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Phonon dispersion of binary alloys with auxiliary coherent potential approximation
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We report the auxiliary coherent potential approximation (ACPA) for calculating the phonon dispersion of
three-dimensional alloys with both mass and force-constant disorders. To obtain the average spectra function
of disordered alloys, the average coherent scattering structure factors are derived from the auxiliary coherent
medium in single-site approximation. We provide an analytical proof of the sum rule in the auxiliary coherent
medium, which ensures the analyticity of physical properties. To demonstrate the accuracy and applicability
of the ACPA method, we apply the ACPA to calculate phonon dispersion of several alloys, including CuPd
CuAu, PdFe, and NiPt with different disorder concentrations. We find the ACPA phonon dispersion results
agree very well with the itinerant coherent potential approximation calculations and experimental measurements.
The approximate separable force-constant model used in the ACPA can very well represent the first-principles
disordered force constants, presenting minor or even negligible influence on the phonon dispersion of the alloy.
The ACPA model features easy implementation and high computational efficiency, providing an effective method
for simulating vibrational properties of realistic alloys.
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I. INTRODUCTION

Understanding disordered lattice vibration is important
for many key properties of realistic materials containing in-
evitable disorders, including light adsorption, thermodynam-
ics, superconductivity, phase transition, thermal conduction,
and heat capacity [1]. However, effectively treating atomic
disorders has been a longstanding challenge for theoretical
simulation of disordered lattice vibrations, making many
important phenomena induced by disorders poorly under-
stood or even unexplored [2–4]. As known, the mean-field-
type method, coherent potential approximation (CPA) [5,6],
has achieved important success in calculating the electronic
properties of disordered materials by combining with first-
principles methods [7–16] and its various extensions to in-
clude off-diagonal disorders [17–25] and cluster effects and
nonlocal correlations [26–28], and nonequilibrium statistics
[29–34]. However, extending CPA to disorder lattice vibration
faces an important difficulty: the diagonal and off-diagonal
disorder in the vibrational Hamiltonian is connected by the
force-constant sum rule �ii = −∑

j �=i �i j (where � is the
force-constant matrix). For the lattice vibration, satisfaction
of the force-constant sum rule is required by the law of
momentum conservation and is thus important for correctly
calculating vibrational properties [35]. Presently, the con-
ventional CPA method [5] can only be applied to calculate
the effects of mass disorder, such as isotopes without force-
constant randomness [36]. Therefore, the approach to effec-
tively handle the force-constant disorder, as one of the key
disorders responsible for many important phenomena [37], is
key for simulating disordered lattice vibration.

*keyq@shanghaitech.edu.cn

With great theoretical efforts in past decades, consid-
erable progress has been achieved for treating both mass
and force-constant disorders. Based on the augmented-
space formalism (ASF) proposed by Mookerjee [38], the
augmented-space recursion method (ASR) [24] and the itin-
erant coherent potential approximation (ICPA) [23] have been
developed. Presently, the ASR method has been applied with
reasonable success to different alloys [39–42], and the ICPA
method has reproduced the phonon dispersion for several
alloys [43,44,46]. As an important advantage, ASR and ICPA
methods can provide the exact representation of the disordered
force constants for vibrational systems with the sum rule
obeyed. However, in comparison with the wide applications
of CPA in electronic systems, applications reported with ASR
and ICPA are rather limited, due to the fact that ASR and ICPA
are not easy to implement and computationally expensive.
Very recently, the authors proposed a new method, called the
auxiliary coherent potential approximation (ACPA) [25], to
treat both the mass and force-constant disorder. The ACPA
is based on an approximate force-constant decomposition
that transforms the force-constant disorder (correlating both
the diagonal and off-diagonal elements) into a diagonal-like
(single-site-dependent) disorder of an auxiliary system, and
then a conventional CPA algorithm can be applied to obtain
the auxiliary coherent medium to give averaged physical
properties. The ACPA thus features advantages of easy im-
plementation and high computational efficiency, similar to the
conventional CPA used for simulating electronic system. Due
to the feature of single-site disorder, the ACPA is feasible to
combine with diagrammatic techniques and various cluster
approximations to further account for the effects of clusters
and nonlocal correlations. Presently, the ACPA method has
been demonstrated only for a 1D disorder atomic chain in
which molecular ACPA can produce results close to the exact
results as the cluster size increases.
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However, there are still important concerns remaining,
including the applicability of the ACPA for realistic three-
dimensional alloys, and how well the results compare with
ICPA and experimental measurements, and whether the sum
rule is satisfied in the auxiliary coherent medium. In this
work, we will present our formulation and implementation of
the ACPA for calculating the phonon dispersion of alloys in
3D and compare our results for different alloys with ICPA
calculations and experiments. For realistic alloys, we show
the ACPA results in single-site approximation agree well with
the ICPA and experimental measurements, demonstrating the
important applicability of the ACPA. We also provide an
analytical proof of the sum rule in the auxiliary coherent
medium, ensuring the analyticity of the physical system.

The rest of the paper is organized as follows: In Sec. II, we
present the formulation and implementation of the auxiliary
CPA for simulating the three-dimensional realistic materials
with both mass and force-constant disorders. In Sec. III, we
provide a derivation of the coherent scattering structure factor
to give the phonon spectra function of alloys with the ACPA.
Section IV provides a proof of the sum rule for the coherent
medium in auxiliary CPA. In Sec. V we apply auxiliary
CPA to calculate the phonon dispersion curves for several
alloy materials and compare our results with previous ICPA
calculations and experimental measurements. We conclude in
Sec. VI and provide additional information in Appendix A.

