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Topological order versus many-body localization in periodically modulated spin chains
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In this paper, we study periodically modulated s = 1/2 spin chain in a linear gradient potential (LP) that is
generated by an external magnetic field. In the absence of the LP, the system has topological states that exhibit a
magnetization plateau for a uniform external magnetic field. These topological states have a finite integer Chern
number and their stability is clarified by an equivalent spinless fermion system derived by a Jordan-Wigner
transformation. We show that the LP, which is nothing but a constant electric field in the spinless fermion system,
destabilizes the topological states, because it induces localization called Wannier-Stark (WS) localization. We
clarify the phase diagram in the presence of the LP and on-site diagonal disorder. To this end, we carefully
study edge excitations under the open boundary condition, which are a hallmark of the topological order. We
find a very interesting phenomenon indicating existence of a quasiedge modes that take the place of the genuine
edge modes in certain parameter regions. This is a precursor of the WS localization realized in topological
states. Finally, we investigate many-body localization induced by a sufficiently strong LP or disorder. To this
end, we study the energy-level statistics for whole energy levels, and we find unexpected extended-state regimes
located in intermediate potential-gradient and weak on-site disorder regimes. We verify this phenomenon by
calculating variance of the entanglement entropy. The present system is closely related to quantum Hall state in
two dimensions, and therefore our findings can be observed not only in experiments on ultracold atomic gases
but also quantum Hall physics.
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I. INTRODUCTION

Both topological order and many-body localization (MBL)
are one of the most important topics in condensed matter
phase these days. Recent experiments on cold atoms suc-
ceeded in observing fundamental signals of the conventional
topological phase [1,2] and also ergodicity breaking dynamics
of MBL [3,4]. These experimental developments stimulated
theoretical study of constructing fundamental models for both
topological phase [5,6] and MBL [7]. The experimental suc-
cess also enhances interest on the interplay of the topologi-
cal phase and MBL. Recently, interesting theoretical works
on this subject were given in Refs. [8–11]. In the models
studied there, the topological phase, especially edge modes,
are to be protected from localization by disorders, and even
highly excited states are expected to possess the nature of
the topological state. Soon after these works, a few numeri-
cal studies [12–14] have verified the conjecture. As another
interesting work, MBL induced not by disorder but by a
linear gradient potential (LP) was recently discovered [15,16].
This MBL phenomenon without disorders comes from the
Wannier-Stark (WS) localization of the single-particle system
[17]. As the system under the LP possesses the translational
symmetry, its entanglement properties are to be different from
the conventional MBL systems [15]. As the LP is easier to be
produced in experiments on cold atomic gases than random
potentials, cold atom systems under the LP provide a good
playground for study on the interplay of topological order and
localization.

In this paper, we investigate the relationship between a con-
ventional one-dimensional topological model characterized

by the Chern number [18] and the WS localization mentioned
above. To this end, we consider a periodically modulated
s = 1/2 spin chain [19,20]. This model has magnetization
plateaus [21], corresponding to a topological phase. Through
dimensional extension [22], the topological phase is charac-
terized as a Chern insulator in the extended two-dimensional
space, where the Chern number takes an integer values [19].
We consider to apply the LP to the model and study the
effect of the WS localization in the topological phase with
a magnetization plateau. Here, we would like to emphasize
that the topological phase is usually related with a property
of the ground-state wave function of the system. On the
other hand, the localization including MBL is properties of
whole energy eigenstates, i.e., all energy eigenstates of the
system are related with localization of the system. From
this point of view, we will investigate both the ground-state
topological properties characterized by the Chern number and
edge excitations, and also many-body eigenstates in the whole
energy spectrum characterizing localization of the system. In
particular, we study robustness of the ground-state topological
properties against the LP, and how the WS localization influ-
ences the topological ground state. In this paper, we mainly
use a numerical exact diagonalization (ED) [23–26], since we
need to investigate properties of the whole energy eigenstates.
Numerically, we will clarify the phase diagram in the presence
of the LP and on-site disorder, by the energy-level statistics
[27,28] to detect the WS localization, and investigate in detail
the behavior of the topological edge modes under the LP.

This paper is organized as follows. In Sec. II, we introduce
the target model and summarize the previous works that are
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relevant to the present work. In particular, we explain topolog-
ical phase and the WS localization induced by the LP. After
the summary of the previous works, we explain the purpose of
the present study. In Sec. III, we study the topological phase in
the presence of the LP and on-site disorder. We first show that
there exists a critical gradient for destruction of the ground-
state topological phase by calculating the Chern number.
Then, applying the open boundary condition, we investigate
the edge excitations in detail, and show that a precursory
phenomenon of the WS localization appears in the behavior
of the edge excitations. In Sec. IV, MBL is studied by the
energy-level statistics to obtain the phase boundary of the
ergodic and MBL states. In the weak-disorder regime, phase
diagram exhibits an unexpected structure, which comes from
the interplay between the LP and the modulated exchange
coupling. We calculate entanglement entropy to investigate
this structure in detail, and discuss its possible physical pic-
ture. Section V is devoted for conclusion and discussion.

II. MODEL AND SUMMARY OF PREVIOUS WORKS

In this work, we consider the following s = 1/2 spin chains
with a periodically modulated exchange coupling,

HPM =
∑

i

Ji(�Si · �Si+1) − h
∑

i

Sz
i , (1)

with

Ji = [1 − λ cos(2παi + δ)], (2)

where �Si = (Sx
i , Sy

i , Sz
i ) is spin operator at site i, α is a rational

number and δ takes an arbitrary real number. In the following,
we mostly take λ = 0.8, whereas an external magnetic field h
is adjusted to realize a constant magnetization mz = 〈Sz

i 〉/L,
where L is the system size. Previous works revealed that the
model HPM [Eq. (1)] has topological states with a magneti-
zation plateau [19,21,29]. These states have a nonvanishing
Chern number, which is defined by the two-dimensional space
(δ, θ ) with the boundary condition on wave functions such as
ψL+1 = eiθψ1. θ is a twist phase. The origin of the topological
phase will be explained in Sec. III B. We have verified the
existence of various topological phases by varying L, α and
h [31]. In what follows, we shall concentrate on α = 1/3
since for noninteracting fermion picture, the system exhibits
topological three bulk band.

