservation of both
the total U(1) charge and dipole moment in one spatial di-
mension can lead to the breaking of ergodicity and localiza-
tion, and a “shattering” of the Hilbert space into exponen-
tially many dynamically disconnected sectors [15–17]. Most
studies of quantum dynamics with or without conservation
laws have thus far been limited to systems in one spatial
dimension.

In this work, we extend the study of quantum dynamics
in two and three spatial dimensions, by introducing a class
of quantum dynamics—termed automaton dynamics—for
which the evolution of various correlation functions of local
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operators is classically simulable, and which retain certain key
features of the dynamics of a chaotic quantum system. These
dynamics share the property that the Heisenberg evolution of
a local operator is complex, in a manner that resembles the
evolution under a more general, chaotic quantum dynamics;
nevertheless, these quantum dynamics are simulable since
they do not generate any entanglement when acting on a com-
plete set of product states in an appropriate basis. We identify
key features of the most general automaton dynamics—in
the Heisenberg evolution of local operators, the recurrence
times for an initial state, and in the generation of operator
entanglement—that distinguish them from other kinds of
classically simulable quantum dynamics, and conjecture that
the evolution of local observables under these dynamics can
be quantifiably similar to that of a more generic, chaotic
quantum system with the same symmetries. Two examples
of automaton circuits, which necessarily generate operator
entanglement, have been previously studied in one spatial
dimension, and one of these is known to be integrable [18–20].

We apply our understanding of these automaton dy-
namics to the study of quantum dynamics with subsystem
symmetries—symmetries that act along overlapping, subdi-
mensional “manifolds” of the system—and find a rich and
unexpected behavior involving anomalous subdiffusion of
charge, slower not only than diffusion in that physical di-
mension, but also slower than diffusion in the dimension of
the submanifold acted on by the symmetry. Our motivation
to study these dynamics arises from the existence of exotic
quantum phases of matter with immobile, fractionalized exci-
tations (“fracton” phases) [21–24] in which these symmetries,
such as the conservation of multipole moments of charge
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TABLE I. Subdiffusive dynamics with U(1) dubsystem dym-
metries. Summary of analytical results for the subdiffusive decay
of charges in two and three spatial dimensions, in the presence of
overlapping linelike and planar U(1) symmetries. These predictions
for line symmetries in d = 2 and planar symmetries in d = 3 are
consistent with numerical studies of automaton dynamics with these
symmetries.

Charge decay

Subsystem symmetry d = 2 d = 3

Line symmetry ln(t )/
√

t ln2(t )/
√

t

Plane symmetry — 1/t3/4

[25], are emergent properties of these stable phases [26], that
severely restrict the dynamics of these exotic, fractionalized
excitations.

In this work, we specifically consider Floquet dynamics
that conserve U(1) charge along intersecting lines in two
and three dimensions, and three dimensional dynamics that
conserve U(1) charge along planes, with no additional sym-
metries; effectively, these are infinite-temperature dynamics
in which these subsystem symmetries are exact. For a two-
dimensional system with linelike symmetries, we find that
the local charge relaxes as ln(t )/

√
t , whereas for a three-

dimensional system with planar symmetries, it relaxes as
1/t3/4. These results, summarized in Table I, originate from
an analytical explanation in terms of the emergent operator
hydrodynamics of the problem, and are consistent with ex-
tensive numerical studies of automaton dynamics with these
symmetries. This anomalous subdiffusion is tied to a distinctly
non-Gaussian charge distribution, and reminiscent of classical
fractional subdiffusion [27,28].

An efficient numerical simulation of dynamical (both time-
ordered and out-of-time-ordered) correlation functions in au-
tomaton circuits is possible due to the fact that these correla-
tions may be computed using a Monte Carlo sampling proce-
dure. This provides a unique example of a quantum dynamics,
where we can measure these correlations in two and three
spatial dimensions for a highly entangled operator evolution.
In two dimensions, we are able to simulate systems with up to
N = 396 × 396 sites and circuits with up to 32 000 layers.
In three dimensions, we present results for systems with
N = 128 × 128 × 128 sites and circuit depths up to 21 000
layers. Observables other than the conserved charge display
apparently “quantum chaotic” behavior; out-of-time-ordered
correlations of these observables propagate ballistically, and
saturate to values that suggest that the structure of these
Heisenberg-evolved operators equilibrates in a manner that is
consistent with quantum chaos. The widths of the ballistically
propagating fronts of these operators grow in time as a power
law tα with exponent α = 0.308(18) in two dimensions and
α = 0.220(5) in three dimensions. These should be compared
with the predicted values α = 1/3 and 0.24 in two and three
dimensions, respectively, for random unitary quantum circuits
[9].

This paper is structured as follows. In Sec. II, we define and
present general features of automaton dynamics, and argue
that a generic automaton evolution can lead to the complex

Heisenberg evolution of local operators, as quantified by the
generation of a large degree of “operator entanglement.” For
certain operators, we are able to solve for the Heisenberg
evolution explicitly. We then present the numerical algorithm
employed for our simulations. Our comparison of automaton
evolution to other quantum dynamics is presented in Table II,
while features of the operator growth under our automaton
dynamics are summarized in Table III. In Sec. III, we present
our results on the anomalous subdiffusion of charges in the
presence of various subsystem symmetries. In Sec. IV, we
study the evolution of out-of-time-ordered correlation func-
tions under these automaton dynamics, and show that the
Heisenberg evolution of operators other than the conserved
charges appears quantifiably similar to that of a quantum
chaotic system. We conclude in Sec. V with a discussion of
the implications of our results.

II. AUTOMATON DYNAMICS

We begin by defining the “automaton” dynamics of a quan-
tum system as a unitary evolution that (i) does not generate
any entanglement in an appropriate basis of product states,
but that (ii) leads to the nontrivial evolution of local operators
under Heisenberg evolution.

More precisely, an automaton unitary operator U act-
ing on an appropriate set of orthonormal product states
in a D-dimensional Hilbert space—labeled |m〉, with m ∈
{0, . . . , D − 1}—simply permutes these states up to a phase
factor, i.e.,

U |m〉 = eiθm |π (m)〉, (1)

where π ∈ SD is an element of the permutation group on D
elements. An automaton unitary will generally create entan-
glement when acting on product states in a different basis.
We refer to Eq. (1) as the “automaton constraint” for the
remainder of this section.

While the evolution of the product states {|m〉} is simple,
the Heisenberg evolution of a local operator

O → U †OU (2)

can be complex, in a manner that resembles the Heisen-
berg evolution of an operator under a more generic, chaotic
quantum dynamics; we will quantify this similarity in later
sections. For this reason, automaton unitary evolution is of
interest as an example of classically simulable, quantum dy-
namics that may capture broader features of the dynamics of
chaotic quantum systems.

Before studying the evolution of local operators under
automaton dynamics, it is useful to contrast the simulability
of these dynamics with integrable dynamics, Clifford unitary
evolution, and the dynamics of a chaotic quantum system. Our
comparison is summarized in Table II. We note, in particular,
that automaton dynamics are qualitatively the opposite of a
Clifford quantum circuit. In a Clifford unitary dynamics, any
Pauli operator [for a spin-(1/2) system, these are the Pauli
X , Y , Z operators, and their products] simply evolves into a
product of Pauli operators under Heisenberg evolution. While
operator evolution is not complex, Clifford unitary operators
can generate a high degree of quantum entanglement when
acting on any wave function.
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TABLE II. Properties of a generic automaton unitary dynamics, as compared to Clifford dynamics, a generic integrable dynamics, and
the dynamics of a quantum chaotic system, each with a D-dimensional Hilbert space. The typical recurrence time for a state evolving under
an integrable dynamics in one dimension grows polynomially in the system size, since each quasiparticle takes a time O(ln D) to return to
its initial position; furthermore, (†) assumes a translationally invariant, Floquet Clifford circuit [13]. Operator spreading, as quantified by
out-of-time-ordered correlations, reveals a power-law broadening of the front of an evolving operator in time for automaton circuits in this
work, which is close to what has been observed in random unitary dynamics in various spatial dimensions [9], unlike what is observed for
integrable dynamics [29]. The computational cost of simulating one time step of evolution, by applying O(ln D) gates is indicated, with results
for integrable systems from Ref. [30,31]. The memory overhead is the memory cost to store an evolving state under the indicated dynamics
at long times; this is generally O(D) as a product initial state will generally become volume-law entangled under each of these dynamics. For
Clifford dynamics, the memory cost is significantly reduced for initial states in the Pauli basis [32]. For integrable dynamics (‡), the operator
entanglement is believed to grow logarithmically in time [20,33], which reduces the cost of storing an evolving state, though the state may
eventually become volume-law entangled.

