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Two-photon absorption in a two-level system enabled by noise
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We address the textbook problem of dynamics of a spin placed in a dc magnetic field and subjected to an ac
drive. If the drive is polarized in the plane perpendicular to the dc field, then the drive photons are resonantly
absorbed when the spacing between the Zeeman levels is close to the photon energy. This is the only resonance
when the drive is circularly polarized. For a linearly polarized drive, additional resonances corresponding to
absorption of three, five, and multiple odd numbers of photons is possible. Interaction with the environment
causes the broadening of the absorption lines. We demonstrate that the interaction with environment enables
the forbidden two-photon absorption. We adopt a model of the environment in the form of random telegraph
noise produced by a single fluctuator. As a result of the synchronous time fluctuations of different components
of the random field, the shape of the two-photon absorption line is non-Lorentzian and depends dramatically on
the drive amplitude. This shape is a monotonic curve at strong drive, while, at weak drive, it develops a two-peak
structure reminiscent of an induced transparency on resonance.
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I. INTRODUCTION

It has been known for a long time [1–3] that a spin placed in
a magnetic field, B = ẑB0, and subjected to a linear ac drive,
B1 = x̂2B1 cos ωt , exhibits Rabi oscillations when the driving
frequency, ω, is close to

ω2p+1 = B0

2p + 1
, (1)

where p is integer and the magnetic field is measured in
the frequency units. The frequency of (2p + 1)-photon Rabi
oscillations at resonance is, within a factor, given by [2]
B2p+1

1

B2p
0

. Coupling to the environment [4] causes the decay

of the Rabi oscillations, i.e., dephasing. In the frequency
domain, two split Rabi δ-peaks in the absorption spectrum
acquire a finite width and, upon further increasing of cou-
pling to the environment, gradually merge into a single
peak.

For some time now [5–13] Rabi oscillations can be realized
on individual two-level systems rather than on ensembles.
In these realizations, the role of ↑ and ↓ states of a spin is
played by different charge- or flux-states of a superconducting
qubit.

Absence of even-photon absorption peaks follows from
the Floquet description of the driven two-level systems. The
argument presented in Ref. [1] is general and goes as follows.

The system relating the amplitudes of ↑ and ↓ projections
of spin reads

iĊ 1
2

= B0

2
C 1

2
+ B1 cos ωt C− 1

2
,

iĊ− 1
2

= −B0

2
C− 1

2
+ B1 cos ωt C 1

2
. (2)

Searching for solutions in the form

C 1
2

= eiλt
∞∑

−∞
αneinωt , C− 1

2
= eiλt

∞∑
−∞

βneinωt , (3)

where λ is the Floquet exponent, reduces the system Eq. (2)
to the infinite set of coupled equations[

(λ + nω) − B0

2

]
αn = B1

2
(βn−1 + βn+1), (4)[

(λ + nω) + B0

2

]
βn = B1

2
(αn−1 + αn+1). (5)

In the limit of a weak drive, B1 � B0, a single-photon res-
onance corresponds to λ ≈ −ω

2 . For this λ the brackets in
front of α1 and β0 become small. To find the value of λ

with accuracy up to the Bloch-Siegert shift, it is sufficient to
truncate the system neglecting all αn and βn except for α1 and
β0. We then obtain λ = ± 1

2 [(ω − B0)2 + B2
1]

1/2
, which is the

Rabi result. The truncation is valid when B1 is much smaller
than B0. In particular, for a single-photon absorption, setting
n = −1 in Eq. (4), we find that α−1/β0 is, within a factor,
equal to B1/B0. Equally, upon setting n = −1 in Eq. (5), we
find that β−1/α0 is, within a factor, equal to B1/B0. Other
nonresonant coefficients are of even higher order in the ratio
B1/B0.