II. AUXILIARY COHERENT POTENTIAL
APPROXIMATION FOR DISORDERED VIBRATION

For the completeness of our discussion, we will review the
basic ideas in the ACPA [25] and present the formulation and
implementation of the ACPA for simulating realistic materials
with atomic disorders. We consider a random alloy AxB1−x

in which the mass and force constants are random quantities,
e.g., the mass takes mQ

i , (Q = A, B) and the force constant
takes the possible values kQQ′

i j (Q, Q′ = A, B) determined by
the atomic occupations Q and Q′ of sites i and j. To introduce
an auxiliary CPA for realistic binary alloys, we adopt an ap-
proximate separable 3D force-constant model for the random
force constant

kQ,Q′
iα jβ = xQ

i Siα jβxQ′
j + λiα jβ (i �= j), (1)

where Siα jβ and λiα jβ with α and β denoting the bases are
independent of the atomic occupations on sites i and j, and the
information of the atomic occupant on the ith site is contained
in the quantity xQ

i (Q = A, B). Then, the force-constant matrix
for a specific random system can be given by

�iα jβ = −kQ,Q′
iα jβ , (i �= j), (2)

�iαiβ =
∑
j �=i

kQ,Q′
iα jβ , (3)

satisfying the sum rule that correlates the diagonal and off-
diagonal disordered elements.

In Eq. (1), the introduced force-constant model combines
geometric-scaled (first term) and the virtual-crystal (second
term) models to overcome the shortcomings of both models,
featuring higher accuracy and more general applicability.

As we will show in Sec. V, the model in Eq. (1) can provide
a rather accurate representation of the disordered force con-
stants for realistic alloys. Note that, for present applications,
we use the transferable force-constant model (TFC), which
takes the symmetric form [47]

k =
⎡
⎣ks 0 0

0 kb 0
0 0 kb

⎤
⎦, (4)

where ks and kb denote the respective force constants describ-
ing the bond stretching and bending. The adopted TFC [47]
model features important transferability of force constants,
providing a simplistic approach to determine the averaged
force constants for alloys. However, for complex environ-
ments [48], force constants have a strong dependence on the
local chemical environment, limiting the applicability of the
TFC model. It should be mentioned that Eq. (1) is a general
model and is not limited only to TFC with the form of Eq. (4).
For the study of real alloys, the parameters x, S, λ in Eq. (1)
can be obtained by fitting to the TFC, namely, kAA, kAB,
and kBB from first principles, with a numerical optimization
method as shown in Appendix A.

As an important result for using the separable force-
constant model of Eq. (1), the force-constant matrix of a
specific system can be rewritten as

� = XK, (5)

with the matrix element explicitly given by �iα jβ = XiiKiα jβ .
Here, X is a diagonal matrix Xi j = xiδi j , and the K matrix is
defined as, for an off-diagonal element,

Kiα jβ = −
(

Siα jβx j + λiα jβ

xi

)
(i �= j), (6)

and for a diagonal element,

Kiαiβ = 1

xi

∑
j �=i

kiα jβ =
∑
j �=i

(
Siα jβx j + λiα jβ

xi

)
. (7)

It is clearly seen that K matrix satisfies
∑

j Kiα jβ = 0. This
sum rule of K ensures that the force-constant sum rule is
always satisfied in our further derivation. Since the terms
containing xi and x j are linearly independent in Eqs. (6) and
(7), we can further decompose K into a sum of single-site
quantities, namely,

K =
∑

i

K̃ i, (8)

where the matrix K̃ i contains all the contributions only associ-
ating with xi. For a site i with Z nonzero force-constant neigh-
bors, the K̃ i matrix is of the size d (Z + 1) × d (Z + 1), where
d is the dimension of the system (hereafter the quantities with
a tilde are all d (Z + 1) × d (Z + 1) matrices). For an explicit
form, K̃ i reads

K̃ i
jα jβ = S jαiβxi, ( j �= i); (9)

K̃ i
jαiβ = − S jαiβxi, ( j �= i); (10)

K̃ i
iα jβ = − λiα jβ

xi
, ( j �= i); (11)
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K̃ i
iαiβ =

∑
j

λiα jβ

xi
; (12)

K̃ i
jα j′β =0, ( j, j′ �= i). (13)

It is clear that K̃i satisfies the sum rule, namely,
∑

J K̃ i
IαJβ = 0,

ensuring the force-constant sum rule.
As an important consequence, the Green’s function, de-

scribing the displacement-displacement correlator, can be
written as

G = (mω2 − D)−1 = gX −1, (14)

with the auxiliary Green’s function defined as

g = (X −1mω2 − K )−1. (15)

In this form, we can define the corresponding auxiliary Hamil-
tonian matrix P ≡ X −1mω2 − K . Importantly, P = ∑

i P̃i,
and the single-site quantity P̃i is given by

P̃i
IαJβ = x−1

i miω
2δIiδJi − K̃ i

IαJβ. (16)

In such a form, the general disorders in lattice vibration
are reduced to a diagonal-like disorder problem, enabling
the implementation of the conventional CPA to calculate
the disorder-averaged auxiliary Green’s function g to derive
physical properties of a disordered system.