Features Integrable dynamics Clifford dynamics Automaton dynamics Quantum chaotic dynamics

Generates volume-law For states in
Yes Yes Yes

state entanglement a specific basis

Generates volume-law
Yes No Yes Yes

Operator entanglement

Recurrence time
poly(ln D) ln D (†) D exp(λD)

(product initial state in 1D)

Operator spreading Ballistic growth, Ballistic growth, Ballistic growth, Ballistic growth,
diffusive broadening no broadening power-law broadening power-law broadening

Operations to simulate
poly(ln D) poly(ln D) D D2

one time step of evolution
Memory cost D (‡) ln2 D D D

An important example of a unitary operator that can gen-
erate an automaton quantum circuit—defined as a product of
local, automaton unitary operators that each do not generate
entanglement in the same basis—is a variant of the controlled-
controlled NOT gate, a three-qubit gate which we define as

CCNOT(θ )123 ≡ 1 − �12 + �12 eiθ X3. (3)

Here, �12 = |↑1↑2〉|〈↑1↑2| is the projector onto the up-state
of spins 1 and 2, while X3 is the Pauli X operator acting on
spin 3. Since this unitary transformation conditionally flips
the third qubit based on the states of the first two qubits, it
generates no entanglement in the Pauli Z basis. However, the
Heisenberg evolution of a local operator is more complex,
e.g., Z3 → (1/2)[Z3 − Z1Z3 − Z2Z3 − Z1Z2Z3]. We note that
(i) CCNOT(θ = 0) is the Toffoli gate, which is universal for
classical, reversible computing [34], as any invertible Boolean
function can be constructed using this gate and ancilla bits,
and that (ii) the Toffoli gate, and the single-qubit Hadamard
gate, define a universal gate set [35].

TABLE III. Dynamics of the nonconserved operators. Summary
of dynamics of the nonconserved operators as demonstrated by the
power-law behavior of the leading OTOC front for the 2D and
3D models with overlapping linelike and planar U(1) symmetries,
respectively. We find that the operator front broadens like tα and the
subleading tail fits the functional form (vBt − |r|)−β .

Power-law exponent

OTOC property d = 2 d = 3

Front broadening α = 0.308(18) α = 0.220(5)
Subleading tail β = 0.50(1) β = 1.02(7)

A. Growth of the operator entanglement

We now study the growth of the complexity of an operator
under the Heisenberg evolution by an automaton quantum
circuit. For simplicity of presentation, and without loss of
generality, we restrict our attention to a spin-(1/2) system.
Under Heisenberg evolution by a chaotic unitary dynamics, a
local Pauli operator O in a chaotic quantum system will evolve
into sums of arbitrary products of Pauli operators as

O(t ) =
∑
S

aS (t )S, (4)

where the sum is over all operators {S} that are products
of Pauli operators on distinct sites in the system. Since
O(t )2 = 1, the real coefficients aS (t ) satisfy the condition∑

S aS (t )2 = 1, for all times t .
We now consider an automaton unitary operator U(t ) that

generates no entanglement when acting on states in the Pauli
Z basis. In other words, a projection operator |m〉〈m| in this
basis evolves as U(t )|m〉〈m|U †(t ) = |π (m)〉〈π (m)|. A simple
consequence of this is that a Pauli Z operator will only evolve
into a sum of products of other Pauli Z operators under
Heisenberg evolution.

While this restricted evolution is a special feature of the
automaton dynamics, we now show that under a generic
automaton evolution, a Pauli Z operator can grow to develop
a weight on any possible operator within this subspace. More
precisely, we demonstrate that the “operator entanglement”—
which quantifies the complexity of the growing operator
U †(t ) Z U (t )—can develop volume-law scaling under an au-
tomaton evolution.

To proceed, we let Sn denote a product of Z operators
at sites corresponding to the binary representation of the
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integer n ∈ {0, . . . , D − 1}. For example, the operator S5 =
Z1Z3 (since the binary representation of 5 is 10100 · · · ). These
operators evolve as

Sn(t ) = U (t )Sn U (t )† =
D−1∑
m=0

anm(t )Sm. (5)

The “automaton constraint” permits us to determine in Ap-
pendix A that the coefficients anm(t ) are exactly

anm(t ) = 1

D

D−1∑
k=0

(−1)π(k)·m+k·n. (6)

Here, π(k) is the binary vector representation of the integer
π (k), and π(k) · m and k · n denote the dot product of the
appropriate vectors. As we show in Appendix A, the fact that
the matrix anm(t ) is unitary is a consequence of the unitarity
of the original dynamics.

To quantify the growth of the complexity of the Pauli op-
erator Sn(t ), it is natural to study its “operator entanglement,”
which we define as the entanglement of the evolving wave
function

|n(t )〉 ≡
D−1∑
n=0

anm(t ) |m〉, (7)

where |m〉 denotes the state of a fictitious N-spin system,
corresponding to the binary representation of the integer m,
so that a “1” (“0”) in this binary representation corresponds to
a down (up) spin; for example, for m = 5, we have the state
|m〉 = | ↓↑↓↑↑↑ · · · 〉. We observe that the unitary operator
W (t ), whose matrix elements are 〈m |W (t ) | n〉 ≡ anm(t ), can
be written as

W (t ) = H⊗NU (t )H⊗N , (8)

where H is the single qubit Hadamard gate, which acts on
Pauli operators as HXH = Z , HZH = X . In other words,
the operator entanglement evolves according to the same
automaton circuit in a rotated basis; in this basis, a generic
automaton unitary operator will eventually produce a high
degree of entanglement.

Instead of demonstrating this explicitly by studying the
growth of operator entanglement for a particular automaton
evolution, we quantify the operator entanglement generated
by a random automaton unitary operator. We bipartition the
state |n(t )〉 into an A and a B subsystems, of Hilbert space
dimension DA and DB = D/DA, respectively. The reduced
density matrix for the A system is defined as

ρA(n) ≡ TrB |n(t )〉〈n(t )|. (9)

We determine in Appendix B, that the purity of this density
matrix for a random automaton unitary, corresponding to a
random permutation π ∈ SD, is

Tr ρA(n)2 =
⎧⎨
⎩

1 (n = 0)

D−1
A + D−1

B − D−1 (n �= 0)
, (10)

where the line · · · denotes an average over automaton unitary
operators that do not generate entanglement in the Pauli Z
basis. For any finite subsystem A, taking the thermodynamic

limit D → ∞, DA/D → 0 yields Tr ρA(n)2 = D−1
A when n �=

0, which is the maximally entangled value of the density
matrix. We observe that, Tr ρA(0)2 = 1 since the state |n = 0〉
is an eigenstate of W (t ), as this state corresponds to the trivial
evolution of the identity operator.

We now argue that time evolution must generate a high
degree of operator entanglement for an initial operator that
is a product of Pauli X operators. Instead of attempting to
solve for their Heisenberg evolution, we observe that any
product of these operators—which we label O—implements
a permutation τ ∈ SD when acting on states in the Z basis. As
a result,

U (t )†OU (t ) =
D−1∑
m=0

ei(θm−θτπ (m) ) |π−1τπ (m) 〉〈m| (11)

if the automaton unitary U(t ) generates no entanglement in the
Z basis. If we let θn = 0 for all n, then the Heisenberg-evolved
operator O(t ) = U (t )†OU (t ) can only act as an element of its
conjugacy class, i.e., as an element of the form σ−1τσ , for
some σ ∈ SD. Conjugacy classes of the permutation group are
labeled by their cycle type, defined as the lengths of all cycles
in an element of that class. Since O squares to the identity and
is traceless, the permutation τ consists of D/2 independent
transpositions. The size of this conjugacy class is

D!

2D/2(D/2)!
D→∞∼ D(D/2)[1+O(ln−1 D)], (12)

which is the number of possible operators that O(t ) can evolve
into. As this is much larger than the O(D2) operators which are
simple products of Pauli operators in the system, we conclude
that O(t ) must exhibit a high degree of operator entanglement,
for a randomly chosen automaton unitary U(t ). If the phases in
this automaton unitary are nonzero (θn �= 0), then O no longer
evolves into a countable set of operators. Nevertheless, the
above argument for the growth of the operator entanglement
remains valid.