A two-photon resonance, if it were allowed, would corre-
spond to λ � B0 so that the brackets in front of α1 and β−1

become small. However, it is seen from the system Eqs. (4)
and (5) that α1 and β−1 are completely decoupled. Indeed, αn

with n odd is coupled only to βn with n even and vice versa.
The message of the present paper is that for a drive fre-

quency, ω, close to B0
2 , coupling to the environment enables

the resonant two-photon absorption. We calculate the shape
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FIG. 1. (a) Schematic illustration of the resonant two-photon ab-
sorption. The frequency, ω, of drive with amplitude B1 � ω is tuned
to the condition � = (B0 − 2ω) � ω, where � is the detuning;
(b) for polarization of drive, B1 cos ωt , in the plane perpendicular to
the field, B0, two-photon absorption is forbidden. The environment
can be viewed as a random magnetic field b(t ) = [bx (t ), by(t ), bz(t )]
fluctuating with time. Coupling of the two-level system to the en-
vironment enables the two-photon absorption; (c) we assume that
the random field, b(t ), is produced by a fluctuator coupled to the
two-level system via the dipole-dipole interaction. Thus, the vector
b(t ) assumes two positions, ±(bx, by, bz ), and switches between
them at random moments. As a consequence, the components of b(t )
fluctuate in-phase.

of the absorption peak as a function of the drive amplitude
and the parameters of the environment.

To illustrate the effect, we choose the simplest model of
the environment illustrated in Fig. 1. It represents a single
fluctuator with a telegraph-noise dynamics and coupled to the
spin by the dipole-dipole interaction. We also demonstrate that
for a general form of the environment, the magnitude of the
two-photon absorption depends crucially on whether different
components of the random magnetic fields are correlated
or not.

We propose that this unexpected two-photon absorption,
enabled by ambient noise, should be observable in de-
vices made of organic semiconductors such as organic light-
emitting diodes (OLEDs).

II. EFFECTIVE HAMILTONIAN

Consider a single fluctuator shown in Fig. 1. By virtue
of the dipole-dipole interaction, this fluctuator produces a
random magnetic field b(t ) = [bx(t ), by(t ), bz(t )] at the lo-
cation of the spin; see Fig. 1. As a result, the terms ±B0

2 in

Eq. (2) become ±B0+bz (t )
2 , while the term B1 cos ωt becomes

B1 cos ωt + bx(t ) ± iby(t ).
To incorporate the environment into the Floquet descrip-

tion, one has to remove the exponent eiλt and assume instead
that the coefficients αn and βn are themselves time-dependent.
This generates the terms α̇n and β̇n on the left-hand sides of
the system Eqs. (4) and (5). In fact, only the derivatives α̇1

and β̇−1 should be kept. This is because we assume that the
dynamics of the environment is slow, i.e., ωτ � 1, where τ is
the characteristic correlation time of the environment. Under
this condition, all the terms α̇n and β̇n other than α̇1, β̇−1 are
added to much bigger terms (nω + B0

2 )αn and (nω − B0
2 )βn,

respectively.
Coupling of the amplitudes α1 and β−1 is mediated by

the intermediate states with amplitudes α0, α−1, and β0, β1.
Keeping only these six amplitudes, we arrive at the following

truncated system:

iα̇1 − � + bz

2
α1 = B1

2
β0 + b−

2
β1,

−B0

2
α0 = B1

2
(β−1 + β1) + b−

2
β0,

B0

2
β0 = B1

2
(α−1 + α1) + b+

2
α0,

−B0α−1 = B1

2
β0 + b−

2
β−1,

B0β1 = B1

2
α0 + b+

2
α1,

iβ̇−1 + � + bz

2
β−1 = B1

2
α0 + b+

2
α−1, (6)

where b± = bx ± iby and

� = B0 − 2ω (7)

is the detuning from the two-photon resonance. In the coef-
ficients in front of the nonresonant amplitudes we have set
ω = B0

2 .
The strategy to analyze the system Eq. (6) is to express

the intermediate amplitudes, α0, α−1, β0, and β1 in terms of
α1 and β−1. As a first step, we express α−1 and β1 from the
fourth and fifth equations and substitute them into the second
and third equations. This yields

−
(

B0 + B2
1

2B0

)
α0 − b−β0 = B1

(
b+
2B0

α1 + β−1

)
,

(
B0 + B2

1

2B0

)
β0 − b+α0 = B1

(
α1 − b−

2B0
β−1

)
. (8)

Clearly, the term B2
1

2B0
is much smaller than B0 and can be

neglected. This term contributes to the Bloch-Siegert shift of
the two-photon resonance. Solving the system Eq. (8) in the
leading order, we find

α0 = −B1

B0

(
b+ + 2b−

2B0
α1 + β−1

)
,

β0 = −B1

B0

(
2b+ + b−

2B0
β−1 − α1

)
. (9)