On the other hand, MBL of spin chains with a uniform
exchange coupling (J) and in the presence of a linear gradi-
ent potential as well as a random magnetic field ({hi}) was
investigated [15,16], Hamiltonian of which is given by

HWS = HPM|Ji=J + �H, (3)

�H =
∑

i

[
FiSz

i + hiS
z
i

]
, (4)

where F is the gradient of the linear potential. It is known that
a XY counterpart of the uniform HWS reduces to a free fermion
model in a uniform electric field of strength F by a Jordan-
Wigner (JW) transformation, and single-body states are all
localized in the vicinity of each site i for small disorders {hi}

and F �= 0 as the LP dominates the hopping energy [16]. This
phenomenon is called WS localization. Antiferromagnetic
(AF) coupling

∑
i Sz

i · Sz
i+1 in HPM|Ji=J induces a repulsion

between the JW spinless fermions, and it can change the WS-
localized states to ergodic ones for weak F in the many-body
system and the localization transition point is shifted to larger
value of F compared to the single-body system. In Ref. [16],
the model HWS was studied for disorder hi ∈ [−W,W ], and a
phase diagram in the (F -W ) plane was obtained. In a regime
of small F and W , ergodic states form, whereas MBL states
appear for sufficiently large F and/or W .

In this work, we shall focus on the model defined by the
following Hamiltonian:

HT = HPM + �H, (5)

with the boundary condition such as ψL+1 = eiθψ1. For most
of cases, we put θ = 0, whereas θ is varied as θ ∈ [−π, π ] in
the study of topological properties such as the Chern number.
[Instead of imposing the twist boundary condition on the wave
function, we change the term in the Hamiltonian of Eq. (1) as
S+

L S−
1 + H.c. → S+

L S−
1 eiθ + H.c. with the periodic boundary

condition, where S±
j = Sx

j ± iSy
j [30].] This boundary condi-

tion causes no problems as long as we consider a finite system,
whereas for L → ∞, LF → ∞ for a nonvanishing F , and
an infinite deference in the potential energy appears between
two edges. We can change the linear gradient potential to a
V -shape one, which is given by �HV = ∑

i[F |i − (L/2)|Sz
i +

hiS
z
i ]. However, we have verified that the V -shape potential

produces similar results as the linear gradient potential at
least for systems with moderate system sizes. Later, we shall
show certain quantities calculated in the model HT V = HPM +
�HV to verify that the linear gradient and V -shape potentials
produce essentially the same results.

Purpose of the present work is threefold. (i) We investigate
how the ground state evolves from the topological state as
F and/or W increase, and how the topological order and
localization interplay with each other. (ii) If a finite regime of
the topologically ordered state exists for finite F ’s, we study
how the state is affected by the gradient potential. In other
words, “precursory localization phenomenon” exists or not
in the topological phase. (iii) We obtain a phase boundary
of MBL state that forms as F/W increases and compare
the resultant MBL state with that in the uniform exchange-
coupling system. We find that the phase diagram of the present
model exhibits unusual structure, revival of extended states in
intermediate-F regimes. In order to verify this observation,
we employ variance of the entanglement entropy as an “order
parameter” of MBL.

Obviously, the first and second subjects in the above are
mainly related with properties of the ground state and low-
energy states of the system. On the other hand, for the subject
(iii), we consider the whole energy spectrum by introducing
the normalized energy ε ≡ (E − EMin)/(EMax − EMin), where
EMax(EMin) is the maximum (minimum) energy eigenvalue for
fixed values of F and W . For each problem in the above, we
shall clarify spatial configurations of spins for typical states,
and show that the description in terms of the JW fermion is
sometimes useful to understand the results obtained by the
numerical methods.
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FIG. 1. Magnetization mz as a function of uniform external field
h. There exist plateaus, and they have a definite Chern number as
shown in inset. α = 1/3, λ = 0.8, and system size L = 18. We focus
on the state of the plateau with mz = 1/6 in the present work.

III. TOPOLOGICAL PHASE IN GRADIENT
POTENTIALS AND DISORDER

A. Phase diagram

In this section, we study the topological states in the spin
model, HT , introduced in Sec. II [Eq. (5)]. In order to search
topological states, we first calculated the magnetization, mz =
1/L

∑
i〈Sz

i 〉, as a function of h for F = W = 0 by the Lanczos
algorithm of the ED [32]. We show the result for α = 1/q with
q = 3 in Fig. 1, which clearly exhibits the location of plateaus
corresponding to topological states. We numerically verified
that the magnetization mz is independent of the values of δ and
θ , i.e., locations of topological states are the same for all δ’s
and θ ’s. For α = 1/q, the unit cell is composed of q sites of the
original lattice. All states in the plateaus have clear schematic
picture in terms of the JW fermion, e.g., the state of mz = 1/6
for L = 18 corresponds to configurations in which exactly two
JW fermions reside in each unit cell as Sz

i = ni − 1/2 where
ni is the number operator of the JW fermion ci, ni = c†

i ci. See
Fig. 2. Locations of fermions fluctuate in the cell due to the

FIG. 2. Schematic picture of spin configuration and correspond-
ing JW fermion. N/L = 2/3, α = 1/3 and mz = 1/6 case. Real
fermion states are given by superposing similar states to the dis-
played one as a result of quantum fluctuations.
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FIG. 3. Chern number as a function of F for the case of without
disorder (W = 0). At F = 0.2, the Chern number sharply changes
its value indicating Fc1(W = 0) = 0.2. Energy gap between the
ground state and the first-excited state is also shown. The energy gap
collapses between F = 0.2 and 0.45. The system size L = 18.

quantum effect, and as a result, an extended many-body state
forms.

By applying the linear gradient potential to the system, we
expect that a MBL state forms for F > Fc2, where Fc2 is criti-
cal gradient for the WS localization in the present many-body
system. In order to see destruction of the topological ground
state, on the other hand, we calculate the Chern number as a
function of F by using the method of the discretized Chern
number [33] and denote the critical gradient of the linear
potential with Fc1 at which the Chern number tends to vanish.
In general, Fc1 is different from Fc2. It is one of the purposes
of the preset work to estimate Fc1 and Fc2.