B. The recurrence time and quantum chaos

We compare the recurrence times—when a given initial
state returns to itself, so that |〈ψ |U (t )|ψ〉| ∼ O(1)—for a
typical automaton circuit, with that of a chaotic quantum sys-
tem. For a chaotic quantum system, the Poincare recurrence
time scales exponentially in the Hilbert space dimension of
the system trec ∼ exp(λD). In contrast, let U be a random
automaton operator that generates a single timestep of a
Floquet unitary operator U(t ) = Ut , so that U is proportional
to a random permutation of product states in a D-dimensional
Hilbert space. The behavior of the recurrence time for U(t )
can be varied. First, the recurrence time for a random product
state for which U generates no entanglement will grow as

tprod ∼ D/2 (13)

as we show in Appendix C. In contrast, the recurrence time for
a random state (not necessarily a product state) will be much
larger, as this corresponds to the order of a random element
of the permutation group π ∈ SD whose asymptotic form as
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D → ∞ [36] gives

trand
D→∞∼ exp[λ

√
D/ ln D], (14)

where λ is an O(1) constant.
Finally, to compare the operator evolution under an au-

tomaton dynamics with the evolution in a chaotic quantum
system, we consider the out-of-time-ordered correlation func-
tion

F (r, t ) ≡ 1

D
Tr[Or(t )O′

0(0)Or(t )O′
0(0)], (15)

where Or(0) and O′
0(0) are two initially local operators, at

the indicated positions. The out-of-time-ordered correlation
function probes the structure of the evolving operator Or(t ),
which we may expand as a sum of products of Pauli operators
as in Eq. (4). For O′

0(0) a Pauli string, we observe that

F (r, t ) = 1 − 2
∑

{S,O′
0}=0

aS (t )2. (16)

The quantity
∑

{S,O′
0}=0 aS (t )2 is just the probability that Or(t )

has weight on a Pauli operator that anti-commutes with O′.
For a chaotic quantum system, a typical operator grows bal-
listically under Heisenberg evolution, with a butterfly velocity
vB, and within this growing region, the operator is equally
likely to develop a weight on Pauli operators that commute or
anticommute with O′

0 so that
∑

{S,O′
0}=0 aS (t )2 → (1/2) and

F (r, t ) ∼
⎧⎨
⎩

0 vBt � |r|

1 vBt � |r|
. (17)

Therefore OTOC (i) has a ballistically growing front, and
(ii) within this region the OTOC asymptotically vanishes
due to the equilibration of the structure of Or(t ). We will
confirm that these features, which hold for chaotic quantum
dynamics, are also present for automaton unitary circuits in
our numerical studies. We note, as before, one can show using
Eq. (6) that for a random automaton dynamics U the following
holds:

Tr[U †Z0UZ0U †Z0UZ0] = 0, (18)

where · · · again denotes an average over the choice of automa-
ton circuits.

Finally, the front of the OTOC is believed to broaden as a
power-law in time ∼tα in a chaotic quantum system, where
α is a dimension-dependent exponent. In d = 1, the ends of
an operator perform a biased random walk, leading to the
exponent α = 1/2 [9,13], while in higher dimensions, these
exponents are related to probability distributions for classical
stochastic growth processes [9]. We verify that a power-law
broadening of the operator front occurs for the OTOC in the
automaton circuits we consider.

C. Simulating automaton evolution

We now discuss how dynamical correlation functions may
be efficiently calculated for an automaton evolution, using
classical Monte Carlo techniques. Let U(t ) be an automa-
ton unitary evolution that generates no entanglement in the
Pauli Z basis. We wish to determine the weight aS (t ) =

(1/D) Tr[Or(t )S] of an evolving Pauli operator Or(t ) ≡
U (t )†OrU (t ) on each basis string S . We observe that

aS (t ) = 1

D

∑
n

〈n|Or(t )S|n〉

= 1

D

∑
n,m

ei(θm−θn )〈n(t )|Or|m(t )〉 〈m|S|n〉. (19)

This quantity can be easily calculated using classical methods
since |n(t )〉 = U (t )|n〉 remains a product state for any product
state |n〉 in the computational basis. A further speedup is
obtained because for strings diagonal in the computational
basis (e.g., products of Pauli Z operators), 〈m|S|n〉 = ±δmn,
so one only needs to sample over |n〉, whereas for a string off-
diagonal in the computational basis (e.g., X ) one only needs
to sample over |n〉 and |m〉 = Xi|n〉, instead of needing to
sample over |n〉 and |m〉 independently. This idea of classically
sampling a quantum wave function is standard in variational
Monte Carlo methods. Here, we extend this idea to sampling
a class of entangled quantum operators. The coefficients of
the basis strings in an expansion of the highly entangled
“variational quantum operator” are generated by the action
of the unitary circuit on an initially local operator. Using this
method, we can study the unitary time evolution of very large
quantum systems. In this paper, we look at 2D circuits with up
to 3962 sites and circuit depths of up to 32 000 layers, as well
as 3D circuits with up to 1283 sites and circuit depths of up to
21 000 layers.

III. RESULTS ON AUTOMATON CIRCUITS WITH
SUBSYSTEM SYMMETRIES

In this section, we study automaton quantum dynamics that
possess an extensive set of intersecting, global symmetries.
In this case, the conserved charges cannot move in isolation,
but engage in a complex, correlated motion. We demonstrate
through analytical arguments and numerical studies of these
quantum dynamics that the conserved charges in systems
with overlapping (i) linelike U(1) symmetries in two spatial
dimensions and (ii) planar U(1) symmetries in three spatial
dimensions, evolve subdiffusively.

Before proceeding to a discussion of subsystem symme-
tries, we note that if the unitary circuit of interest possesses
a continuous, global symmetry, then there exists a set of con-
served charges, which constrain the Heisenberg evolution of
operators. For example, for a unitary evolution that preserves
the total Z spin—so that

∑
r Zr is a conserved operator—the

coefficients appearing in the expansion of any operator O(t )
satisfy the constraint

1

D

∑
r

Tr[ZrO(t )] =
∑

r

aZr (t ) = const. (20)

That is, the existence of a symmetry implies there exists a set
of conserved strings which consist of a single Pauli operator.
These are known as the conserved charges. By dividing an
operator into a conserved and nonconserved part, one can
gain a full understanding of the operator dynamics. It will be
important to compare to the known results of unitary circuits
with a global U(1) symmetry. For such a circuit, the support
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of the nonconserved operators grows ballistically with time,
while the conserved operators essentially perform a random
walk. This leads to diffusive spreading of the conserved U(1)
charge. In turn, the weights of the conserved operator strings
aS take the form of a Gaussian

1

D
Tr[Zr(t )Z0] ∼ e−(r2/D0t )/(D0t )d/2, (21)

where D0 is the diffusion constant, and d is the spatial
dimension.

A. Dynamics with linelike subsystem symmetries
in two dimensions

We now consider quantum dynamics with subsystem U(1)
symmetries. In two spatial dimensions, the simplest such
symmetry corresponds to overlapping U(1) charges along
intersecting lines. On the square lattice, we may consider
dynamics that preserve the line charges

Cx =
∑

y

Zx,y and Cy =
∑

x

Zx,y, (22)

which are the total Z spin on each row and column of the
square lattice, respectively.

Consider the case where a single charge is placed at the
origin (0,0) on the lattice, so that Cx = δx,0 and Cy = δy,0.
This charge can only move while preserving the subsystem
symmetries if we also allow for the creation of new charges.
In particular, the 2D charge can move along a row or column
if it emits a charge dipole in the direction perpendicular to
its motion. We can implement such motion via an automaton
unitary gate which preserves the subsystem symmetries. In
two dimensions on the square lattice, there are no two-site
gates which preserve the linelike subsystem symmetries. The
smallest such gate must act on four sites that lie at the corners
of a rectangle. One such gate which preserves the subsystem
symmetries is given by the “plaquette flip” unitary operator

Uflip = (1 − P) + PX1X2X3X4, (23)

where P is the projection operator

P ≡ 1
8 (1 − Z1Z2)(1 − Z2Z3)(1 − Z3Z4) (24)

with the indices {1, 2, 3, 4}, as labeled as in Fig. 1. The
projection operator P projects into the subspace spanned by
the two states shown in Fig. 1. The gate U then flips between
the two states in this subspace and acts trivially on all other
states in the four site region. This automaton unitary operator
generates operator entanglement; for example, we observe
that

U †
flipZ1Uflip = 3

4 Z1 + 1
4 [Z2 + Z3 − Z4]

+ 1
4 [Z1Z2Z4 + Z1Z3Z4 − Z1Z2Z3 − Z2Z3Z4].