Next, we express β1 and α−1 using Eq. (9) and substitute them
into the right-hand sides of the first and sixth equations of the
system Eq. (6). Upon doing so, we conclude that the equations
for α1 and β−1 reduce to the pair of the Schrödinger equations
generated by the effective Hamiltonian

Ĥeff = [� + bz(t )]Sz + b̃x(t )Sx, (10)

where the effective field b̃x(t ) is defined as

b̃x(t ) = 2B2
1

B2
0

bx(t ). (11)

Note that the by-component of the random field drops out of
the effective Hamiltonian. Technically, this happens because
Ĥeff contains the combination b+ + b− = 2bx(t ).
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III. ABSORPTION SPECTRUM

A. General expression

In calculating the absorption coefficient from the Hamilto-
nian Eq. (10) we take advantage of the fact that b̃x is small,
namely, b̃xτ � 1. This justifies using the cumulant expansion
[14] to describe the dynamics of the disorder-averaged spin. In
particular, the spin-spin correlation function, Sz(0)Sz(t ), has
the form

Sz(0)Sz(t ) = exp

[
−

∫ t

0
dt1

∫ t1

0
dt2K (t1 − t2)

]

= exp

[
−

∫ t

0
dt1(t − t1)K (t1)

]
, (12)

where the correlator, K (T ), is defined as

K (T ) =
〈
b̃x(0)b̃x(T ) cos

[
�T +

∫ T

0
dt ′bz(t ′)

]〉
, (13)

and 〈...〉 stands for the averaging over the realizations of
random time-dependent magnetic fields. Analytical form of
the correlator is found in the Appendix within the model of the
fluctuator, for which random magnetic fields bz(t ) and bx(t )
fluctuate in-phase and assume two values ±bx and ±bz. The
durations of intervals between switching events from bx, bz to
−bx,−bz are distributed following the Poisson distribution

p(ti ) = 1

τ
exp

(
− ti

τ

)
, (14)

where τ is the average time between the successive switch-
ings.

It is convenient to cast the result obtained in the Appendix
in the form

K (T ) = b̃2
xτ cos(�T )(
1 − b2

zτ
2
)1/2

[
1

τ f
exp

(
− T

τ f

)
− 1

τs
exp

(
−T

τs

)]
,

(15)

where τ f and τs denote the fast and slow relaxation times
defined as

τ f = τ

1 + (
1 − b2

zτ
2
)1/2 , τs = τ

1 − (
1 − b2

zτ
2
)1/2 . (16)

It should be emphasized that Eq. (15) is derived for bx(t ),
bz(t ) fluctuating in-phase. A dramatic consequence of these
in-phase fluctuations is the sign minus between the two expo-
nential terms. As a result, K (T ) changes sign as a function of
T . If only bx(t ) fluctuated, as is the case considered in Refs.
[13,15,16], then the two terms in Eq. (15) would add rather
than subtract. Below, we will see that this difference has a
dramatic effect on the absorption lineshape [17]

I (�) = 2
∫ ∞

0
dt cos(�t )Sz(0)Sz(t ), (17)

using the spin-spin correlation function Eq. (12).

B. Shape of the absorption spectrum

Technically, the calculation is performed with the help of
the relation∫ t

0
dt1(t − t1) cos(�t1) exp

(
− t1

τ0

)

= tτ0

1 + �2τ 2
0

− τ 2
0

(
1 − �2τ 2

0

)
(
1 + �2τ 2

0

)2

+ τ 2
0

[(
1 − �2τ 2

0

)
cos �t − 2�τ0 sin �t(

1 + �2τ 2
0

)2

]
exp

(
− t

τ0

)
.

(18)

At long times, the term linear in t dominates the result. With
correlator Eq. (15), this term assumes the form∫ t

0
dt1(t − t1)K (t1)

= b̃2
xτ t(

1 − b2
zτ

2
)1/2

[
1

1 + �2τ 2
f

− 1

1 + �2τ 2
s

]
. (19)

Note that, for � = 0, the linear term vanishes. This is the
consequence of the in-phase fluctuations of bx(t ) and bz(t ).