We show calculations of the Chern number for mz = 1/6
[34] and W = 0 as a function of F in Fig. 3. System-size
dependence is also examined in Appendix A. From the nu-
merical calculations, we obtain estimation such as Fc1 
 0.2
for W = 0. Energy gap between the ground state and the
first-excited state is also shown in Fig. 3. The calculation
shows that the energy gap collapses from F 
 0.2 to 
 0.45
exhibiting an oscillating behavior. Under sufficiently strong
gradient potential, dynamics of spin tends to get frozen. We
expect that the states between F 
 0.2 and 
 0.45 exist in
a critical region. One may think that Fc2(W = 0) 
 0.45 and
MBL states exist for F � 0.45 from the above observation.
On the other hand, collapse of energy gap usually indicates
localization in the case of random disorders. The problem of
localization will be studied in detail in Sec. IV by calculating
the energy-level statistics, dipole moment, etc.

We studied the system with various values of W by the
ED, and obtain Fc1 as a function of W , Fc1(W ). For the case
of a finite disorder W , value of the Chern number, Ch(W ),
depends on realizations of disorder {hi}, i.e., Ch(W ) = 0 for
certain {hi}, whereas Ch(W )= a nonvanishing integer for
another {hi} with the same W . In Fig. 4, we exhibit the
ground-state phase diagrams of the topological phase in the
F -W plane obtained by using 50 realizations of {hi} for each
W . In the critical regime in the F -W plane, the averaged
value of Ch(W ) is fractional. This means that states with
Ch(W ) = −1 and those with Ch(W ) = 0 both appear as a
result of random disorder samples. Among them, the ground
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FIG. 4. Phase diagram of the topological phase obtained by
Chern number. (a) Phase diagram for the linear F potential. (b) Phase
diagram for the V -shape F potential. System size L = 18 and 50
realizations of disorder.

states with Ch(W ) = −1 have the topological phase nature,
whereas those with Ch(W ) = 0 do not.

As Fig. 4 reveals, the models HT and HT V have essentially
the same phase diagram with respect to the Chern number,
although the topological state is slightly larger in the V -shape
potential, and an additional topological state forms in the very
small regime F = 0.38–0.4 and W < 0.5 in the system HT V .
(This small regime is system-size dependent as we show in
Appendix B). One may wonder if the shape of the potential
may influence the value of the Chern number through the
boundary condition, but this is not the case. We verified that all
other physical quantities such as the level-spacing ratio exhibit
similar behavior in the both models.

B. Edge modes and quasiedge modes

It is interesting to see spatial configurations of the spins
(i.e., the local fermion densities). This investigation is also
useful to study the in-gap state, which is one of hallmarks of
topological phase. To this end, we employ the open boundary
condition (OBC) and define �EN ≡ EN+1 − EN , where EN is
the ground-state energy of the system with total N up spins,
[i.e., (L − N ) down spins, mz = N/L − 1/2]. Hereafter, we
use notation such that N∗ denotes N for a topological state,
i.e., a plateau with mz = N∗/L − 1/2. Similarly we introduce,
�ρN (i) ≡ ρN+1(i) − ρN (i), where ρN (i) = 〈ψN |Sz

i |ψN 〉 and
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FIG. 5. (a) Local-spin configurations ρN (i) for L = 15, N =
10, and F = 1.0 > Fc1, W = 0.1 with the open boundary condi-
tion. Two low and high-energy configurations are displayed that
are located in the vicinity of ε = 0.1 and 0.9, respectively. In the
JW-fermion picture, the low-energy (high-energy) states have large
amplitudes in left (right) side of the system, in which the linear
potential is low (high). (b) The calculation of ρN (i) for the ground
state of the system with L = 15, N = 10, and F = W = 0.

|ψN 〉 is a many-body wave function of state with N up
spins. In the JW-fermion picture, �ρN (i) represents a density
configuration of a single excitation particle on the topological
plateau state with total N particles.

In Fig. 5, we first show ρN (i) of low and high-energy
states for F = 1.0, W = 0.1 as well as that of the ground
state in the F = 0 system. The results for large F show that
the up spins in the low (high)-energy states reside on the
low (high)-potential side as the linear potential dominates the
(Sz − Sz ) antiferromagnetic interaction in the system. This
is an essential feature of the WS localization in many-body
system in the presence of the “interparticle repulsion.”

Let us turn to the edge modes existing in the topological
ground state with the OBC. We first focus on the case of
F = W = 0 [19,20]. By the ED, we obtain �EN for N =
N∗, N = N∗ ± 1 and N = N∗ − 2, and �ρN (i) for N = N∗
and N = N∗ − 1. The results are displayed in Figs. 6 and
7 for N∗ = 12 with L = 18. As a function of δ, �EN∗ has
a minimum at δ = π , whereas �EN∗−1 has a maximum at
δ = π , and they cross with each other there. On the other
hand as seen in Fig. 7, �ρN (i) for N = N∗ = 12 and N =
N∗ − 1 = 11 exhibit a sharp peak at left (right) and right (left)
edges for δ � π (δ � π ), respectively. These results indicate
that the edge mode exists above the ground state of N = 12,
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FIG. 6. Energy differences �E10 ∼ �E13 for F = W = 0. �E12

and �E11 cross with each other at δ = π . This indicate that there
exists a gapless edge mode at δ = π . L = 18.

and it is almost gapless in the vicinity of δ = π and exhibits
sharp modulation of the spin amplitude at both edges. In fact,
the excess energy of the edge mode, Eedge, is estimated by [20]

Eedge = �EN∗ − �EN∗−1

= EN∗+1 + EN∗−1 − 2EN∗ . (6)

Similarly, the local excess of up and down spins (nothing but
the JW fermion density modulation), ρedge, is given by

ρedge = �ρN∗ − �ρN∗−1

= ρN∗+1 + ρN∗−1 − 2ρN∗ . (7)

Therefore Eedge = 0 at δ = π in the present case, and ρedge

exhibits sharp plus and minus peaks at edges.
In order to verify the above conclusion and characterize

the edge mode in the system, by cutting the system into two
halves, we calculated an entanglement spectrum [35] as a
function of δ. The topological phase with edge mode relates
to the degeneracy of the lowest entanglement spectrum of
the ground-state wave function. We found that the ground
state is four-fold degenerate at δ = π and this indicates the
existence of a free spin-1/2 edge mode, i.e., the signal of
the topological phase. On the other hand, the other states
with higher energies do not. We investigated other cases with
various α and N∗, and found similar results. The left-right
edge modes interchange at the crossing point δ = π in the
present case by reflecting ch(W = 0) = −1. On the other
hand, there are multiple crossing points for higher ch(W = 0)
cases.