(25)

We note that the most general unitary operator acting on
an elementary plaquette that preserves the line symmetries,
is one that performs an arbitrary rotation within the two-
dimensional subspace spanned by the two states shown in
Fig. 1—consisting of the states where each pair of neighbor-

1 2

34

1 2

34

FIG. 1. Linelike and planar subsystem symmetries. (Top) We
study 2D square lattices with linear subsystem symmetry where
charge is conserved on each row and column of the lattice. We
also look at 3D cubic lattices with planar subsystem symmetry. In
this case, each plane contains a conserved U(1) charge. (Bottom)
The four-site unitary gates act nontrivially only on the above two
configurations. In three dimensions, such a four-site gate can act
along any plane of the cube which intersects four spins.

ing spins is antialigned—plus any phase gate that is diagonal
in the Pauli Z basis.

We can therefore construct a circuit model which is com-
posed only of these four-site unitary gates. In two dimensions,
in addition to acting such gates on the fundamental plaquettes
of the square lattice, we also include next-nearest-neighbor
gates. In this case, we apply the same four-site unitary to the
four corner sites of the rectangular plaquettes shown in Fig. 2.
This is done to improve the ergodicity of the model. We then
act the three gate types sequentially on all plaquette coverings
of the square lattice in the pattern shown in Fig. 2. Therefore
one periodic time step of our circuit consists of 16 circuit
“layers.”

1. Numerical study

We start by numerically studying the 2D automaton circuit
with linear subsystem symmetries, where we apply the four-
site unitary gates defined in Eq. (24) on all plaquettes of the
square lattice, in the configuration shown in Fig. 2. We wish

x

y

l=11

l=5

l=1

x

t

FIG. 2. One time step of the 2D automaton circuit. (Left) The
three types of gates which are applied to the 2D circuit. The displayed
gates act on layers  = 1, 5, and 11. For the next-nearest-neighbor
rectangular gates, the unitary acts trivially on the middle two sites
of the rectangle. (Right) A single period of the circuit consists of 16
layers, applied as shown in the spacetime cross section. The red line
indicate the causal cone for the first site.
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y = [0.03 log(t)+0.25]√
t

101 102 103

10−2

10−1

FIG. 3. Charge subdiffusion in 2D. The autocorrelation function
G(0, t ) for the 2D automaton circuit with line symmetries, which
decays like ln(t )/

√
t . (Inset) Comparison of ln(t )/

√
t and 1/

√
t

decay, showing a clear deviation from normal diffusion.

to determine the evolution of the correlation function

Gr,t = 1

D
Tr[Zr(t )Z0(0)]. (26)

We begin by numerically studying the auto-correlation func-
tion when r = 0. The results are shown in Fig. 3. While
one may naively expect the same form for this correlation
function as in the 1D case, since the conserved charges of the
Z (t ) operator are constrained to move along the 1D rows and
columns of the lattice, we find numerically that

G0,t ∼ a ln(t ) + b√
t

. (27)

This is in sharp contrast to the 1D and 2D case with a global
symmetry where we expect G(t ) ∼ t−d/2. We note that it is
only by going to very large system sizes and large circuit
depths through the automaton unitary evolution, that we can
resolve this logarithmic term in the correlation function.

Furthermore, we numerically determine the full space-time
correlation function G(r, t ). Again, in systems with a global
conserved charge, we expect this quantity to show Gaussian
behavior. Our results, shown in Fig. 4, vary dramatically from
this expectation. In particular, we see a distinct cusp shape in
the spatial correlation function near the t = 0 location of the
charge.

This anomalous motion of the charge can be understood
from the simple time evolution of the Z operator given in
Eq. (25). Notice that a charge cannot move freely in this
model, but instead can only move by also emitting a dipole in
the direction perpendicular to the motion. This means that mo-
tion of conserved charges in this model necessarily requires
the creation of negative charges. Evidently, the creation of
these dipoles results in the creation of a medium which slows
the diffusion of the conserved charge. We note that this type
of anomalous diffusion can be considered a purely quantum
phenomenon, since these negative charges are associated with
the sign of the operator wave function.

−120 −100 −80 −60 −40 −20 0 20 40 60

x position

0.00

0.02

0.04

0.06

0.08

0.10

G
(x

,t
)

t=8
t=33
t=83

100 101 102
x

0.00

0.01

0.02

0 1000000
x2

10−2

10−6

10−10

10−14

10−18

FIG. 4. Spatial charge distribution in 2D. The simulated evolu-
tion, with N = 3962 sites, of Gr,t along the line r = (x, 0), which
shows a dramatic deviation from the usual Gaussian behavior of
normal diffusion. Notice the distinctive cusp near x = 0 which is a
sign of fractional subdiffusion. (Insets) The simulated evolution of
the 2D difference equation (29). For x �

√
t , G(x, t ) ∼ ln(t/x2)/

√
t .

For x � √
t , we have G(x, t ) ∼ e−x2/

√
t

2. Analytical study of the charge subdiffusion

We can gain some analytic understanding of these dynam-
ics by observing that the overlap of Z0 with the conserved line
charge is Tr[Z0Cx] = Dδx,0 and Tr[Z0Cy] = Dδy,0. Therefore,
for any dynamics that conserves these charges, the dynamical
correlation function G(r, t ) satisfies the constraint that∑

rx

Gr,t = δry,0 ,
∑

ry

Gr,t = δrx,0. (28)

From this, we may construct the simplest evolution equation
for Gr,t , after a single time step of a discrete-time unitary
evolution that preserves the line charges Cx, and Cy. Assuming
that the dynamics are invariant under four-fold rotations on
the square lattice, the simplest difference equation for the
evolution of the dynamical correlations is given by

Gr,t+1 = (1 − 2λ)Gr,t + λ[Gr+x,t + Gr−x,t + Gr+y,t + Gr−y,t ]

− λ

2
[Gr+x+y,t + Gr+x−y,t + Gr−x+y,t + Gr−x−y,t ],

(29)

where λ is a free parameter of the evolution. We note that
this is, in fact, an accurate description of the first time step of
the automaton unitary evolution considered in our numerical
study with nearest-neighbor gates only (if we take λ = 1/8);
however, Eq. (29) neglects “backflow” effects—that noncon-
served operators appearing in the Heisenberg evolution of
Zr(t ) can develop a non-negligible weight on the operator Z0

at sufficiently long times—which are present in the automaton
dynamics that we numerically simulate.

Taking the continuum limit in time, and going to momen-
tum space by defining G(k, t ) = 1√

N

∑
r exp(ik · r)G(r, t ), we

find that Eq. (29) becomes

d

dt
G(k, t ) = − f (k)G(k, t ), (30)
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fit: y = c t−z

FIG. 5. Charge subdiffusion with planar subsystem symmetries
in 3D. The autocorrelation function G(0, t ). We numerically fit this
(using the intermediate times only) to the function G(t ) = c t−z and
find z = 0.741(6) and c = 0.046(1). This is close to the analytical
prediction, that G(t ) ∼ t−0.75 as N, t → ∞.

where f (k) = 8λ sin2(kx/2) sin2(ky/2). We may analyti-
cally determine G(|r| = 0, t ) by taking the inverse Fourier
transform, which may be performed to give G(0, t ) =
1
2
F1

2
(1; 1; −8λt ), where aFb(p; q; z) is the generalized hyper-

geometric function. The long-time expansion of this expres-
sion yields

G(0, t )
λt→∞∼ ln(λt ) + O(1)√

λt
, (31)

as we show in Appendix D; this agrees with our numerical
study of the automaton dynamics, as shown in Fig. 5. We note
that the same result may be obtained by taking the continuum
limit of Eq. (29) in both space and time, to obtain the partial
differential equation

∂t G(r, t ) = −λ

2
∂2

x ∂2
y G(r, t ). (32)

By performing a Fourier transform, we may solve for G(r, t )
in terms of special functions, whose expansion at long times
yields the same result as in Eq. (31).