Further calculations are performed for the most interesting
regime of the two-photon absorption, the “spectral narrowing”
regime [18–20], bzτ � 1. Under these conditions, the fast and
slow times differ strongly, namely, τs � τ f . Indeed, expand-
ing Eq. (16) we get

τ f = τ

2
, τs = 2

b2
zτ

. (20)

At zero detuning, the exponent in Eq. (12) is dominated by
subleading terms in Eq. (18). Thus, instead of Eq. (21) one has∫ t

0
dt1(t − t1)K (t1)

∣∣∣
�=0

≈ b̃2
xτ

[
τs

(
1 − e− t

τs

)
− τ f

(
1 − e

− t
τ f

)]
. (21)

Since τs � τ f , the second term can be dropped. It then follows
from Eq. (21) that the magnitude of absorption is governed by
the dimensionless parameter

β = b̃2
xττs = 2

b̃2
x

b2
z

, (22)

so that for β ∼ 1, the characteristic time in the integral
Eq. (17) is t ∼ τs. It also follows from Eq. (21) that for β ∼ 1
the characteristic detuning is � ∼ τ−1

s . Indeed, in terms of
parameter β, the leading term Eq. (21) can be cast in the form

β�2τst

1 + �2τ 2
s

. (23)

It is now convenient to rewrite the expression Eq. (17) for
the absorption spectrum by introducing the dimensionless
variables

t1 = t

τs
, δ = �τs. (24)

214205-3



MKHITARYAN, BOEHME, LUPTON, AND RAIKH PHYSICAL REVIEW B 100, 214205 (2019)

FIG. 2. The shapes of the two-photon absorption spectra cal-
culated numerically from Eq. (25) are plotted for small (a) and
large (b) values of the parameter β [Eq. (22)]. For low β values,
a dip appears around zero detuning. Upon the increase of β ∝ B4

1

the shape evolves from a two-peak structure to a single peak. Note
that the widths of the curves are only weakly dependent on β. This
dependency should be contrasted to the situation when only the bx

component fluctuates. In this situation, the width grows linearly with
β. In panels (c) and (d), the numerical curves are shown together
with the approximate expressions Eqs. (27) and (26), respectively
(dotted lines). It is seen that Eq. (27) describes the small-β behavior
fairly accurately, while Eq. (26) captures the shape of the spectrum
at large β.

In terms of these variables, Eq. (17) assumes the form

I (δ) = 2τs

∫ ∞

0
dt1 cos δt1 exp

(
− βδ2t1

1 + δ2

)

× exp

{
β

(1 − δ2)(1 − e−t1 cos δt1) + 2e−t1δ sin δt1
(1 + δ2)2

}
.

(25)

Numerical plots of I (δ) for different β are shown in Fig. 2.
Our prime observation is that, for strong drive, I (δ) is a mono-
tonic curve, while for a weak drive it develops a minimum at
δ = 0. We have traced this anomalous behavior to the fact that
the term cos �t is present both as the prefactor of Eq. (25) and
in the exponent. We emphasize again that oscillations in the
exponent play a role only because the leading term Eq. (23)
is suppressed at small δ, which, in turn, is the consequence
of the in-phase fluctuations of bx(t ) and bz(t ). Concerning the
width of the curves, they narrow down upon increasing drive.
Although it is impossible to evaluate the integral Eq. (25)
analytically, we were able to capture the behavior of numerical
curves under certain assumptions. If we neglect the oscillating
terms in the exponent completely, then the integral can be
easily evaluated yielding

I (δ) = 2τsβ
1 + δ2

(1 + δ2)2 + β2δ2
exp

{
β

1 − δ2

(1 + δ2)2

}
. (26)

Not surprisingly, the above expression is a monotonic curve.
For β � 1, the shape, I (δ), is a Lorentzian, I (δ) ∝ 1

1+δ2 , while

for large β, it is again a Lorentzian, I (δ) ∝ 1
1+β2δ2 , but with a

much smaller width.
To capture synchronous oscillations of the prefactor and

the exponent, we perform the integration by parts in Eq. (25)
and, subsequently, again neglect the oscillations in the expo-
nent. The result again reduces to the elementary integrals and
has the form

I (δ) = τsβ

[
2(1 + δ2)

(1 + δ2)2 + β2δ2
+ 1

1 + δ2(1 + β )

− 3(1 + δ2) + βδ2

4δ2(1 + δ2)2 + (1 + δ2(1 + β ))2

]

× exp

{
β

1 − δ2

(1 + δ2)2

}
. (27)

The first term in Eq. (27) reproduces the previous result
Eq. (26). However, for � = 0, Eq. (27) yields zero. From
Fig. 2 we see that Eq. (26) describes the numerical results
at large β (i.e., under the conditions of strong drive), while
Eq. (27) captures a minimum at weak drive. In other words,
Eq. (26) completely neglects the synchronous oscillations,
while Eq. (27) overestimates them. Roughly, one can argue
that the true absorption spectrum lies in between the analytical
predictions Eq. (26) and Eq. (27). Recalling that the parameter
β is proportional to the fourth power of drive implies that the
shape of the absorption spectrum is extremely sensitive to the
drive magnitude.