The above result can be understood by considering a non-
interacting counterpart of the modulated Heisenberg model in
Eq. (1), i.e., the modulated XY model,

HXY =
∑

i

Ji
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
. (8)

This model is equivalent to the following noninteracting spin-
less fermion model connected by the JW transformation,

Hfermion = 1/2
∑

i

Ji(c
†
i ci+1 + H.c.), (9)
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FIG. 7. (a) Edge modes �ρ12. The edge mode in the upper band
moves from left to right as δ increases. (b) Edge modes �ρ11.
The edge mode in the lower band moves from right to left as
δ increases. With the results presented in Fig. 6, these behaviors
of �ρN indicate that a gapless edge mode exists at δ = π in the
topological ground state. F = W = 0 and L = 18. (c) Schematic
picture of edge excitations as δ varies. Color of arrows referees to
excitations in the JW-fermion picture shown in Fig. 8.

where ci (c†
i ) is fermion annihilation (creation) operator.

Schematic behavior of the single-particle spectrum in Hfermion

[Eq. (9)] is shown in Fig. 8. Fermion topological state cor-
responds to the state in which N = N∗ fermions just fill
up the lower bulk bands. In the single-particle picture, the
lowest-energy state in the upper band decreases its energy as
δ increases until δ = π . On the other hand, the highest-energy
state in the lower bands increases its energy as δ increases
to π . Then, these two modes interchange at δ = π . The edge
mode above the topological ground state is composed of the
above left-right single-particle edge modes in the XY-spin
system, i.e., c†

leftcright|ψG〉 (c†
rightcleft|ψG〉) for δ < π (δ > π ),

where |ψG〉 is the topological ground state for N = N∗, and
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FIG. 8. Schematic picture of in-gap levels in the single-body
picture of the fermion in topological state with the open boundary
condition. Left-edge mode in the upper band and right-edge mode in
the lower band cross with each other at δ = π as δ increases. Filled
(empty) state of fermion corresponds to up-spin (down-spin) state.

c†
left (c†

right ) is the creation operator of the left (right) edge
mode. Our numerical calculations obviously indicate that the
above single-particle picture survives in the present inter-
acting case. We should also remark here that the system in
Eq. (9) is directly related to quantum Hall state (QHS) in
a two-dimensional lattice. As explicitly shown in Ref. [22],
the parameter δ in the modulated exchange Ji in the system
Eq. (9) corresponds to the wave number ky and αi to the vector
potential in the x direction. Then, the one-dimensional system
Eq. (9) is extended to a two dimensional system. The band
spanned by the momentum space (kx, ky) is topological, where
each band is characterized by own Chern number. Therefore
the behavior of the edge mode in the spin system, which has
a vanishing energy gap at finite δ, can be understood from
the QHS point of view in which gapless edge modes carry a
transverse electric current.

Let us turn to the target system in the linear gradient
potential. In Figs. 9 and 10, we show the calculations of �EN

and �ρN (i) for various values δ for F = 0.1. The energy
differences �EN exhibit different behavior from that of the
F = 0 case. �E11 and �E12 touch with each other at δ 

8/15π . Besides that, �E12 touches with �E13 at δ ∼ 16/15π ,
and �E11 with �E10 at δ ∼ 11/15π . In addition to this
complicated behavior of �EN ’s, we observe very interesting
behavior of �ρN (i) as the value of δ varies. For example,
in �ρ12, the peak representing the edge mode first moves
from left to right and stays there between δ = 18/30π and
26/30π . After this stay, the peak returns to left for δ �
34/30π . This behavior is obviously directly related to the
energy crossing of �EN ’s observed in Fig. 9. That is, as δ

increases, �E12 starts with �E12(δ = 0) 
 1.3 and crosses
with �E11 at δ 
 16/30π . Then, �E11 crosses with �E10

at δ 
 32/30π . Similar behavior is seen for �ρ11, and that
is understood by �EN ’s. The genuine profile of the local
magnetization (i.e., fermion-density excess and deficiency) is
given by Eq. (7). Careful look at the �EN ’s in Fig. 9 reveals
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FIG. 9. Energy differences �E10 ∼ �E13 for F = 0.1 and W =
0. The calculations show that �EN ’s cross with each other at three
values of δ = δi (i = 1, 2, 3). In the single-particle picture, this
indicates that energy crossing takes place there with a vanishing
energy gap. L = 18.

the fact that �E12(δ = 0) 
 �E12(δ = 2π ) and �E11(δ =
0) 
 �E11(δ = 2π ). This implies that the states with the
second mode for δ < 2π smoothly transfer to those with the
genuine edge mode for δ > 0. (See the discussion below).

The above phenomenon results from the gradient potential,
i.e., in addition to the energy ramp in the classical picture,
the localization tendency of quantum state plays an essential
role. Second highest-energy state of the lower band also
exhibits localized nature by the WS localization. Second
lowest-energy state in the higher band is similarly localized.
They have almost the same features in the real space with the
edge modes. Above calculations of �EN and �ρN indicate
that these secondary modes take the place of the genuine
edge modes for certain parameter regimes of δ. Then, we call
them quasiedge modes. The same result to the above can be
obtained by directly calculating the energy of the first excited
state above the topological ground state [20]. However, the
above analysis helps us to understand what actually happens.

As we mentioned in the above, the present model is related
to the QHS, and δ corresponds to a component of wave
vector, e.g., δ ∼ ky. The gapless edge modes contribute to
the transverse conductivity under a magnetic field that is
determined by α. The emergence of quasiedge modes in the
present model implies that similar gapless excitations exist
in the QHS in a strong electric field and contribute to the
transverse conductivity. In other words, localized states via the
WS mechanism might be observed in the QHS. Experiments
on QHS forming in a two-dimensional lattice can examine this
prediction, and they are certainly welcome.