We can also numerically simulate the finite difference
equation Eq. (29). The solution G(r, t ) along the line r =
(x, 0) is plotted in Fig. 4. The insets show the behavior in the
two limits x <<

√
t and x � √

t , at fixed times t0. We find
that this is consistent with

G(x, t ) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln(t/(x + x0)2)√
t

(x � √
t )

1√
t
e−x2/t (x � √

t )

, (33)

where x0 is a constant which we can fit numerically.
We would like to emphasize that the spatial charge dis-

tribution in this model is not rotationally invariant. However,
along a generic direction r = (cos(θ ), sin(θ )), a simple scal-
ing analysis of Eq. (32), yields that the front of the conserved
charge spreads in time as 〈r〉 ∼ t1/4 at long times for all
θ �= nπ/2 with n ∈ Z. In fact, from Eq. (32), we observe
that the full Green’s function takes the scaling form G(r, t ) =
G0√
λt

F (xy/
√

λt ), where F (w) is a homogeneous function of

w = xy/
√

λt . This implies that the front of the subdiffusing
charge sits along lines of the form y = 1/x. Along the particu-
lar directions r = (x, 0) and r = (y, 0), the charge distribution,
given by G(x, t ) in Eq. (33), implies that the conserved charge
spreads 〈r〉 ∼ t1/2. We note that although the diffusion is
non-Gaussian and anomalous in all directions, it is only this
stronger condition that 〈r〉 ∼ tα with α < 1/2 which strictly
implies anomalous subdiffusion. In our model, we therefore
generically observe subdiffusive behavior, but diffusive be-
havior does appear along particular directions.

Finally, it is interesting to note that, by virtue of conserv-
ing charge along lines, this circuit also preserves the dipole
moment in both the x and y directions. In Ref. [15], it was
suggested that dipole conserving circuits in two dimensions
should display localization of charge. In contrast, our results
here establish that charge does spread, albeit subdiffusively,
with the equation for charge spreading containing a term that
involves the square of the Laplace operator. This suggests that
the hydrodynamics for dipole conserving circuits proposed in
[15] cannot be complete, and furthermore suggests that the
missing ingredient may be a Laplacian squared term.

Finally, we may consider the dynamics of a conserved
charge in a three-dimensional system with intersecting line-
like symmetries along three orthogonal directions, which are
given by the total Z spin along each of these directions. As we
demonstrate in Appendix E, the three-dimensional generaliza-
tion of Eq. (32)—given by ∂t G(r, t ) = λ ∂2

x ∂2
y ∂2

z G(r, t )—may
be solved in terms of a special function, whose asymptotic
form when λt � x2y2z2 yields the result that

G(r, t ) ∼ ln2(λt ) + O(ln(λt ))√
λt

(λt � x2y2z2). (34)

We have not confirmed this through numerical simulations
of an automaton circuit, and we leave a detailed study of
automaton dynamics with linelike symmetries in three spatial
dimensions to future work.

B. Dynamics with planar symmetries in three dimensions

We can also consider the case of intersecting planar sym-
metries on the 3D cubic lattice. In this case, a U(1) charge
must be conserved on all xy, xz, and yz planes. For spin-(1/2)
degrees of freedom on the sites of a cubic lattice, we may
define these charges as the total Z spin on each plane,

Cx =
∑
y,z

Ẑxyz, Cy =
∑
x,z

Ẑxyz, Cz =
∑
x,y

Ẑxyz. (35)

Automaton dynamics that respect these symmetries, along
with the symmetries of the cubic lattice may be implemented
using four-site unitary gates. In particular, the same Uflip

unitary gate in Eq. (23) can be applied on the planes of the
cube shown in Fig. 1, plus all symmetric rotations of these
planes. Notice that these gates conserve the more strict line
symmetries in the plane which they are applied, but only
conserve the U(1) charge on the plane for the perpendicular
planes which they intersect.

We also study 3D circuit by applying the four sites gates
sequentially on plaquettes lying in each of the planes shown
in Fig. 1 (plus the symmetry allowed cubic rotations). In this
case, each time step consists of 36 layers of gates (four layers

214301-8
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FIG. 6. Dynamics with planar subsystem symmetries in 3D.
(Top) The space-time correlation function G(r, t ) for a 2D slice of
the 3D cubic lattice at fixed time t = 200 for a system with N = 1203

sites. Notice that the charge has higher density along the intersection
of two planes which contain the charge. (Bottom) 1D slices of the
same data, plotted for different y positions. Notice that again G(r, t )
has a cusp near the origin.

per plane times nine planes), as opposed to the 16 layers
required for the 2D case.

We study the same quantities in the 3D model where
charges are constrained to move only along two dimensional
planes. The numerics in this case find that the autocorrelation
function scales like

G(0, t ) ∼ 1

t0.741(6)
. (36)

That is, in this 3D case we find a clear violation of the
diffusion law.

We also study the spatial distribution of G(r, t ) at fixed
time for a 2D slice of the system, as shown in Fig. 6. We
see that again the spatial distribution is clearly not Gaussian,
and again shows a cusp near x = 0. The charge density is
greater along the lines which are shared between pairs of
planes which have nonzero net charge.

Analytically we may understand this subddiffusive be-
havior by employing similar techniques as we employed in
Sec. III A. The conservation of planar U(1) charges requires
that the autocorrelation function Gr,t is constrained, after sum-
ming over any xy, yz, or xz plane, analogous to the constraint
derived for linelike subsystem symmetries in Sec. III A. The

simplest, discrete-time evolution of this correlation function
that is consistent with these constraints, and with the symme-
tries of the cubic lattice is

Gr,t+1 = (1 − 3λ)Gr,t + λ[Gr±x,t + Gr±y,t + Gr±z,t ]

− λ

4
[Gr±x±y,t + Gr±y±z,t + Gr±z±x,t ], (37)

where λ is, again, a free parameter of the dynamics. Taking the
continuum limit of this equation in space and time yields the
partial differential equation for the coarse-grained correlation
function

∂t G(r, t ) = λ

4

[
∂2

x ∂2
y + ∂2

y ∂2
z + ∂2

z ∂2
x

]
G(r, t ), (38)

which yields the result that G(k, t ) =
exp[−(λt/4)[k2

x k2
y + k2

y k2
z + k2

z k2
x ]] in momentum space.

Performing the inverse Fourier transform and rescaling

k → k′ = kt1/4 yield the desired result that G(0, t )
t→∞∼ t−3/4.

As before, a more careful analysis of the difference equa-
tion (37), where we only take the continuum limit in time,
while Fourier transforming in space, yields

d

dt
G(k, t ) = − f (k)G(k, t ), (39)

f (k) = 4λ
∑

i �= j∈{x,y,z}
sin2

(
ki

2

)
sin2

(
k j

2

)
. (40)

While we are unable to analytically perform the inverse
Fourier transform to obtain the exact autocorrelation func-
tion from these expressions, we observe that f (k) vanishes
along the three lines k = (kx, 0, 0), (0, ky, 0), (0, 0, kz ) that
meet at the origin. As a result, the spatial continuum limit
considered previously—which corresponds to an expansion
of (39) near k → 0, where f (k) vanishes most rapidly—
is justified in understanding the long-time asymptotics of
G(0, t ).

IV. OPERATOR SPREADING IN AUTOMATON CIRCUITS

We now numerically study the behavior of the out-of-time-
ordered correlation function (OTOC)—defined in Eq. (15)
as F (r, t ) = (1/D)Tr[Or(t )O′

0Or(t )O′
0]—in order to quantify

how local operators evolve under Heisenberg evolution by
the automaton quantum circuits that we have considered. The
primary purpose of our study of the OTOC is to argue that
the “nonconserved part” of Heisenberg evolution of a local
operator under automaton unitary dynamics—defined as the
portion of the evolution of an operator that has no overlap with
the conserved charges in the evolution—is quite generic, and
resembles the evolution under the most general, symmetry-
preserving unitary gates.

We study the following out-of-time-ordered correlation
functions:

FZX (r, t ) ≡ 1

D
Tr[Zr(t )X0Zr(t )X0], (41)

FXX (r, t ) ≡ 1

D
Tr[Xr(t )X0Xr(t )X0], (42)
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which we refer to as the “ZX” and “XX” OTOC’s for the
remainder of this section.

As detailed in Sec. II B, the ballistic growth of a non-
conserved operator in a chaotic quantum system, and the
equilibration of the local structure of these operators implies
(i) that the OTOC has a ballistically propagating front, and
(ii) that F (r, t ) → 0 as r/(vBt ) → 0. The saturation of the
OTOC also coincides with the development of volume-law
“operator entanglement” [37]. Finally, we observe that (iii)
the front of the OTOC is believed to broaden as ∼tα , where α

is a dimension-dependent exponent; in one spatial dimension,
the ends of an operator perform a biased random walk, leading
to α = 1/2, while in higher dimensions, these exponents are
related to the probability distributions for classical stochastic
growth processes [9]. We will verify these three features,
which are characteristic of operator spreading in chaotic sys-
tems, in the out-of-time-ordered correlations of the automaton
circuits considered previously.