To implement the CPA for vibrations in realistic materials
with general disorders, we introduce a effective medium with
coherent function P = ∑

i P̃ i to give the averaged auxiliary
Green’s function, namely, g = P−1. Here, the single-site co-
herent function P̃ i has the same size of d (Z + 1) × d (Z + 1)
as the quantity K̃ i and P̃i, differing from the site-diagonal
coherent function in the conventional CPA method [5,6].

Under the single-site approximation, the CPA condition for
obtaining P̃ i reads [49]

〈̃t i〉 =
∑

Q=A,B

cQ̃t i,Q = 0, (17)

where

t̃ i,Q = (P̃ i − P̃ i,Q)[1 − g̃
ii
(P̃ i − P̃i,Q)]−1. (18)

Note that considering the size of P̃ i − P̃i,Q, g̃
ii

refers to
the part in g containing site i and its neighbors with size
d (Z + 1) × d (Z + 1), different from the site-diagonal ele-
ment of g used in conventional implementations. To stably
solve the single-site CPA equations, we adopt the method with
a coherent interactor �̃i [50], whose size is also d (Z + 1) ×
d (Z + 1). We summarize our procedures for implementing
CPA and the computation of related quantities as follows:

(1) Initialize a P̃ i with the average-t-matrix approximation
(ATA) [51].

(2) Use P = ∑
i P̃ i to obtain the coherent function P with

lattice translational invariance.
(3) Apply the lattice Fourier transformation to obtain

Pbb′ (k) =
∑

T

Pb,b′+T eik·T (19)

for k in the Brillouin zone (BZ), where b, b′ refer to the basis
vectors in the unit cell, T denotes the translational vectors,

and Pb,b′+T refers to the element of full matrix P [the size of
P (k) is ds × ds, where s refers to the number of sites in a unit
cell].

(4) Calculate g̃
ii

by using the relations

g(k) = P (k)−1 (20)

and

g̃
ii,b+T ,b′+T ′ = 1

�

∫
dkgbb′ (k)e−ik·(T ′−T ), (21)

where � is the volume of Brillouin zone, and b + T , b′ + T ′
denotes the lattice sites including the i site and its nonzero
force-constant neighbors.

(5) Calculate the coherent interactor �̃i using

�̃i = P̃ i − g̃−1
ii

. (22)

(6) Calculate an output P̃ i with

P̃ i =
⎡
⎣∑

Q

cQ
i (P̃i,Q − �̃i )−1

⎤
⎦

−1

+ �̃i. (23)

(7) Obtain a new input by properly mixing the input P̃ i

and output P̃ i and then repeat the above calculations from the
second step until P̃ i is converged.

III. COHERENT SCATTERING STRUCTURE FACTOR

In this section, based on the formalism of the ACPA, we
derive the averaged coherent scattering structure factor to de-
termine the phonon dispersion of alloys, aiming to make direct
comparison with experimental measurements. The averaged
coherent scattering structure factor can be defined as [24]

〈Sλ(k, ω)〉coh = − 1

π

∑
QQ′

dQdQ′
Im

〈
GQQ′

λ (k, ω)
〉
, (24)

where λ is a normal-mode branch index, and dQ is the co-
herent scattering length for the species Q. The partial Green’s
function 〈GQQ′

(k, ω)〉 corresponding to species Q and Q′ is
given by the lattice Fourier transformation〈

GQQ′
bb′ (k, ω)

〉 =
∑

T

〈
GQQ′

b,b′+T (ω)
〉
eik·T , (25)

where b, b′ refers to the basis vectors in the unit cell, T
denotes the translational vector, and 〈GQQ′

i j 〉 is related to the
conditionally averaged Green’s function by〈

GQQ′
i j

〉 = cQ
〈
GQ

ii

〉
δi jδQQ′ + cQcQ′ 〈

GQQ′
i j

〉
(1 − δi j ), (26)

where 〈GQQ
ii 〉 corresponds to the disordered system with Q

fixed on the i site, and 〈GQQ′
i j 〉 corresponds to the disordered

system with Q and Q′ fixed on the respective sites i and j.
According to Eq. (14), the conditionally averaged Green’s

function is connected to the conditionally averaged auxiliary
Green’s function by the relations〈

GQQ
ii

〉 = 〈
gQ

ii

〉(
xQ

i

)−1
, (27)〈

GQQ′
i j

〉 = 〈
gQQ′

i j

〉(
xQ′

j

)−1
(i �= j). (28)
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Here, we adopt the occupation-operator technique to calculate
the conditionally averaged auxiliary Green’s functions 〈gQ

ii 〉
and 〈gQQ′

i j 〉 [52]. (For completeness, we include a derivation
in Appendix B; here we summarize the major results.) For
the quantity 〈gQ

ii 〉, we can find, in single-site approximation
(SSA), 〈

gQ
ii

〉 = (g + g̃t i,Qg)ii, (29)

which describes a system containing a site i with a fixed
Q atom embedded in a coherent medium after averaging.
Furthermore, for 〈gQQ′

i j 〉, describing an averaged system in
which i, j sites are fixed to the respective elements Q, Q′, we
obtain the SSA result〈

gQQ′
i j

〉 = [(1 + g̃t i,Q)g(1 + t̃ j,Q′
g)]i j . (30)

It is clear that, after obtaining the conditionally averaged
auxiliary Green’s functions with g, we can calculate averaged
coherent scattering structure factors, namely, 〈Sλ(k, ω)〉coh for
each k, to obtain the phonon dispersion curves.