The calculation of the Chern number in Fig. 3 indicates
that the topological state is destroyed by the gradient potential
for F � 0.2. Then, we investigate the system for F = 0.5.
The energy differences and density profiles are displayed in
Figs. 11 and 12. �EN ’s exhibit very complicated behavior as δ

varies and some of them have almost the same value for finite
regimes of δ. This means that there are no energy gaps in these
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FIG. 10. (a) Edge modes �ρ12, (b) Edge modes �ρ11 for F =
0.1 and W = 0. The peaks move from left to right and from right to
left as δ varies. Some of peaks represent the secondary modes that
take the place of the genuine edged modes of the F = 0 case shown
in Fig. 7. The state exists in topological phase, and we call the above
modes quasiedge modes. (c) Schematic picture of edge excitations as
δ increases. L = 18.

regimes. Also, the behavior of the energy differences does not
exhibit energy crossings but avoided crossings instead. This
is contrast to the result in Fig. 9. This indicates no moving
edge mode as δ varies. On the hand, Fig. 12 shows that �ρN

for N = 11 and 12 are located in the right part of the system
and are obviously different from those in Fig. 10. This result
can be understood intuitively, i.e., the linear gradient potential
with F = 0.5 is strong enough, and the left part of the system
is filled with “particles” (up spins) first, and only right part
is empty for N 
 10 as the system size L = 18. This is the
physical picture of the topological-state destruction by the
gradient potential in the present system.

Finally, we study the effect of the random potential W . As
Fig. 4 shows, the topological state is destroyed by the random
potential for W � 3. We investigate the system for F = 0 and
W = 6, and the obtained results are displayed in Figs. 13

FIG. 11. Energy differences �E10 ∼ �E13 for F = 0.5 and W =
0. They exhibit complicated behaviors. L = 18.

and 14 for certain specific {hi}. No crossing takes place in
�EN ’s as δ varies. �ρN ’s fluctuate rather randomly due to
the random potential and edge modes cannot be recognized.
This feature of the breaking of the topological state is quite
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FIG. 12. (a) Excitations shown by �ρ12, (b) Excitations shown
by �ρ11 for F = 0.5 and W = 0. By the strong linear potential,
topological state is destroyed and edge modes do not exist. L = 18.
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FIG. 13. Energy differences �E10 ∼ �E13 for F = 0 and W =
6. They have no level crossings. L = 18.

different from that by the gradient potential. Therefore we
expect that there is a crossover regime separating between
the linear potential-breaking and on-site disorder-breaking
topological phases. This point will be mentioned in Sec. IV,
in which MBL is studied.

IV. TRANSITION TO MBL IN GRADIENT POTENTIAL

A. Level-spacing statistics

In this section, we shall study a transition from an ergodic
phase to MBL phase by increasing F and/or W . The pre-
vious work [16] investigated the uniform coupling case of
λ = 0, and obtained the phase boundary such as Fc2(W →
0) 
 1.8 and Wc2(F = 0) 
 4.0. To obtain the MBL phase
boundary of the present model, we first employ the level-
statistics analysis as in Refs. [16,27]. To this end, we first
calculate energy-level spacings δn = En+1 − En for a fixed
realization of the disorder and then obtain level-spacing ratios
rn = 〈min(δn, δn+1)/max(δn, δn+1)〉, where 〈· · · 〉 denotes the

-1
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-0.6
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-0.2
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 0.8

 2  4  6  8  10  12  14  16  18
site

FIG. 14. Density difference �ρ12, for F = 0, W = 6, and a
specific disorder realization. They are dominated by the disorder
pattern. Similar profile is obtained for �ρ11. L = 18.
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FIG. 15. (a) Level-spacing ratio as a function of the rescaled
energy ε for very weak disorder W = 0.05. For an ergodic state r 

0.53 and for a localized state r 
 0.386. There are bands of extended
states at 0.12 � F � 0.15 and 0.21 � F � 0.28. This revival of the
extended states is verified by calculating variance of the entangle
entropy as shown in Fig. 22. 30 realizations of the weak disorder
were taken, and the data were obtained by averaging across them.
(b) r(ε) for W = 0.4. Global structure of the phase diagram is the
same with that of (a), but bands of extended states do not exist.

average over disorder realizations of {hi}. In the ergodic state,
the level statistics reveals the Wigner-Dyson (WD) distri-
bution for which rn 
 0.53, whereas in the localized state,
Poisson distribution with rn = ln 4 − 1 
 0.386. In this work,
we show rn as a function of the rescaled energy ε, r(ε), and
obtain a phase boundary in the (F − ε) plane. In the practical
calculations, we consider 1800 energy levels around ε and
also 30 realizations of disorder.

We consider the system with the parameters N = 12, L =
18 in which the topological ground state exists for F = W =
0. In Fig. 15(a), we show the calculation of r(ε) as a function
of F with very weak disorders W 
 1, which was introduced
to avoid the degeneracies coming from the symmetries of
the system without disorder, W = 0. It is obvious that r(ε)
decreases as F is increased, and this behavior starts at smaller
F ’s in the low and high-edge regimes of the energy spec-
trum. However curiously enough, there exist band structure
of extended states for 0.12 � F � 0.15 and 0.21 � F � 0.28.
Similar results are obtained for other system sizes such as L =
15 (12) and N = 10 (8). Possible physical picture (origin) of
these extended states is explained from the view of the Bloch
oscillation and the Landau-Zener tunneling in Sec. IV D. For

214202-8



TOPOLOGICAL ORDER VERSUS MANY-BODY … PHYSICAL REVIEW B 100, 214202 (2019)

-0.4
-0.2
 0

 0.2
 0.4
 0.6
 0.8
 1

 1.2

 2  4  6  8  10  12  14
site

FIG. 16. Local spin configurations for W = 6. On-site random
potential dominates the other terms in the Hamiltonian HT .

moderate and strong disorder, bands of extended states do not
exist, as shown in Fig. 15(b).

The data in Fig. 15(a) show that r(ε) changes from the
WD to Poisson statistics at F ∼ 0.3 in the low-energy states,
besides the three regimes of extended state mentioned above.
In Sec. III, we observed that the system loses its topological
nature at Fc1 = 0.2, and from F = 0.2 to 0.4, the critical
regime exits. The above result of r(ε) seems to be corre-
lated with the change of the ground-state properties. In other
words, the low-energy states exhibit similar behavior with the
ground state with respect to the level statistics. (In Sec. III,
we explained that the excited states do not have topological
properties). In Fig. 15, we draw the phase boundary Fc2(ε)
with the red curve by the condition such as r(ε) = 0.46 [16].

In Fig. 5 in Sec. III, we saw typical configurations of low
and high-energy states in the regime F = 1.0 > Fc1. By the
above observation, the parameter in Fig. 5 is also located
in the MBL regime. Then, it is obvious that the low-energy
states [ε = 0.1] reside on the left side of the system, whereas
the high-energy states [ε = 0.9] the right side for F = 1.0
and W = 0.1. This result indicates that the gradient potential
dominates the other terms in the Hamiltonian HT [Eq. (5)]
in the MBL state for W 
 1. On the other hand for the
small gradient F 
 1 and a strong disorder W , the spatial
configurations {ρ(i)} dominated by the disorder. See Fig. 16.