C. Domain of applicability of the analytical results

The form of the expressions Eqs. (26) and (27) suggests
that they do not apply in the domain β � 1. Indeed, expo-
nential growth of the absorption with β is unphysical. This
prompts us to examine the validity of the general expression
Eq. (12) for the spin-spin correlator. We will see that the expo-
nential growth is the consequence of the in-phase fluctuations
of bx(t ) and bz(t ). For uncorrelated bx(t ), bz(t ) there is no
unphysical growth and the criterion b̃xτ � 1 is sufficient to
express the correlator in terms of the second cumulant.

The easiest way to derive Eq. (12) is to analyze the system
of equations of motion for the spin projections which follow
from the effective Hamiltonian Eq. (10):

∂Sx

∂t
= −[� + bz(t )]Sy,

∂Sy

∂t
= −b̃x(t )Sz + [� + bz(t )]Sx,

∂Sz

∂t
= b̃x(t )Sy. (28)

Upon eliminating Sx and Sy and using the initial conditions
Sx(0) = Sy(0) = 0, we arrive to the following closed integral
equation for Sz(t ):

Sz(t ) = 1

−
∫ t

0
dt1

∫ t1

0
dt2b̃x(t2)b̃x(t1)

× cos

[
�t1 +

∫ t1

t2

dt ′bz(t ′)
]

Sz(t2). (29)
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This equation is exact and applies for an arbitrary noise
realization. It can be reduced to a closed integral equation for
Sz(t ), the average over the noise realizations. The form of the
closed integral equation is the following [14]:

Sz(t ) = 1 −
∫ t

0
dt1

∫ t1

0
dt2K (t1 − t2)Sz(t2), (30)

where K (t ) is the noise-averaged kernel in Eq. (29) given by
Eq. (13). Importantly, the reduction of Eq. (29) to Eq. (30)
is valid under the assumption that the decay of Sz(t ) is much
slower than the decay of K (t ); see the Ref. [21]. The same
assumption allows us to reduce Eq. (30) to the following
integrodifferential equation:

dSz(t )

dt
= −Sz(t )

∫ t

0
dt2K (t − t2). (31)

The solution of this equation reproduces the result Eq. (12).
Now we have to check the basic assumption that Sz(t ) falls

off slower than K (t ). If only bx(t ) fluctuated, i.e., bz(t ) = 0,
then the timescale for the change of K (t ) would be τ [see
Eq. (15)], while the timescale for the decay of Sz(t ) would
be (b̃2

xτ )−1. This yields the conventional condition b̃xτ � 1,
which we assumed to be met.

For the in-phase fluctuations of bx(t ) and bz(t ), the corre-
lator falls off over much longer time τs � τ . However, Sz(t )
decays over time much longer than (b̃2

xτ )−1. This decay time

can be estimated from Eq. (21) to be t ∼ (b̃2
xτ )−1( 1+�2τ 2

s
�2τ 2

s
).

Then the basic assumption reduces to the inequality

β <
1 + δ2

δ2
. (32)

This condition forbids large values of β, i.e., small values
of bz � b̃x. In the opposite limit of small bz the absorption
spectrum is Lorentizan with the width � = b̃2

xτ , i.e., it grows
with drive as B4

1.
The condition that β is small can be derived more formally.

To arrive to Eq. (31) we have taken Sz(t ) out of the integrand
at time moment t2 = t . It would be more accurate to use the
expansion [22] in the vicinity of t2 = t ,

Sz(t2) = Sz(t ) + (t2 − t )
dSz(t )

dt
. (33)

This would lead to the following improved expression for
Sz(t ):

Sz(t ) = exp

[
−

∫ t

0
dt1

∫ t1
0 dt2K (t2)

1 − ∫ t1
0 dt2t2K (t2)

]
. (34)

It differs from Eq. (12) by the denominator in the integrand.
One can check that for small β this denominator is close to 1.