IV. SUM RULE IN COHERENT MEDIUM

In the above, we have presented the formalism of the ACPA
for computing the disorder averaged Green’s function. Here,
we provide an analytical proof of the fact that the auxiliary
coherent medium satisfies the sum rule, guaranteeing the
momentum conservation which is important for correctly
simulating physical properties [53]. To do so, we can rewrite
the coherent potential P̃ i into two parts: a coherent matrix
K̃i(ω) and a term with effective M̃i(ω) times ω2, similar to
Eq. (16):

P̃ i = M̃iω2 − K̃i. (31)

As we have shown for a system, the force-constant sum rule
is ensured by the fact that the K̃ i matrix elements satisfy the
important relation

∑
J K̃ i

IJ = 0 for each site. A similar sum
rule for the coherent matrix K̃i should promise the satisfaction
of momentum conservation law in the coherent medium.
Therefore, we need to prove the existence of such M̃i and
K̃i with the relation ∑

J

K̃i
IJ = 0, (32)

where I, J denote the i site and its neighbors. We are going
to test the relations in Eqs. (31)–(32) with various approx-
imations, including a virtual crystal approximation (VCA),
the average-t-matrix approximation, and then the coherent
potential approximation.

To proceed, we start from the VCA, namely,

K̃ i
VCA = −P̃i

VCA + M̃i
VCAω2 =

∑
Q

cQK̃i,Q, (33)

where M̃i
VCA,IJ = 〈x−1

i mi〉δIiδJi. By considering Eqs. (9)–(12),
we have, for each element Q at site i,∑

J

K̃ i,Q
IJ = 0, (34)

and together with Eq. (33), we can find∑
J

K̃ i
VCA,IJ = 0, (35)

which ensures the sum rule for a medium with VCA.
Taking the P̃i

VCA as the reference, we have the P̃i
ATA as

follows:

P̃i
ATA = P̃i

VCA − (1 + 〈̃t i 〉̃gVCA,ii )
−1〈̃t i〉, (36)

where 〈̃t i〉 = ∑
Q cQ̃t i,Q, and

t̃ i,Q = [
1 − (

P̃i
VCA − P̃i,Q

)̃
gVCA,ii

]−1(
P̃i

VCA − P̃i,Q
)
, (37)

which can be decomposed as

t̃ i,Q = −̃si,Q + p̃i,Qω2, (38)

where s̃i,Q = [1 − (P̃i
VCA − P̃i,Q )̃gVCA,ii]−1(K̃ i

VCA − K̃ i,Q)
and p̃i,Q = [1 − (P̃i

VCA − P̃i,Q )̃gVCA,ii]−1(M̃i
VCA − M̃i,Q) and

M̃i,Q
IJ = (xQ

i )−1mQ
i δIiδJi.

To proceed, we introduce a lemma: If matrix A satisfying∑
j Ai j = 0, for any B matrix, the matrix product BA always

satisfies ∑
j

(BA)i j = 0. (39)

Since
∑

J (K̃ i
VCA − K̃ i,Q)IJ = 0, the lemma Eq. (39)

leads to ∑
J

s̃i,Q
IJ = 0. (40)

Thus we can write K̃ i
ATA as

K̃ i
ATA = K̃ i

VCA − (1 + 〈̃t i 〉̃gVCA,ii )
−1〈̃s i〉, (41)

where 〈̃s i〉 = ∑
Q cQ̃si,Q. With Eqs. (35) and (40), the lemma

promises the sum rule for K̃ i
ATA:∑

J

K̃ i
ATA,IJ = 0. (42)

With Eq. (36), the corresponding M̃i
ATA is given by

M̃i
ATA = M̃i

VCA − (1 + 〈̃t i 〉̃gVCA,ii )
−1〈p̃ i〉, (43)

where 〈p̃i〉 = ∑
Q cQ p̃i,Q.

For the medium in CPA, by using Eq. (22), Eq. (23), and
g = P−1, an iterative equation similar to Eq. (36) can be
obtained:

P̃ i
N+1 = P̃ i

N − (
1 + 〈̃

t i
N

〉̃
gN,ii

)−1 〈̃
t i
N

〉
, (44)

where t̃ i,Q
N = [1 − (P̃ i

N − P̃i,Q )̃gi
N ]−1(P̃ i

N − P̃i,Q), and N de-
notes the N th iteration step.

Similarly, from Eq. (44), K̃i
N and M̃i

N can be given as

K̃i
N+1 = K̃ i

N − (
1 + 〈̃

t i
N

〉̃
gN,ii

)−1 〈̃
s i

N

〉
, (45)

where s̃ i,Q
N = [1 − (P̃ i

N − P̃i,Q )̃gN,ii]−1(K̃i
N − K̃ i,Q), and

M̃i
N+1 = M̃i

N − (
1 + 〈̃

t i
N

〉̃
gN,ii

)−1〈
p̃ i

N

〉
, (46)

where p̃ i,Q
N = [1 − (P̃ i

N − P̃i,Q )̃gN,ii]−1(M̃i
N − M̃i,Q).