Phase diagram in the F -W plane is displayed in Fig. 17.
The MBL phase boundary is determined by the value of r(ε)
in the central regime of the energy spectrum. In the regime
F < 0.1 and 1 < W < 2, a coexistence phase of localiza-
tion and topological order might form. However, this is a
consequence of variation of disorder realization {hi} as we
explained in Sec. III B.

B. Dipole moment

It is interesting to see how dipole moment defined by D =∑
i iSz

i behaves as a function of energy. It gives us the global
structure of the spatial configurations of the many-body states.
In Fig. 18(a), we exhibit D for various values of F for the
weak on-site disorder. In the ergodic phase with F = 0.025,
the eigenstates in a given energy have a finite spread in the
dipole moment. This behavior is similar to the band structure
with a small band width, and it is strong contrast to the case

 0  0.1  0.2  0.3  0.4  0.5

 0.5

 1

 1.5

 2

 0.38
 0.4
 0.42
 0.44
 0.46
 0.48
 0.5
 0.52
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W

r

FIG. 17. Phase diagram of ergodic and MBL regimes for the
Hamiltonian HT . The phase boundary is determined by the value of
r(ε) = 0.46 in the central regime of the energy spectrum. The phase
boundaries of the topological phase (Fc1(W )) and the WS localization
(Fc2(W )) are shown in the black and red lines, respectively. L = 18
and 30 realizations of the disorder.

of λ = 0 [16], where the average of D is linear to the energy
but there is no band structure. See Fig. 18(b). In the critical
regime F = 0.3, the energy eigenvalue is getting large and
the band structure becomes obscure. In the case of F = 1.0,
D exhibits no band structure and is almost linear to the energy.
In the large F case with F = 5.0, the result indicates that
the many-body wave functions have definite dipole moment,
which is large and linear to the energy reflecting the fact
that dynamics is severely restricted by the strong gradient
potential. On the other hand, in Fig. 18(c), we show D for
F = 0 and W = 10. The result shows that the dipole moment
is randomly distributed as spin configurations are determined
by the strong disorder. Above result implies that there exists
a crossover in the MBL phase, i.e., a crossover between the
WS-localized regime with large F and the on-site disorder
dominant regime with large W . In other words, there is a
crossover between a translational symmetric MBL and the
disorder induced conventional MBL. In fact, this kind of
crossover was recently discovered for a generalized Creutz
ladder model [36] and quantum simulation model of lattice
gauge theory [37].

C. Entanglement entropy

Finally, we show calculations of the entanglement entropy,
which is another hallmark of MBL. We employ the von Neu-
mann entanglement entropy, which is calculated by dividing
the system into subregion A of size LA and B of size LB =
L − LA, and define

S = −TrA(ρA ln ρA); ρA = TrB|�〉〈�|, (10)

where |�〉 is an exact eigenstate of the whole system, and
ρA is the reduced density matrix for the subregion A obtained
by tracing out all the degrees of freedom of the complement
subregion B. As in the calculation of the level-spacing ratio
r(ε), we calculate S as a function of the system energy, S =
SE (ε). In particular, we focus on the three cases ε = 0.2, 0.5,
and 0.8 as typical cases, and take an average of S evaluated for
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FIG. 18. (a) Dipole moment D as a function of energy for various
values of F with weak disorder. In the ergodic phase with F = 0.025,
the eigenstates in a given energy have a finite spread in the dipole
moment. In the critical regime F = 0.3, D is getting large and the
band structure becomes obscure. In the large F case with F = 5.0,
the result indicates that the many-body wave functions have well-
defined dipole moment, which is large and linear to the energy. (b) D
for the uniform Heisenberg model (λ = 0). (c) Dipole moment for
the case of strong disorder with λ = 0.8. Behavior is quite different
from that of the weak-disorder case.

50 eigenstates with energy 
 ε. Also for the on-site disorder,
we average SE (ε) for 50 realization of {hi} for each W . The
total system size L = 15 and LA = 7, LB = 8.

We first consider the case of λ = 0, i.e., Heisenberg spin
chain in the linear gradient magnetic field. In Fig. 19(a), we
show the calculations of SE (ε) as a function of F for fixed
W = 0.3. As F increases, all SE (ε)s decrease rather rapidly.
In particular, SE (ε = 0.8) is smaller than the others indicating
that states in the high-energy regime tend to localize strongly
by the gradient potential. On the other hand, the disorder
strength dependence of SE (ε) is shown in Fig. 19(b), and we
find that SE (ε) tends to increase in the small-W regime. In
the whole W region, the states in the middle of the energy
spectrum tend to extend more compared to the states in the
low and high regions. This observation is consistent with the

FIG. 19. (a) Entanglement entropy in the Heisenberg model as
a function of F for W = 0.3. (b) Entanglement entropy in the
Heisenberg model as a function of W for F = 0.

calculations of the level-spacing ratio obtained in the previous
work [16].

Let us turn to the present model, HT with λ = 0.8. We first
consider the case of a very weak disorder W = 0.05 for which
the level-spacing analysis is shown in Fig. 15(a). Calculations
of SE (ε) as a function of F are presented in Fig. 20(a). Inter-
estingly enough, Fig. 20(a) shows that SE (ε) has a peak in the
regime 0.2 � F � 0.28 indicating the existence of extended
states there, in particular for the low and middle energies,
ε = 0.2 and 0.5, this behavior is clear. This result is in good
agreement with the calculation of r(ε) in Fig. 15(a), which
indicates the existence of extended states in that parameter
regime as we explained in Sec. IV A. As W is increased
to W = 0.3, this behavior disappears as seen in Fig. 20(b).
We studied the case with W = 0.6, and obtained the similar
result. Then, it is obvious that the above interesting behavior
stems from the interplay of the modulated hopping Ji and the
gradient potential.

Generally, SE (ε) is a decreasing function of F for all W s.
This behaver is another evidence that dynamics of the system
is severly restricted by the gradient potential and the WS
localization takes place as F is increased beyond Fc2.

In recent papers [27,38,39], it was indicated that the stan-
dard deviation of the entanglement entropy can be used as
a diagnostic for the ergodic to MBL transition or crossover.