IV. DISCUSSION

In this section we discuss the experimental feasibility of
the predicted effect and put it into a general perspective.

A. General remarks

1. The phenomenon of two-photon absorption is widely
used in many different domains of science and engineering,

primarily due to its nonlinear dependency on intensity which
opens the possibility of depth resolution in light-matter in-
teraction, but it is usually considered in the context of elec-
tronic dipole transitions. Because of the angular momentum
of the photon, the parity of an electronic state changes after
absorption of a photon but remains the same under two-photon
absorption. One- and two-photon absorption therefore probe
different electronic states under electronic dipole transition.
For magnetic dipole transitions, in contrast, because of the
change in spin quantum number, the matrix element becomes
nonvanishing between states of the same parity, irrespective of
whether one or two photons are absorbed at once. Magnetic-
dipole two-photon absorption therefore offers a method to
excite odd-parity states, which are spin forbidden, and has
been used to study paraexcitons in semiconductors and
insulators [23].

2. While our result of the absence of absorption at zero
detuning bears some superficial resemblance of conventional
electromagnetically induced transparency (EIT), analogues of
which can also be generated in magnetic-resonant systems
[3,24], we stress that the origin is completely different. In
EIT, quantum interference occurs between different transition
pathways of a multilevel system, whereas here, we consider
solely the effect of noise on two-level systems.

In fact, the origin of the dip at zero detuning is a di-
rect consequence of the in-phase telegraph-noise fluctuations
of bx(t ) and bz(t ). Indeed, upon setting � = 0 in the ef-
fective Hamiltonian Eq. (10), it assumes the form Ĥeff =
bz(t )Sz + b̃xSx. Note that the eigenvalues of this Hamiltonian,
±[bz(t )2 + b̃x(t )2]

1/2
, are time-independent. As bz, b̃x change

to −bz, −b̃x, two eigenvectors remain the same while their
eigenvalues interchange. As a result, despite the randomness
of the switching moments, Sz(t ) oscillates with time. Hence,
there is no absorption.

B. Relevance to organic semiconductors

1. In addition to superconducting qubits [5–11,25], a nat-
ural setup to verify our predictions is nuclear magnetic reso-
nance, see, e.g., Ref. [26], although identification of individual
spectral lines requires very high sensitivity and selectivity
which can be hard to achieve given the limits imposed on
sampling frequency by the small nuclear gyromagnetic ra-
tio. However, the two-photon absorption predicted above is
proportional to the fourth power of the ratio B1/B0, and is
generally very weak. Spin resonance in electronic systems
appears to offer a more promising avenue. Indeed, a very
high sensitivity of optical and electrical detection of magnetic
resonances has recently been demonstrated in organic semi-
conductors; see Refs. [27–31]. Crucially, instead of measuring
magnetic polarization, these experiments report on the permu-
tation symmetry of pairs of spins and are therefore much more
sensitive than conventional measurements of magnetization.
Also, organic semiconductors are appealing because of the
long spin lifetimes of carriers [32].

2. Experimental observation of the predicted effect necessi-
tates strong drive conditions where the carrier-wave frequency
B0 is of the order of the Rabi frequency B1 and, in addi-
tion, both frequencies are comparable to that of the noise.
Since MHz magnetic resonances are detectable electrically
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in OLEDs [33], such systems should offer an avenue for
observing forbidden two-photon transitions.

3. In contrast to other well-defined spin systems such as
color centers in diamond, spin-1/2 paramagnetic species in
organic semiconductors do not experience any appreciable
zero-field splitting. As a consequence, magnetic resonance
can even occur at zero external field, mediated alone by
the local hyperfine fields [33]. Electrically detected magnetic
resonance (EDMR) in OLEDs bears some resemblance to
magnetic-field effects and magnetic resonance phenomena
in radical-pair-based chemical reactions [34,35] but offers
more flexibility in terms of choosing the crucial ratio between
carrier-wave frequency (B0), Rabi frequency (B1) and the
noise amplitude, which is determined by the local hyperfine
fields. These fields, in turn, can be tuned chemically by
controlling the isotopic ratio of hydrogen and deuterium [36].
OLEDs offer the crucial advantage in EDMR experiments that
the active device area undergoing resonance can be shrunk in
size almost arbitrarily. This control is crucial not only to en-
able the generation of high resonant driving field amplitudes
[37] but also to ensure a high level of homogeneity of the
B0 field. The latter aspect is crucial in controlling the degree
of static disorder of the Zeeman-split two-level system with
respect to the magnitude of dynamic disorder, which enables
the dipole-forbidden two-photon transition.