We usually choose ATA as the initialization of CPA, i.e.,
P̃ i

1 = P̃i
ATA, K̃i

1 = K̃ i
ATA, and M̃i

1 = M̃i
ATA. Then, with the
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lemma in Eq. (39), it is easy to obtain the sum rule for K̃i
N

of any iteration: ∑
J

K̃i
N,IJ = 0. (47)

As an important result, when the iteration converges,
the coherent potential P̃ i can be decomposed as P̃ i =
M̃iω2 − K̃i, with K̃i satisfying the sum rule.

Specifically, when mA/xA = mB/xB, namely, only K has
disorder, we have M̃i,A = M̃i,B = M̃i

VCA. Then, with Eqs. (43)
and (46), we can find M̃i = M̃i

ATA = M̃i,A, and the sum rule
of K̃i for the coherent medium directly corresponds to the sum
rule of K̃ i for a specific system.

As a direct consequence, K satisfying the sum rule ensures
the existence of one acoustic mode at (ω = 0, k = 0) for
the coherent medium. To show this, we consider the secular
equation of the coherent medium

det |Kαβbb′ (k) − Mω2δαβδbb′ | = 0, (48)

where b, b′ denotes the basis vectors of the unit cell.
When k = 0, one may obtain, for any b,∑

b′
Kαβbb′ (0) =

∑
b′,T

Kαβb,b′+T = 0, (49)

and as a result, det |Kαβbb′ (0)| = 0 [54]. Therefore, ω = 0
is a solution to the secular equation at k = 0. If the sum
rule of K is broken, there will be no zero-frequency mode
at k = 0. Thus the satisfaction of the sum rule is significant
for the correct simulation of phonon dispersion of disordered
materials.

In addition, we note that the auxiliary Hamiltonian P ≡
X −1mω2 − K in general does not conserve the symmetry
Pi j = Pji for a specific system. However, we have numerically
checked another important symmetry, namely, the averaged
physical Green’s function 〈Giα, jβ〉 = 〈Gjβ,iα〉 [computed by
using the relation 〈Gi, j〉 = ∑

QQ′ cQ
i cQ′

j 〈GQQ′
i, j 〉 and Eqs. (28)

and (30)], which is strictly satisfied for a disordered alloys,
and this symmetry reflects the symmetry of the corresponding
effective physical Hamiltonian after disorder averaging.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, to demonstrate the applicability of the
ACPA method for the disordered lattice vibrations in real-
istic alloys, we calculate the phonon dispersion for different
alloys including fcc Cu0.715Pd0.285, Cu0.75Au0.25, Pd0.96Fe0.04,
Ni0.95Pt0.05, Ni0.25Pt0.75, Ni0.30Pt0.70. We compare ACPA re-
sults with the calculations of ICPA [43–45] and experimental
measurements [55–61]. In our simulation, we did not cal-
culate force constants by ourselves, and we use the same
TFCs as ICPA calculations in Refs. [43–45], which are ob-
tained from first principles with density functional perturba-
tion theory [62]. The reliability of the TFC model for the
alloys we investigate here has been well demonstrated in
Refs. [43–45].

To enable ACPA calculation, we use an optimization
method to obtain the parameters, including xA/B, S, and λ, in
the approximate force-constant model of Eq. (1) for different
alloys, by fitting to the first-principles force constants (for

optimization procedures, see Appendix A). In the present
optimization, we use the equal weighting for ks and kb to
minimize relative errors of the optimized force constants. In
Table I, for all six alloys, we present the optimized parameters
and the obtained approximate force constants together with
the original first-principles results. It is clearly seen that the
approximate separable force-constant model, namely, Eq. (1),
can provide a very good representation of the first-principles
force constants k̃Q,Q′

s/b for different Q, Q′ pairs of all six alloys.
In particular, for all the alloys, the relative error between the
optimized force constants k̃Q,Q′

and the first-principles result
kQ,Q′

is about a few percent for both stretching and bending
components, providing an important basis for the applicability
of the ACPA. For example, for the alloy Cu0.75Au0.25, the
optimized k̃CuCu

s , k̃CuAu
s , and k̃AuAu

s are the respective val-
ues of 22 707.20, 39 762.02, and 66 962.44 (dyn/cm), fitting
very well to the respective original first-principles results
22 639.54, 40 107.48, and 66 595.32 (dyn/cm) [44]. It is also
worth mentioning that the force constants of alloys with the
same compositions have important dependence on the concen-
trations, as shown in Table I, and the force-constant model of
Eq. (1) can work well for alloys with different concentrations.
After the parameters in the separable force-constant model are
determined, we can carry out the ACPA to obtain the physical
properties of the alloys. It should be mentioned here that, as
we will show in the following, the small error in the optimized
force constants presents minor or even negligible effects in the
phonon dispersion of different alloys.