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1
F

(a)

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1
F

(b)

FIG. 20. Entanglement entropy in the present model as a func-
tion of F . W = 0.05 and 0.3 in (a) and (b), respectively. In case (a),
the entanglement entropy exhibits sharp peaks for 0.2 � F � 0.28.
In particular for the low and middle energies, ε = 0.2 and 0.5, this
behavior is clear.

214202-10



TOPOLOGICAL ORDER VERSUS MANY-BODY … PHYSICAL REVIEW B 100, 214202 (2019)

FIG. 21. Standard deviation of entanglement entropy in the
Heisenberg model corresponding to entanglement entropy in Fig. 19.
(a) �SA and �ET as a function of F for W = 0.3. (b) �SA and �ET

as a function of W for F = 0. L = 12. ST is the thermal entropy,
ST = 0.5(L ln(2) − 1).

We apply this diagnostic to the system studied in Figs. 15(a)
and 20(a), i.e., W = 0.05. To this end, we define two kinds
of standard deviation of the half-chain entanglement entropy,
which we call sample-to-sample and eigenstate-to eigenstate
deviations, respectively, following Ref. [39]. Definitions of
them are as follows:

〈S〉 ≡ 1/NSNE

sample∑
i

state∑
j

S j
i ,

〈S〉i ≡ 1/NS

state∑
j

S j
i ,

�SA =
⎛
⎝1/NSNE

sample∑
i

state∑
j

(
S j

i − 〈S〉)2

⎞
⎠

1/2

,

�ET = 1/
√

NSNE

sample∑
i

⎛
⎝

state∑
j

(
S j

i − 〈S〉i
)2

⎞
⎠

1/2

, (11)

where NS (NE ) is the number of samples (eigenstates) used for
evaluation, and S j

i is the entanglement entropy of eigenstate
j in sample i. Usually �SA > �ET, and for the case in which
fluctuations across samples are very small, �SA 
 �ET. In the
practical calculation, we consider 250 energy eigenstates in
the vicinity of ε = 0.5 [39] and ten disorder samples for the
L = 18 target system.

We first show the results for the ordinary uniform Heisen-
berg model, i.e., λ = 0 case. In the previous paper [16], the
critical parameters were estimated as follows, Fc2(W = 0) 

0.9 (from Fig. 1 of Ref. [16]) and Wc(F = 0) 
 3.75 [40].
Figure 21 displays �SA and �ET as a function of F (W )
for W = 0.3 (F = 0). For the case of W = 0.3, �SA and
�ET are very close with each other. This means that fluc-
tuations caused by disorder samples is very small. �SA and
�ET exhibit a peak at F ∼ 0.8, which obviously corresponds
to the ergodic to MBL crossover by the WS localization.
On the other hand for the case of F = 0, we have �SA >

�ET as the ergodic to MBL crossover in this parameter
regime stems from the disorder due to samples. �SA and
�ET exhibit a rather wide “peak” including the critical value

FIG. 22. Standard deviation of entanglement entropy in the target
model corresponding to Fig. 20. (a) �SA and �ET as a function
of W for F = 0. (b) �SA and �ET as a function of F for W =
0.05. The color band in the bottom shows the level-spacing ratio
in Fig. 15(a) for ε ∼ 0.5. L = 18. Data points are average across
250 states and 10 disorder realizations. ST is the thermal entropy,
ST = 0.5(L ln(2) − 1).

Wc(F = 0) 
 3.75 obtained by the previous works [27,41–
43]. However, �SA and �ET starts to increase at a rather
smaller value of W compared to the above value. This means
that the sample dependence of the critical value Wc is substan-
tially large, and calculations of large systems are needed to
obtain an accurate critical value of W .

Let us turn to the target model. We show the calculations in
Fig. 22. Figure 22(a) displays �SA and �ET as a function of W
for F = 0. As in the uniform Heisenberg model in the above,
both of them exhibit a rather wide “peak” starting around
W ∼ 0.4 and ending around W ∼ 2. Obviously, this behavior
of the variance of the entanglement entropy corresponds to the
ergodic and MBL crossover observed in the phase diagram in
Fig. 17. Fluctuations among disorder samples are fairly large
in the above parameter regime.

The result in Fig. 22(b) gives detailed observation of the
phase diagram displayed in Fig. 15(a), and it shows very
interesting results. There are three large peaks in both �SA

and �ET, and these peaks indicate that coexisting phase of
extended and localized states forms there. It is obvious that
these peaks are closely related to the three bands of “extended
states,” which we observed in Sec. IV A. In fact, the dips of
�SA and �ET in Fig. 22(b) indicate the locations in which
delocalized state forms. This phenomenon is not observed in
the uniform Heisenberg model, and also the strong on-site
disorder in the target system hinders the emergence of the
bands of the extended state. Therefore the interplay between
the spatially-modulated exchange coupling and the gradient
potential generates this unusual phenomenon. In the following
Sec. IV D, we shall briefly discuss possible origin of this
phenomenon.

D. Origin of the first breaking of the topological phase and the
revival of the extended states for W � 1

In the previous subsection, the evaluation of �SA and �ET

in Fig. 22 certainly revealed their behaviors consistent with
the phase diagram displayed in Fig. 15(a). We observed that
the band structure with a revival of extended states appears on
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FIG. 23. Single particle dynamics: (a) F = 0, (b) 0.1, and (c) 0.3.
Single localized particle is put on a single site as an initial state. For
case (a), after a short period, simple ballistic like expansion takes
place. For case (b), particle exhibits Bloch oscillation. The amplitude
of the oscillation is larger than the lattice spacing. For case (c) with a
stronger LP, particle tends to extend by a Landau-Zener mechanism.

the (ε-F ) plane, as verified by the peaks of SE , �SA, and �ET

on increasing the value of F .
We can explain the first destruction of the topological

extended state at F ∼ 0.2 from the single-particle picture of
the model. To this end, let us consider noninteracting case
of Eq. (9). Then the model has three bulk topological bands
of the fermion corresponding to the parameter α = 1/3 [22].
As studied in the above, we consider the case in which the
particle is filled nearly up to the second band. There, applying
the LP leads to a Bloch oscillation of a particle. For the Bloch
oscillation, we can estimate the oscillation amplitude in the
real space, which corresponds to the localization length. Ac-
tually, we numerically simulate a single particle dynamics by
varying F and obtain the results shown in Figs. 23(a)–23(c).
The particle dynamics is certainly affected by the gradient
of the LP potential, F . Simple analytical calculation [17]
shows that the oscillation amplitude is given by A = 1

F �E2,
where �E2(>0) is the band width of the second band in the
present case. If the half of the amplitude is less than the lattice
spacing d , the particle is substantially localized in single site
and the topological phase is expected to be broken. From
the actual value of �E2 and the condition A/2 � d , the single-
site localization appears approximately for F � 0.15, where
the topological phase is destroyed. As Fig. 23(b) shows, the
single particle clearly exhibits localization dynamics. Cer-
tainly in Fig. 3 for F � 0.15, the topological phase vanishes
and the WS localization tendency appears in Fig. 15(a), al-
though the calculations in Sec. IV include interactions.