4. Since an OLED operates by spin-dependent recombina-
tion of electrons and holes, EDMR does not, strictly, probe
a two-level system, but two effectively degenerate two-level
systems of the Zeeman-split electron and hole spin levels.
Under strong drive, when the drive amplitude exceeds the
variation in the expectation value of the hyperfine fields,
electron and hole resonance become indistinguishable so that
a new Dicke-type “superradiant” spin-1/2 resonant species
emerges [36]. Since spin-orbit coupling and resulting shifts
of the gyromagnetic ratio are negligible at low frequencies
[38], hyperfine coupling provides the only source of inhomo-
geneous broadening of the resonance. Recently, clear Zeeman
resonances in EDMR were reported at frequencies as low
as 5 MHz for a hydrogenated organic semiconductor; [33]
for deuterated materials, this limit is expected to be much
lower. It should therefore be straightforward to find a suitable
parameter space where the resonance frequency is of order the
typical noise frequency.

V. CONCLUDING REMARKS

1. In spirit, the noise-induced absorption bares some simi-
larity to the hyperfine-induced excitation of the electron spin
resonance predicted and observed in Ref. [39]. In simple
terms, the idea of Ref. [39] can be explained as follows.
Suppose that the driving field, B1, is absent, but the quantum
dot confining an electron is “shaken” in space by an ac electric
field with resonant frequency. As a result, hyperfine fields
of nuclei inside the dot also change with time with resonant
frequency and play the role of B1. Since the hyperfine fields
constitute the environment, the resonance observed in Ref.
[39] can be viewed as environment-mediated.

In fact, the setup in the experiment of Ref. [39] included
two quantum dots. Beating of electrons between the dots can
be viewed as pseudospin dynamics. The shaking of the dots

then couples the true electron spin dynamics to pseudospin
dynamics [40].

2. The description of the ac absorption within the Bloch
equations [41], where the bath is modeled by the spin-lattice
relaxation time, T1, does not capture the two-photon reso-
nance. To replicate a number of nontrivial effects, a micro-
scopic model of the environment must be specified. Moreover,
it is necessary to go beyond the Bloch-Redfield description,
as discussed in, e.g., Ref. [42]. For example, modeling of the
environment by a periodic modulation of the applied field can
also allow two-photon absorption to occur [26].

3. While we have used the language of a spin driven by
an ac magnetic field, the results apply quite generally for any
driven two-level system. Usually, as, e.g., in Refs. [43–51],
the effect of the environment on multiphoton absorption is
studied under the conditions where this absorption is allowed
even in the absence of environment. By contrast, our main
message here is that the environment itself can actually enable
an absorption which is otherwise forbidden.

4. The qualitative explanation of the absence of even-
photon resonances without an interaction with the bath is
that linearly polarized drive has matrix elements |↓〉 → |↑〉
and |↑〉 → |↓〉 but not |↓〉 → |↓〉 or |↑〉 → |↑〉. Thus, each
interaction with the drive is accompanied by a spin-flip. Even
number of interactions with the drive necessarily returns the
spin to the initial state, thus forbidding the absorption of
the even number of drive quanta. As mentioned in Ref. [2]
and elaborated on in Refs. [47], [49], a tilt of the dc field
away from the plane normal to the drive polarization results
in the matrix elements |↓〉 → |↓〉 and |↑〉 → |↑〉 becoming
nonzero, thus allowing the absorption of an even number of
drive quanta. In our study, the dc field is normal to the drive,
yet the fluctuating field produced by the environment can be
viewed as a time-dependent tilt of the dc field.

5. A formal reason why in-phase fluctuations of bx(t ) and
bz(t ) result in an unconventional shape of the two-photon
absorption is the following. The argument of the cosine in
the correlator Eq. (13) contains the integral

∫ T
0 dtbz(t ), and

the prefactor has the form b̃x(0)b̃x(t ). As a result of the in-
phase fluctuations, b̃x(t ) and bz(t ) are proportional to each
other. Thus, the prefactor is proportional to the derivative
of the argument of the cosine, so that the correlator itself
becomes proportional to the full time derivative of the os-
cillating function. The leading term Eq. (21) is proportional
to the integral of the correlator. Thus, it is not surprising
that this integral is zero for � = 0. We then conclude that
for environment of a spin representing not a single but an
ensemble of fluctuators, for which bx and bz are different
but fluctuate in-phase, the above property still holds. Thus,
we would intuitively expect the double-peaked shape of the
absorption spectrum to emerge.