The theoretical phonon dispersion ω(k) is obtained as
the frequencies corresponding to the peaks of the averaged
coherent scattering structure factor 〈Sλ(k, ω)〉coh in Eq. (24)
for each k. (For the used coherent scattering length of each
element, see the Ref. [63]). We present the phonon dispersion
curves along all the symmetry directions [including (ζ , 0, 0),
(ζ , ζ , 0), and (ζ , ζ , ζ )] in Fig. 1 for the Cu0.715Pd0.285,
Cu0.75Au0.25, Pd0.96Fe0.04, and Ni0.95Pt0.05 and in Fig. 2 for
Ni0.25Pt0.75 and Ni0.70Pt0.30 fcc alloys. For a fair comparison,
we have also implemented the ICPA in our code, and ICPA
calculations are carried out for both the original and optimized
force constants (with the same simulation settings as the
ACPA). We find our ICPA calculations reproduce very well
the ICPA results in Refs. [43–45] for all six alloys. As shown
in Figs. 1 and 2, despite the very different algorithm of the
ACPA and the ICPA methods, results of the ACPA method
(in red) present very good agreement with the calculations
by ICPA (in black) for all the binary alloys, demonstrating
the important applicability of the ACPA method for dis-
ordered lattice vibration. For example, in Pd0.96Fe0.04 and
Ni0.95Pt0.05 with low concentration of disorder, the ACPA
and the ICPA produce almost the same phonon dispersion.
For the alloys with high disorder concentration, only minor
deviation between the ACPA and the ICPA can be found in
some small area of k, for example, around [0.48,0,0] and
[0.48,0.48,0] in Cu0.75Au0.25, at about [1.0,0,0] in Ni0.25Pt0.75

and Ni0.70Pt0.30, as shown in Fig. 2. Here we attribute the small
deviation between the ACPA (red) and the ICPA (black) to
the difference in the two theoretical methods but not to the
small difference between the original and approximate force
constants used in the respective ICPA and ACPA calculations.

214206-5



CHENG, SANG, ZHAI, AND KE PHYSICAL REVIEW B 100, 214206 (2019)

TABLE I. Force constants ks/b (in units of dyn cm−1) for six alloys with first-principles methods using the TFC model [43–45], the
optimized force constants k̃s/b, relative errors es/b, and the corresponding parameters in the separable force-constant model [25] (xA = 1.0).

AcB1−c Pair type ks kb k̃s k̃b es eb xB Ss Sb λs λb

Cu-Cu 23981.67 –1289.29 24378.00 –1251.18 1.7% 3.0%
Cu0.715Pd0.285 Cu-Pd 37793.93 –1528.49 36303.32 –1609.61 3.9% 5.3% 1.94430 12628.74 –379.57 11749.26 –871.61

Pd-Pd 58285.63 –2372.90 59489.72 –2306.50 2.1% 2.8%

Cu-Cu 22639.54 –1537.81 22707.20 –1535.19 0.3% 0.2%
Cu0.75Au0.25 Cu-Au 40107.48 –3546.24 39762.02 –3568.89 0.9% 0.6% 1.59488 28669.37 –3418.67 –5962.18 1883.48

Au-Au 66595.32 –6844.91 66962.44 –6812.39 0.6% 0.5%

Pd-Pd 45925 –2424 45685.48 –2435.54 0.5% 0.5%
Pd0.96Fe0.04 Pd-Fe 35698 –1880 35905.51 –1870.05 0.6% 0.5% 2.30555 –7491.07 433.14 53176.55 –2868.68

Fe-Fe 13366 –566 13357.31 –566.30 0.7% 0.1%

Ni-Ni 32600 –378 32225.83 –378.88 1.1% 0.2%
Ni0.95Pt0.05 Ni-Pt 65604 –2495 68080.44 –2432.47 3.8% 2.5% 1.576578 62185.18 –3561.68 –29959.35 3182.80

Pt-Pt 128283 –5550 124608.02 –5670.11 2.9% 2.2%

Ni-Ni 23872 –482 23685.30 –483.12 0.8% 0.2%
Ni0.70Pt0.30 Ni-Pt 51584 –2516 52950.94 –2448.04 2.6% 2.7% 1.75997 38508.94 –2611.84 –14823.64 2128.72

Pt-Pt 106572 –5867 104457.59 –5961.44 2.0% 1.6%

Ni-Ni 11816 –608 11732.66 –610.41 0.7% 0.4%
Ni0.25Pt0.75 Ni-Pt 31291 –2542 32159.49 –2479.36 2.8% 2.5% 2.05765 19313.41 –1767.08 –7580.75 1156.67

Pt-Pt 75860 –6203 74190.75 –6325.01 2.2% 2.0%

FIG. 1. Dispersion curves (frequency ν vs reduced wave vector ζ , where ζ = |�k|
|�kmax| and �k is the phonon wave vector) for four alloys

including Cu0.715Pd0.285 in (a), Cu0.75Au0.25 in (b), Pd0.96Fe0.04 in (c), and Ni0.95Pt0.05 in (d). Red solid line: ACPA results; black dash dot lines:
ICPA results with the first-principles force constants from Refs. [43–45]; brown dash lines: ICPA results with optimized force constants given
by Table I. The green squares refer to the experimental data from Refs. [55–61].
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FIG. 2. Dispersion curves for Ni0.25Pt0.75 and Ni0.70Pt0.30 alloys

(frequency ν vs reduced wave vector ζ , where ζ = |�k|
|�kmax| , and �k

is the phonon wave vector). Red solid line: ACPA results; black
dash dot lines: ICPA results with the first-principles force constants
from Ref. [45]; brown dash lines: ICPA results with optimized
force constants given by Table I. The green squares refer to the
experimental data from Ref. [61].