In addition, we expect the ZX OTOC to have “tails”
connecting the ballistically propagating front of the OTOC,
to its value at position r, due to the fact that the slow-moving
conserved operators appearing in the Heisenberg evolution of
Zr can “emit” nonconserved operators, which then propagate
ballistically [11]. In contrast, no such tails are expected for
the XX OTOC, which should saturate (exponentially) rapidly
to its asymptotic value at times t > r/vB. As a result, we
consider a scaling form for the XX OTOC,

FXX (r, t ) = f

(
r − vB(�)t

tα(�)

)
, (43)

which is motivated by similar scaling forms for the OTOC
in a random unitary circuit [9]. Here, vB(�) and α(�) are
direction-dependent butterfly velocities and broadening expo-
nents, respectively, and � denotes a d-dimensional angle.

We measure these out-of-time-ordered quantities using
classical Monte Carlo techniques. For example, we may write

the ZX OTOC as

FZX (r, t ) = 1

D

∑
n

〈n|U †ZrUX0U
†ZrUX0|n〉

= 1

D

∑
n

〈n(t )|Zr|n(t )〉〈n′(t )|Zr|n′(t )〉, (44)

where |n′〉 = X0|n〉. Therefore measuring the ZX OTOC is
as simple as keeping track of the classical evolution of the
two states |n〉, |n′〉. The XX OTOC may be measured in
a similar manner, by evolving the two states |n〉 and |m〉,
applying a flip operator at site r to each state, and evolving
the resulting states backwards in time. The average overlap
between the resulting states gives the XX OTOC. In this
case, every space-time measurement at point (r, t ) requires an
independent simulation, making the XX OTOC measurements
somewhat slower to simulate in practice.

A. Numerical study of the OTOC

We now present the results of our measurements of the
out-of-time-ordered correlator. In Fig. 7, we see the growth of
the XX OTOC along the line r = (x, 0), for our 2D automaton
circuit. We observe a ballistically spreading light cone, and
that the OTOC is very nearly zero inside the light cone and
one outside. From similar measurements of the XX OTOC
along other directions, we observe a nearly isotropic butterfly
velocity. We also see in Fig. 7(c) that for a fixed position,
the OTOC appears to decay exponentially in time, within the
times that we are able to perform numerical simulations. This
is consistent with the expectation that the OTOC should decay
to zero at sufficiently long times. Finally, shown in Fig. 8 is
a scaling collapse of the XX OTOC, to the functional form
in Eq. (43); the optimal scaling collapse is to the butterfly
velocity vB and front broadening exponent α, which are given
by

vB

vmax
≈ 0.58, α = 0.308(18). (45)

FIG. 7. XX OTOC for the 2D automaton circuit. We measure the XX OTOC along the line r = (x, 0) for the 2D automaton circuit. In
(a) and (b), we observe a clear light cone, for a system with N = 3962 sites, whereby F (r, t ) ≈ 1 for |r| > vBt and F (r, t ) ≈ 0 for |r| < vBt , as
well as a broadening of the ballistically propagating front of the operator. In (c), we observe that at a fixed spatial position, the OTOC decays
exponentially to zero. Shown are exponential curves ∼ exp(−ct ) where c ∼ 1.53–1.16 depending on the position x. For this plot, we simulated
a smaller system with N = 962 sites in order to resolve this exponential decay with greater accuracy. In all plots, T ∗ = L/(2vB ) is the time for
the light cone to spread across the entire lattice.
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FIG. 8. Scaling collapse of the OTOC for the 2D and 3D automa-
ton circuits. (Top) Shown is a scaling collapse of FX X (x, t ) in 2D
to the functional form in Eq. (43), from which we observe that the
operator front broadens as ∼tα with α = 0.308(18). (Bottom) The
scaling collapse of the front of FZX (x, t ) in 3D with α = 0.220(5).
These should be compared with the theoretically predicted values of
α = 1/3 and 0.24 for the 2D and 3D cases respectively. Again, we
take T ∗ = L/(2vB). Both OTOC’s are calculated along the x axis.

Here, vmax is the light-cone velocity along the line r = (x, 0)
for our automaton circuit. This should be compared with α =
1/3, which is the observed broadening for a two-dimensional,
random unitary circuit, for which the growth of the OTOC
is related to the stochastic growth of a two-dimensional clus-
ter. The fluctuations in the growing edge of the cluster are
believed to be the same as the fluctuations in the height of
a stochastically growing, one-dimensional interface, which is
known to grow in time as t1/3 [9].

In Fig. 9, we look at the ZX OTOC, and we observe a
“tail” behind the ballistically propagating front of the OTOC,
due to the fact that the slow-moving operators that have
an overlap on the subsystem symmetry charges continue to
“emit” nonconserved operators that propagate ballistically.
We fit the tail of the OTOC data in two and three dimensions
to the functional form

FZX (r, t )
vBt�|r|∼ 1

(vBt − |r|)β (46)

and find that β = 0.50(1) for our 2D circuit with linelike sub-
system symmetries, while β = 1.02(7) for the 3D circuit with
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FIG. 9. The ZX OTOC. The OTOC FZX (r, t ) is shown along the
x axis, for both the 2D (top) and 3D (bottom) automaton circuits
considered previously. Here we can see a clear tail behind the leading
OTOC wave front. In the 2D circuit, this tail appears to have the
same functional form as a subleading tail for a 1D circuit with a
global U(1) symmetry. Fitting the tail at the latest times to FZX ∼
(vBt − |r|)−β gives β = 0.50(1). For the 3D circuit, the tail of the
OTOC (when vBt � |r|) takes the form FZX ∼ (vBt − |r|)−β with
β = 1.02(7). Again, we take T ∗ = L/(2vB ).

planar symmetries. Trendlines with this power-law behavior
are shown in Fig. 9.

For the 3D case, we are unable to calculate the XX OTOC
to long enough times that we are able to perform a satisfactory
scaling collapse to quantify the broadening of the front of
a nonconserved operator. Instead, we restrict our attention
to the ZX OTOC along the line r = (x, 0, 0). We obtain a
convincing scaling collapse of the ballistically propagating
front of this OTOC—with a front broadening exponent α =
0.220(5)—in Fig. 8(b); this is very close to the predicted value
of the broadening exponent obtained from studies of operator
spreading in Haar-random unitary circuits [9], which predict
α = 0.24. We also observe that the tail follows a power law
form as in Eq. (46), except with exponent β = 1.02(7), as
shown in Fig. 9.

We note that the values of the scaling exponent β in 2D and
3D are the same as the predicted exponents for regular charge
diffusion in the lower-dimensional 1D and 2D sub-manifolds,
respectively. We believe this is a consequence of fact that
〈r〉 ∼ t1/2 along these manifolds, which is the same behavior
for this observable as in regular diffusion.

B. Recurrence times

Finally, we study the recurrence time for product states in
the Pauli Z basis, evolving under the automaton dynamics;
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FIG. 10. Recurrence times. The number of time steps that the 2D
circuit is run before an initial product state |n〉 returns to its initial
value U t |n〉 = |n〉. The average number of time steps needed to see
such a recurrence grows exponentially with the volume of the system.

these product states only evolve to other product states in the
same basis. The recurrence time tprod(n) is then the circuit
depth for which the state returns to its initial value, i.e.,
Utprod (n)|n〉 = |n〉. In Fig. 10, we show the distribution of these
recurrence times, taken over the full set of states |n〉 in the
computational basis, for different system sizes. From the
peaks of these distributions, we obtain the typical recurrence
time as a function of system size, as shown in Fig. 10(b). We
see that tprod grows linearly in the Hilbert space dimension D
of the system, as predicted for a random automaton dynamics.
This is considerably slower than for fully chaotic systems,
where the recurrence time would be doubly exponential in
the number of sites, but considerably faster than translation
invariant, Floquet Clifford circuits, where one can prove that
trec = O(ln D) [13].

Additionally, given that the unitary circuits we consider
conserve dipole moment, the dynamics will have a “shattered”
Hilbert space [16,17]. That is, the time evolution operator will
be massively block diagonal even within a symmetry sector.
For automaton circuits, the size of a given dynamical sector
is equal to the recurrence time of an initial computational
basis state in that sector, and the observed broad distribution
of recurrence times is at least partially caused by this Hilbert
space shattering.