6. It is instructive to put our results into a more general
perspective of spectral narrowing [18–20]. The randomness of
bz emulates the spectral narrowing. However, if bx fluctuates
in phase with bz, then the effect of spectral narrowing is un-
done. The same effect can be reformulated in the language of
Franck-Condon physics. Within the Franck-Condon picture,
the optical matrix elements are renormalized due to coupling
of the electronic level to nuclear vibrations. If, hypothetically,
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the transition between electronic levels was due to the same
vibrations, then the Franck-Condon selection rule would be
lifted. In this regard, note that breaking of the Franck-Condon
principle occurs in multi-level systems such as molecules,
where different electronic transitions intermix because of mu-
tually shared vibrations and electronic and vibronic transitions
are no longer independent [52].
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APPENDIX

From the definition Eq. (13) it is apparent that the �-
dependence of the correlator is cos �T . Thus, it is sufficient
to carry out calculations for � = 0. For the telegraph noise,
the correlation function, K (T ), can be expressed as a sum

K (T ) = b̃2
x

∞∑
n=0

(−1)n
∫ ∞

0

dt1
τ

e− t1
τ · · ·

∫ ∞

0

dtn+1

τ
e− tn+1

τ

× eibz (t1−t2+···(−1)ntn+1 )
[
θ
(

T −
n∑

k=1
tk

)
− θ

(
T −

n+1∑
k=1

tk

)]
. (35)

Here, {tk}n+1
k=1 are the time moments at which bz(t ) flips its

sign. The factor (−1)n ensures that bx(t ) flips the sign at
the same time moments. The difference of θ -functions in
Eq. (35) guarantees that in the time interval (0, T ) the field
bz changes its sign exactly n times, so that

∑n
k=1 tk < T <∑n+1

k=1 tk . Taking the integral over tn+1 by parts leads to

K (T ) = b̃2
x

∞∑
n=0

(−1)n
∫ ∞

0

dt1
τ

· · ·
∫ ∞

0

dtn
τ

∫ ∞

0
dtn+1

× e− ∑n+1
j=1

t j
τ eibz (t1−t2+···(−1)ntn+1 )δ

(
T −

n+1∑
k=1

tk

)
. (36)

Using the integral representation, δ(t ) = ∫ ∞
−∞

ds
2π

eist , in the
integrand and taking the individual integrals yields

K (T ) = b̃2
x

∞∑
k=1

∫ ∞

−∞

ds

2π
eisT i(s + bz )τ 2[

(1 + isτ )2 + b2
zτ

2
]k

. (37)

After taking the sum and symmetrizing with respect to
±bz(0), we find

K (T ) = b̃2
x

∫ ∞

−∞

ds

2π
eisT isτ 2

(1 + isτ )2 + b2
zτ

2 − 1
. (38)

The integral is calculated by finding the contributions of two
poles at s = i

τ
± (b2

z − 1
τ 2 )

1/2
. For bzτ > 1 we find

K (T ) = b̃2
x exp

(
−T

τ

)

×
⎧⎨
⎩cos

[
T

τ

(
b2

zτ
2 − 1

)1/2
]

−
sin

[
T
τ

(
b2

zτ
2 − 1

)1/2
]

(
b2

zτ
2 − 1

)1/2

⎫⎬
⎭.

(39)
For bzτ < 1 Eq. (38) yields

K (T ) = b̃2
x exp

(
−T

τ

){
cosh

[
T

τ

(
1 − b2

zτ
2
)1/2

]

− sinh
[

T
τ

(
1 − b2

zτ
2
)1/2]

(
1 − b2

zτ
2
)1/2

}
. (40)

We again emphasize that the factor (−1)n in the definition
Eq. (35) had transformed into the signs minus in the final
results Eqs. (39) and (40) leading to a peculiar shape of the
two-photon absorption. Physically, repeated changes of signs
of bx between the same to values [53] and in-phase with bz

leads to averaging out of the effect of noise.
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