As shown for all six alloys, the ICPA calculations with the
original and optimized approximated force constant produce
almost the same phonon dispersion, demonstrating the fact
that the separable force-constant model of Eq. (1) can very
well represent the disordered force constants obtained from
first principles. For a disordered system, the disorder average
can smear out the small difference in the used force constants.
Although, as we find, the ACPA and the ICPA are completely
equivalent for mass-only disorder, the different treatments of
the force-constant disorder in the CPA self-consistency give
rise to the small deviations in the phonon dispersion of the
ICPA and the ACPA. Despite that the ICPA and the ACPA are
very close in accuracy, it should be mentioned that the ACPA
calculation is computationally cheaper than ICPA calculations
with our present implementation, and moreover, the ACPA
is easy to implement. After Fourier transformation, for each
k point in the first Brillouin zone, the matrix P (k) in the
ACPA [see Eq. (19)] for fcc alloys has the size 3 × 3, which
is much smaller than the matrix V (k) with size 39 × 39 (the
number of the nearest-neighboring sites Z = 12) in ICPA (see

Eq. (A5) in Ref. [23]). Thus, for the matrix multiplication and
inversion, whose computational cost scales as O(n3) (where
n is the size of the matrix), the computation with ACPA is
about 133 times faster than that with ICPA. After including
all numerical procedures, the overall calculation of ACPA is
about 1–2 orders magnitude faster than ICPA.

In Figs. 1 and 2, the available neutron-scattering measure-
ments are included to compare with the theoretical results. As
shown in Fig. 1, for the alloys Cu0.715Pd0.285, Cu0.75Au0.25,
Pd0.96Fe0.04, and Ni0.95Pt0.05, both the ACPA and the ICPA
calculations can provide a very good description of the exper-
imental phonon dispersion. Therefore, we can see the ACPA
method presents important predictive capability for simulating
lattice vibration of realistic alloys. However, as reported in
Ref. [45], there are some anomalous features of phonon dis-
persion in Ni0.25Pt0.75 and Ni0.70Pt0.30 that cannot be produced
with ICPA. As shown in Fig. 2, the experimental disper-
sion curve of Ni0.25Pt0.75 features a double-peaked behavior
for both the transverse and the longitudinal modes around
[0.55,0,0], while the result of Ni0.70Pt0.30 shows a double-
peaked behavior for the transverse modes from [0.5,0,0] to
[1.0,0,0]. Both the ACPA and the ICPA results cannot pro-
duce these splitting features and resonance branches in the
experimental results. These anomalous features might arise
from the cluster or local environment effect of the disorders,
which is beyond the ICPA and the ACPA in the single-site
approximation. Although the ACPA or the ICPA in SSA have
an important deficiency in the symmetry direction [ζ , 0, 0],
the theoretical results agree well with the experimental mea-
surements in the other two symmetry directions, as shown for
Ni0.70Pt0.30. We thus have demonstrated the important applica-
bility of the ACPA method (in SSA) by applying it to several
alloys and comparing with ICPA and experimental results.
Here, due to the single-site representation of the disorders,
the ACPA model for both mass and force-constant disorders
poses an important potential to combine with the cluster
approximations, and diagrammatic corrections to account
for effects of clusters and nonlocal correlation of disorder
scattering.

Moreover, as shown in Fig. 3, we compare the averaged
coherent scattering structure factor of the ACPA and ICPA
models for several k points and the associated disorder-
induced phonon broadening for the Ni0.25Pt0.75 alloy. It is
clear that, for the different k points, peak positions of the
ACPA and ICPA models are almost the same, giving rise to
the good agreement in the phonon dispersion curves shown in
Figs. 1 and 2. However, there are important differences in
the phonon broadening, i.e., the linewidth of the averaged
coherent scattering structure factor, between the ACPA and
ICPA results. For example, for the state [0.5, 0.5, 0]L, the
ACPA linewidth is 0.27 THz whereas the ICPA linewidth
is 0.48 THz; and for the state [0.3, 0.3, 0.3]L, the ACPA
linewidth is 0.26 THz whereas the ICPA linewidth is
0.49 THz. This difference in phonon broadening reflects the
major theoretical difference between the ACPA and the ICPA
approaches on dealing with force-constant disorders. A de-
tailed comparison of the major differences of ACPA and ICPA
formalisms is going to be reported in our next work [64].

Here we have reported the phonon dispersion results for
several binary alloys. However, it is worth mentioning that,
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FIG. 3. Averaged coherent scattering structure factors for Ni0.25Pt0.75 alloy at several different k points. Red solid line: ACPA results; black
dash dot lines: ICPA results with the first-principles force constants from Ref. [45]; brown dash lines: ICPA results with optimized force
constants given by Table I.

since the ACPA formalism features the single-site charac-
teristics, the ACPA method can be extended to multiple-
component alloys similar to the conventional CPA, providing
wider applicability for simulating disordered lattice dynamics.

VI. CONCLUSIONS

In this paper we demonstrate the accuracy and applicability
of the ACPA approach for calculating the phonon dispersion
of three-dimensional realistic binary alloys with both mass
and force-constant disorders. We derive the coherent scatter-
ing structure factor to obtain the average phonon spectra and
prove the sum rule in the auxiliary coherent medium to ensure
the analyticity of physical properties. We have applied the
ACPA to calculate the phonon dispersion of several realistic
alloys and find the results agree well with results of ICPA and
experimental measurements. The ACPA features the advan-
tage of a higher computational efficiency and the potential
to go beyond single-site approximation. Thus, we conclude
that the ACPA provides an effective approach to simulate the
vibrational properties of real materials and explore various
features arising from disorders.
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APPENDIX A: OPTIMIZATION DETAILS

For arbitrary force-constant parameters ks and kb, the sep-
arable force-constant model cannot provide an exact repre-
sentation. Thus we need to optimize the parameters xA/B,
Ss/b, and λs/b by fitting to the force constants obtained by
first-principles calculations. In this case, we use the Gauss-
Newton method to solve the nonlinear least-squares problem.