In addition, we can argue the first revival of the extended
state from the single-particle picture. In the Bloch oscillation,
the states with a finite momentum in the second band also
oscillate. For sufficiently large F , finite momentum states of
the second band transit to the third band via avoided crossing
between the second and third bands, i.e. the Landau-Zener
transition [44,45]. We expect that since the third band can
be regarded as a conduction band, the above effect makes

particle extended, i.e., the extended tendency is enhanced in
the whole system. Numerical calculation can actually cap-
ture phenomena related to the effects mentioned above. As
Fig. 23(c) for large F indicates, the particle tends to extend
more compared with the F = 0.1 case in Fig. 23(b). This
mechanism is reminiscent of a nonadiabatic breakdown of
the Mott insulator in the Hubbard model under electric fields
[46,47]. We also investigated whether a similar phenomenon
takes place in the uniform Heisenberg model and found that
the result is negative.

Finally, we point out the WS resonance as another possible
explanation of the observed revival of the extended states for
increasing F [48–51], This phenomenon occurs only when
some multi-band structure exists. In our model, the model
actually is in a multiband situation due to the modulated cou-
pling Ji and the (Sz − Sz) interactions. Interplay between the
interaction and the gradient potential may induce a resonance,
which hops a particle beyond unit cell and as a result, extended
states appear. Possibility of such a kind of resonance seems
low, but it cannot be excluded.

V. CONCLUSION

In this paper, we systematically studied the interplay be-
tween the topological order and the WS localization in the
modulated s = 1/2 spin chain mainly by using the ED. We
first investigated the stability of the topological state against
the LP, and estimated the critical gradient for destruction of
the topological state. Then, we numerically studied the in-gap
excitations in the topological state to find that there appear the
quasiedge modes besides the genuine edge modes as a gapless
excitation. This is a precursor of the WS localization, which
is to be observed in the topological state.

In the second half of the present work, we investigated
localization by the LP as well as the diagonal disorder, and ob-
tained the phase diagram. In this study, we found unexpected
phenomenon, i.e., the revival of the extended states in the
intermediate values of F . Existence of this regime was verified
by the calculation of the variance of the entanglement entropy.
The possible origin of this phenomenon was discussed, but the
its complete understanding is a future work.
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FIG. 24. Chern number and excitation gap as a function of F
calculated for L = 15 and 21 systems. System-size dependence of
the Chern number seems rather small. On the other hand, the energy
gap has a finite system-size dependence, in particular, for F > 0.2.
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FIG. 25. Finite-size scaling of the critical gradient of topological
state: (a) Fc1 and (b) Fc1L.

The present model is feasible in experiments on cold
atomic gases [52] and we hope that our findings will be
observed in experiments in the near future. As we stressed
in the text, the model is also closely related to the QHS on a
two-dimensional lattice, and the LP is nothing but a constant
electric field applied to fermions. Then, it is interesting to
study two-dimensional electron systems in strong magnetic
and electric fields.

Very recently, interesting idea of “shattering” and “frag-
mentation” of the Hilbert space by dipole-moment conserva-
tion was proposed [53–55]. In Sec. IV B, we observed that
the dipole moment tends to a good quantum number for large
Fs. This indicates that MBL in the large-F regime can be
understood as a result of the “shattering”/“fragmentation”
phenomenon of the Hilbert space. This is a future problem.
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APPENDIX A: SYSTEM-SIZE DEPENDENCE FOR CHERN
NUMBER CALCULATION

In this Appendix, we study the system-size dependence of
the Chern number. We first show the calculations in L = 15
and L = 21 in Fig. 24. Compared with the calculations in
Fig. 3, we find that the Chern number has only small depen-
dence on the system size, whereas the energy gap exhibits
a slightly different behavior in the systems L = 15, 18 and
L = 21 as a function of F . The “critical regime” is slightly
smaller in the L = 15 system, 0.2 < F < 0.42, than in the
L = 18 system. This result implies that there exists a finite
regimes between the Fc1 and Fc2 for the limit L → ∞.

We calculated the Chern number in smaller system sizes
to extrapolate the critical value Fc1 for L → ∞. The result
is shown in Fig. 25. Figure 25(a) shows that Fc1 changes its
behavior at L = 6, and the extrapolation by L � 6 give an
estimation such as Fc1 → 0 for L → ∞. This result is not so
surprising because in the limit L → ∞, the difference in the
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FIG. 26. Phase diagram of the topological phase obtained for
system size L = 15: (a) for the linear-gradient potential and (b) for
the V -shape potential. Phase diagrams for L = 18 are shown in
Fig. 4, and only small system-size dependence is observed.

gradient potential between two edges tends to ∞ for F �= 0.
Figure 25(b) shows (Fc1L) versus 1/L. The result indicates
that the topological state survives in the limit L → ∞ as long
as the difference in the gradient potential between two edges
is finite.

APPENDIX B: SYSTEM SIZE DEPENDENCE FOR PHASE
DIAGRAM OF THE TOPOLOGICAL PHASE IN FIG. 4

As in Appendix A, we show the system-size dependence
of the ground-state phase diagram with the topological order
obtained by calculating Chern number in the system W > 0.
Figure 26 displays the topological phase in the F -W plain
obtained for L = 15 system under the linear and V -shape
potentials, which should be compared with Fig. 4. For the
case of the linear potential, two phase diagrams of L = 18
and 15 are almost the same. On the other hand in the V -
shape potential case, the location of the finite Chern number
regime in W 
 1 and F > 0.3 slightly changes. Anyway, we
conclude that the phase diagram of the topological state has
only small system-size dependence.
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