V. CONCLUSIONS

We have discussed a new class of circuits in two and
three dimensions, which produce a quantum dynamics that
is classically simulable. In particular, the evolution of certain
correlation functions under the action of these circuits is clas-
sically simulable even though the circuits generate operator
entanglement, since these dynamics avoid generating state
entanglement when acting on product states in the computa-
tional basis. We have introduced a set of circuits that respect
subsystem symmetries, conserving a U(1) charge along either
lines in two space dimensions, or along planes in three space
dimensions. These constraints lead to dynamics that lies in a
new universality class, with charge spreading subdiffusively
both with respect to the physical dimension and with respect
to the dimension of the submanifold in which the symmetries
act. In particular, for a two dimensional system with line like
symmetries, charge spreads as ln(t )/

√
t , whereas for a three

dimensional system with planar symmetries, charge spreads
as 1/t3/4. This behavior is captured by a finite difference
equation, the continuum limit of which yields an “anoma-
lous subdiffusion” equation in which the Laplace operator
is replaced by something akin to a square of the Laplace
operator.

While the dynamics we have considered are structured
(and have to be, in order to be classically simulable), we
have nevertheless shown that they do exhibit several features
commonly associated with chaos. In particular, OTOC’s in-
volving nonconserved operators exhibit a ballistic light cone
with a front that broadens as a dimension-dependent power
law. Furthermore these OTOC’s appear to saturate to zero
at long times, which suggests that the bulk structure of a
nonconserved operator equilibrates in a manner that is con-
sistent iwth quantum chaos. OTOCs between a conserved and
nonconserved operator exhibit in addition a “universal tail”
behind the propagating front, as has also been observed in a
random circuit with a global U(1) symmetry [11]. As such, we
conjecture that our results may hold in more generic quantum
dynamics with the same symmetries.

This work opens up a new direction for the exploration of
quantum dynamics, rendering accessible questions regarding
chaos and operator spreading in higher dimensions in a class
of circuits that are much less structured and more generic
than any previously known classically simulable higher-
dimensional circuit of which we are aware. It also opens the
door to a new class of dynamical phenomena produced by
subsystem conservation laws.

A number of extensions of this work immediately present
themselves for consideration. One possibility is to move
away from the square/cubic lattices considered herein, and
to consider instead subsystem symmetries on more general
crystal lattices. Symmetries involving fractal subsystems, as
in type-II fracton models [23,26] are important to consider.
Either of these extensions holds the promise of qualitatively
new universality classes for dynamical behavior. Extensions
of this work to Hamiltonian systems (rather than quantum
circuits) are of interest. We expect analogous behavior in
the Hamiltonian setting. Other potential extensions include
considering subsystem symmetry groups other than U(1). A
final possibility is to move away from gates with strictly local
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support to, e.g., quasilocal gates with exponential tails in real
space. We leave such questions for future work.
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APPENDIX A: OPERATOR SPREADING UNDER
AUTOMATON DYNAMICS

It is convenient to study the growth of the complexity
of an operator evolving under the automaton dynamics as
follows. We consider N spins with Hilbert space dimension
D = 2N . Let n ∈ {0, 1, . . . , D − 1} be an integer, and let n =
(n1, n2, . . . , nN ) be an N-component vector that corresponds
to the binary representation of integer n. We further define Sn

to be a product of Z operators that corresponds to the binary
representation n. Specifically,

Sn ≡
N∏

r=1

(Zr )nr . (A1)

For example, S0 is simply the identity operator, while S7 =
Z1Z2Z3 since seven is represented as 111000 · · · in binary. We
note that 1

D Tr(SnSm) = δnm, where D is the total Hilbert space
dimension.

Under the automaton dynamics, these operators evolve as

Sn(t ) = U (t )SnU (t )† =
D−1∑
m=0

anm(t )Sm. (A2)

In contrast, for a more general unitary dynamics, each of the
operators {Sn} will evolve into sums of arbitrary products of
Pauli operators in the system.

It is now convenient to define the following wave function
in a spin-(1/2) system with the same total Hilbert space
dimension

|n(t )〉 ≡
D−1∑
m=0

anm(t )|m〉, (A3)

where |m〉 is the representation of integer m as the state of a
spin-(1/2) system in the Pauli Z basis, with an up (down) spin
appearing whenever a 0 (1) occurs in the binary representation
of m; as a concrete example, the state

|1〉 ≡ | ↓↑↑ · · · 〉 (A4)

To summarize, Eq. (A2) describes the Heisenberg evolution
of operators under the automaton dynamics, while Eq. (A3)
describes a fictitious dynamics of a many-body wave function
in the same Hilbert space. While the entanglement of a wave
function in the Z basis does not grow under the automaton
dynamics, the states of the fictitious spin system do become
highly entangled as they evolve, reflecting the fact that typical

operators become quite entangled under the automaton evolu-
tion.

We now identify a few key points about the fictitious
dynamics of the state |n(t )〉. (I) The evolution of this wave
function is unitary, so that

|n(t )〉 = W (t )|n〉. (A5)

where W (t )W (t )† = W (t )†W (t ) = 1.
(II) W (t ) is exactly

W (t ) = H⊗NU (t )H⊗N , (A6)

where H is the single-qubit Hadamard gate that acts on Pauli
matrices as HXH = Z , HZH = X . That is W (t ) is the same
automaton unitary operator acting in a rotated basis.

Proof of (I). Since 〈m|W (t )|n〉 = anm(t ), we observe that

〈m|W (t )†W (t )|n〉 =
∑

k

amk (t )ank (t )

= 1

D
Tr[Sm(t )Sn(t )] = δmn, (A7)

〈m|W (t )W (t )†|n〉 =
∑

k

akm(t )akn(t )

= 1

D
Tr[Sm(−t )Sn(−t )] = δmn, (A8)

so that W (t ) is indeed unitary.
Proof of (II). The automaton unitary U(t ) acts as a permu-

tation π ∈ SD on the D-dimensional set of product states in
the Pauli Z basis. We define the projection operator

Pn ≡ |n〉〈n|. (A9)

The automaton unitary acts as

U (t )†PnU (t ) = Pπ (n). (A10)

This relation places a restriction on the coefficients amn(t ). We
first rewrite the projection operator as

Pn =
N∏

r=1

[
1 + (−1)nr Zr

2

]
= 1

D

D−1∑
m=0

(−1)n·mSm, (A11)

where n = (n1, . . . , nN ) is the N-component binary vector
that corresponds to the binary representation of n, and where
n · m is the dot product of the two vectors. The Heisenberg
evolution of this projector may be written as

U (t )†PnU (t ) = 1

D

D−1∑
m=0

(−1)n·mU (t )†SmU (t )

= 1

D

D−1∑
m,k=0

(−1)n·mamk (t )Sk = Pπ (n),

so that

D−1∑
m=0

(−1)n·mamk (t ) = (−1)π(n)·k. (A12)
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Using the fact that (1/D)
∑

m(−1)m·(n+k) = δn,k , we have
found that

amn(t ) = 1

D

D−1∑
k=0

(−1)π(k)·n+k·m. (A13)

This is equivalent to the statement that we wish to prove.
We observe that if |m〉 is a product state in the Pauli Z
basis, where the spin configuration corresponds to the binary
representation of the integer m as in Eq. (A4), then applying a
Hadamard gate to every spin yields

H⊗N |m〉 = 1√
D

D−1∑
n=0

(−1)m·n|n〉. (A14)

Now, we observe that

〈n|H⊗NU (t ) H⊗N |m〉 = 1

D

D−1∑
k,=0

(−1)m·k+n·�δπ (k),

= amn(t ).

We conclude that

W (t ) = H⊗NU (t ) H⊗N . (A15)

APPENDIX B: OPERATOR ENTANGLEMENT ENTROPY

We calculate the purity of the wave function in Eq. (A3),
which quantifies the complexity of the Pauli Z operator
spreading from the automaton dynamics. Consider a biparti-
tioning of the state |n(t )〉 in to an A and B subsystem, with
Hilbert space dimensions DA and DB = D/DA, respectively.
Furthermore, let {|mA,B〉} denote a complete set of states in A
and B, respectively; as before, we let mA,B denote the binary
vector representation of these states, so that the dot product
n · m = nA · mA + nB · mB.