The residuals are given by

ri = ki − fi(β), (A1)

where ki takes kQQ′
s/b for all kinds of Q, Q′, s/b, and fi(β) =

xQSs/bxQ′ + λs/b represents the corresponding separable force
constant given in Eq. (1) as a function of the parameters
β = (xA/B, Ss, Sb, λs, λb). To solve the nonlinear least-squares
problem, the sum of squares of residuals S = ∑

i Wir2
i , where

Wi represents the weight of residuals, needs to be minimized,
which gives five equations in the form of

∂S

∂β j
= 2

∑
i

Wiri
∂ri

∂β j
= 0. (A2)

To solve these equations to obtain optimized β, we should start
with an initial guess β1 and refine it iteratively as

β j ≈ βN+1
j = βN

j + 
β j, (A3)

where N denotes the N th iteration step.
To obtain the proper shift vector 
β, we expand the residu-

als ri ≈ ki − fi(β
N + 
β) as a first-order Taylor polynomial:

ri = 
ki −
∑

l

Jil
βl , (A4)

where


ki = ki − fi(β
N ) (A5)

and

Ji j = ∂ fi

∂β j
= − ∂ri

∂β j
. (A6)

Substituting Eqs. (A4) and (A5) into Eq. (A2) and rearranging
it, we obtain∑

i

∑
l

Ji jWiJil
βl =
∑

i

Ji jWi
ki, (A7)
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or in a matrix form,

JT W J
β = JT W 
k. (A8)

Then we can obtain


β = (JT W J )−1JT W 
k (A9)

to update parameters β as Eq. (A3) until β converges.

APPENDIX B: CONDITIONALLY AVERAGED AUXILIARY
GREEN’S FUNCTIONS

For the completeness of introduction, we provide the
derivation details with the occupation-operator technique
for the conditionally averaged auxiliary Green’s function.
(Details can be found in the Ref. [52]). To evaluate 〈gQ

ii 〉
and 〈gQQ′

i j 〉, we first introduce the occupation matrix [50]
η̃i,Q, where η̃i,Q = 1 if a Q atom is at the i site, and
η̃i,Q = 0 otherwise. Then 〈gQ

ii 〉 and 〈gQQ′
i j 〉 can be expressed

respectively as 〈
gQ

ii

〉 = 1

cQ
i

〈̃ηi,Qg〉ii (B1)

and 〈
gQQ′

i j

〉 = 1

cQ
i cQ′

j

〈̃ηi,Qg̃ηi,Q′ 〉i j . (B2)

From the definition of η̃i,Q, we can define the random quantity
P̃i as

P̃i =
∑

Q

η̃i,QP̃i,Q (B3)

and have the relation ∑
Q

η̃i,Q = 1. (B4)

With Eq. (B3), Eq. (B4), and the definition of η̃i,Q, we can
obtain

η̃i,A = −(
P̃i )−1(P̃i,B − P̃i ) = −(P̃i,B − P̃i )(
P̃i )−1, (B5)

η̃i,B = (
P̃i )−1(P̃i,A − P̃i ) = (P̃i,A − P̃i )(
P̃i )−1, (B6)

where 
P̃i = P̃i,A − P̃i,B.

To eliminate the random quantity P̃i, we use the definitions
g = P−1 and g = P−1, and obtain

P = P + g−1 − g−1, (B7)

which directly gives three matrix identities:

〈Pg〉 = Pg, (B8)

〈gP〉 = gP, (B9)

〈PgP〉 = PgP + 〈P〉 − P . (B10)

Substituting Eqs. (B5), (B6), and (B7) into Eqs. (B1) and (B2),
respectively, and employing the three identities, we obtain〈

gQ
ii

〉 = ( f̃ i,Qg)ii (B11)
and 〈

gQQ′
i j

〉 = ( f̃ i,Qg̃h j,Q′
)i j, (B12)

where

cA
i f̃ i,A = −(
P̃i )−1(P̃i,B − P̃ i ), (B13)

cA
i h̃i,A = −(P̃i,B − P̃ i )(
P̃i )−1, (B14)

cB
i f̃ i,B = (
P̃i )−1(P̃i,A − P̃ i ), (B15)

cB
i h̃i,B = (P̃i,A − P̃ i )(
P̃i )−1. (B16)

With the CPA condition 〈̃t i〉 = 0, f̃ i,Q and h̃i,Q can be
rewritten in a more compact form [52] as follows:

f̃ i,Q = 1 + g̃
iĩ
t i,Q, (B17)

h̃i,Q = 1 + t̃ i,Q̃g
ii
, (B18)

and then Eqs. (B11) and (B12) become〈
gQ

ii

〉 = (g + g̃t i,Qg)ii, (B19)

as given in Eq. (29), and〈
gQQ′

i j

〉 = [(1 + g̃t i,Q)g(1 + t̃ j,Q′
g)]i j, (B20)

as given in Eq. (30).
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