Using this notation, we may write down the reduced den-
sity matrix as

ρA(n) = TrB|n(t )〉〈n(t )|

=
DA−1∑

mA, kA=0

ρA(mA, kA) |mA〉〈kA|, (B1)

where the matrix elements of the reduced density matrix are
given by

ρA(mA, kA) =
DB−1∑

mB,kB=0

δmB,kB anm(t )ank (t ). (B2)

Substituting the expression for anm(t ) and performed the sum
over mB, kB in the above expression yields

ρA(mA, kA) = DB

D2

D−1∑
q, r=0

[
δqB,rB (−1)qA·mA+rA·kA

× (−1)n·[π−1(q)+π−1(r)]
]
. (B3)

Here, π−1 is the inverse of the permutation π ∈ SD, while
π−1(q) is the vector representation of the element π−1(q),
as before. Using this expression, we find that the purity

(exponential of the second Rényi entropy) is given by

Tr ρ 2
A = 1

D2

D−1∑
r, r′, q, q′=0

[
δrA,qAδr′

A,q′
A
δrB,r′

B
δqB,q′

B

× (−1)n·[π−1(q)+π−1(q′ )+π−1(r)+π−1(r′ )]]. (B4)

We now calculate the purity, averaged over all permuta-
tions π ∈ SD. In this case, we observe that for nonzero n, the
quantity n · π−1(q) can be an even or odd integer with equal
probability, for a randomly chosen permutation π . Therefore,
for nonzero n, we observe that

1

D!

∑
π∈SD

(−1)n·[π−1(q)+π−1(q′ )] = δqq′ . (B5)

Similarly, the average of the expression in Eq. (B4) only
contributes if pairs of elements are equal. Therefore, for
nonzero n,

1

D!

∑
π∈SD

(−1)n·[π−1(q)+π−1(q′ )+π−1(r)+π−1(r′ )]

= δqq′δrr′ + δqrδq′r′ + δqr′δq′r − 2 δqq′δrr′δqr . (B6)

We may use this expression to compute the purity averaged
over all choices of permutations, which we denote as Tr[ρ2

A] .
Substituting Eq. (B6) into Eq. (B4) yields the result that

Tr ρ2
A(n) =

⎧⎨
⎩

1 (n = 0)

D−1
A + D−1

B − D−1 (n �= 0)
. (B7)

APPENDIX C: RECURRENCE TIME DISTRIBUTION

Consider the permutation group SD. If π ∈ SD has a length-
 cycle that includes a particular element (say the element
1), then we may write π as the product of two commuting
permutations, i.e.,

π = (1 k2 . . . k) σ, (C1)

with σ ∈ SD− acting on the D −  elements that do not appear
in the length- cycle. For a fixed set of elements k2, . . . , k,
the number of such permutations π ∈ SD is precisely ( −
1)!(D − )!. Furthermore, the number of ways to choose these

elements out of D elements is (
D − 1
 − 1 ). Therefore the number

of permutations π ∈ SD with a length- cycle that contains the
element 1 is precisely

( − 1)!(D − )!

(
D − 1
 − 1

)
= (D − 1)! . (C2)

Alternatively, the probability that a random permutation in SD

has a length- cycle containing a particular, fixed element m
is

P,m = 1

D
. (C3)

For a permutation π ∈ SD, we define n(π ) to be the length
of the cycle that element n is in. Using this, we may write that
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the average number of cycles 〈N〉 in a permutation is

〈N〉 = 1

D!

∑
π∈SD

[
D∑

n=1

1

n(π )

]
=

D∑
n=1

[
D∑

=1

P,n



]
=

D∑
=1

1


.

Similarly, the average return time for a random element 〈t〉 is
given by

〈t〉 = 1

D!

∑
π∈SD

[
1

D

D∑
n=1

n(π )

]

= 1

D

D∑
n=1

[
D∑

=1

P,n 

]
= D + 1

2
. (C4)

Therefore we conclude that

〈t〉 D→∞= D

2
〈N〉 D→∞= ln(D). (C5)

APPENDIX D: DYNAMICS WITH 1D SUBSYSTEM
SYMMETRIES IN TWO DIMENSIONS

We assume that the correlation function Gr,t ≡
Tr[Zr(t )Z0(t )]/D, where D = 2N is the Hilbert space
dimension of the N-site system evolves according to the
difference equation,

Gr,t+1 = 3
4 Gr,t + 1

8 [Gr+x̂,t + Gr−x̂,t + Gr+ŷ,t + Gr−ŷ,t ]

− 1
16 [Gr+x̂+ŷ,t + Gr−x̂−ŷ,t + Gr−x̂+ŷ,t + Gr+x̂−ŷ,t ].

Taking the continuum limit in time, so that Gr,t+1 ≈ G(r, t ) +
dG(r, t )/dt , and going to momentum space,

G(k, t ) ≡ 1√
N

∑
r

eik·rG(r, t ) (D1)

we find that
d

dt
G(k, t ) = − f (k)G(k, t ), (D2)

where

f (k) ≡ sin2

(
kx

2

)
sin2

(
ky

2

)
, (D3)

which then gives the solution

G(r, t ) = 1

N

∑
k

e−ik·r− f (k)t (D4)

given the initial condition G(r, 0) = δr,0.
We now evaluate G(0, t ): in the thermodynamic limit, we

make the replacement N−1 ∑
k → ∫

d2k/(2π )2, so that

G(0, t ) =
∫

d2k
(2π )2

e− f (k)t . (D5)

Performing the integral over kx yields

G(0, t ) =
∫ π

-π

dky

2π
exp

[
− t

2
sin2

(
ky

2

)]
I0

[
t

2
sin2

(
ky

2

)]
,

(D6)

where I0(z) is the modified Bessel function of the first kind.
Finally, the integral over ky yields

G(0, t ) = 1
2
F1

2
(1; 1; −t ), (D7)

where aFb(p; q; z) is the generalized hypergeometric function.
The asymptotic expansion of G(0, t ) at long times is then

G(0, t )
t→∞= ln(t )

π3/2
√

t
+ O

(
1√
t

)
. (D8)

More precisely, the asymptotic expansion is

G(0, t ) = 1

π3/2
√

t

[
ln(t ) − 2γ − 3√

π
�′(1/2)

]
+ · · · .

(D9)

Resolving the ln(t )/
√

t behavior would require going to very
long times (note the logarithm becomes approximately twice
as large as the constant correction only when t ∼ 104).

We now determine the late-time scaling of the correlation
function G(r, t )

G(r, t ) =
∫

d2k
(2π )2

eik·r− f (k)t (D10)

along the line r = (x, 0). Hereafter, we refer to this correlation
function as G(x, t ). Performing the integral over ky, we obtain

G(x, t ) = 2
∫ π

0

dk

2π
cos(kx) g(k, t ), (D11)

where

g(k, t ) ≡ e− t
2 sin2 ( k

2 ) I0

[
t

2
sin2

(
k

2

)]
. (D12)

At long times t � 1, the quantity (t/2) sin2(k/2) is large over
the interval k � 1/

√
t . The scaling of the correlation function

in this regime may be approximated by replacing g(k, t ) by its
asymptotic form at long times, for small k,∫ π

0

dk

2π
cos(kx)g(k, t )

t�1∼ 1√
t

∫
k�√

t

dk

2π

cos(kx)

k
.

This integral is logarithmically divergent at small k. When
t � x2 � 1, we may evaluate the integral perturbatively in
x/

√
t to find that

G(x, t ) ∼ 1√
t

[
ln

(√
t

x

)
+ O(1)

]
. (D13)

So that the correlation function “peaks” when t ∼ x2, and the
maximum peak height scales as ∼1/x.

APPENDIX E: LINELIKE SYMMETRIES IN 3D

For a three-dimensional system with intersecting, linelike
symmetries, we consider the natural generalization of Eq. (32)
in the space-time continuum limit:

∂t G(r, t ) = λ ∂2
x ∂2

y ∂2
z G(r, t ), (E1)

where λ is a free parameter of the evolution, so that

G(r, t ) ∼
∫

d3k exp
[
ik · r − k2

x k2
y k2

z t
]

(E2)

= 2π3/2

√
t

G5,0
2,7

(
v

w

∣∣∣∣x2y2z2

64λt

)
, (E3)

214301-15



IACONIS, VIJAY, AND NANDKISHORE PHYSICAL REVIEW B 100, 214301 (2019)

where Gm,n
p,q is the Meijer G function, and the vectors v and w

are defined as

v ≡
(

1

4
,

3

4

)
w ≡

(
0, 0, 0,

1

2
,

1

2
,

1

4
,

3

4

)
. (E4)

The asymptotic form t � x2y2z2 of this integral yields the
leading, long-time behavior

G(r, t )∼ ln2(t ) + O(ln(t ))√
t

(λt � x2y2z2). (E5)
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