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Two-dimensional ferromagnetic electron gases subject to random scalar potentials and Rashba spin-orbit
interactions exhibit a striking quantum criticality. As disorder strength W increases, such a system undergoes
two transitions. It first changes from a normal diffusive metal consisting of extended states to a marginal
metal consisting of critical states at a critical disorder Wc,1. Another transition from the marginal metal to an
insulator occurs at a stronger disorder Wc,2. Through highly accurate numerical procedures based on the recursive
Green’s function and the exact diagonalization methods, we elucidate the nature of the quantum criticality
and the properties of the pertinent states. The conductance is described by an unorthodox one-parameter
scaling law: Conductance of various system sizes and disorders collapse into two branches of a scaling curve
corresponding to diffusive metal and insulating phases with an exponentially diverging correlation length,
ξ ∝ exp[α/

√|W − Wc|], near transition points. Finite-size scaling analysis of the inverse participation ratio
reveals that the states of the marginal metal are fractals of a universal fractal dimension D = 1.90 ± 0.02, while
those of the diffusive metal spread over the whole system with D = 2 and states in the insulating phase are
localized with D = 0. The phase diagram for diffusive metals, marginal metals, and the Anderson insulators is
plotted in the disorder-magnetic-coupling plane.

DOI: 10.1103/PhysRevB.100.214201

I. INTRODUCTION

Anderson localization is a long-lasting fundamental con-
cept in condensed-matter physics [1–9] and keeps bring-
ing us surprises, especially at the critical dimensionality of
2 [10–12]. In very early times, the orthodox view was the
absence of diffusion of an initially localized wave packet
at an arbitrarily weak disorder in one- and two-dimensional
electron gases (2DEGs) while metallic states and Anderson
localization transitions (ALTs) can occur in three dimen-
sions [13,14]. Later, more careful renormalization group cal-
culations [15] and numerical simulations [16–20], together
with experiments [11], showed that intrinsic degrees of free-
dom can alter the results in two dimensions: Half-integer
spin particle systems support ALTs when the spin rotational
symmetry is broken through spin-orbit interactions (SOIs),
regardless of whether the time-reversal symmetry is pre-
served [Gaussian symplectic ensembles (GSEs)] [15–20] or
not [Gaussian unitary ensembles (GUEs)] [21–23]. The surest
examples are probably of both noninteracting [24–26] and
interacting [27,28] 2DEGs in strong perpendicular magnetic
fields (quantum Hall systems). On the other hand, all states of
disordered noninteracting integer-spin particle systems must
be localized [29,30].
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However, recent numerical studies [21–23,31–34] showed
that the current understanding of ALTs in noninteracting
2DEGs is far from completed when SOIs are involved. For
example, in contrast to the predictions based on the non-
linear σ model that claim only localized states exist in the
GUEs [15], a band of extended states together with an ALT or
a Kosterlitz-Thouless (KT)-type transition can exist in 2DEGs
without time-reversal symmetry, depending on the form of
SOIs and the strength of magnetic field [21–23]. In this work,
we observe a phase transition from a normal metal to a
marginal metal [35], consisting of a band of critical states,
in a ferromagnetic 2DEG on a square lattice subject to a
Rashba SOI and random on-site potentials. The results are
obtained from the finite-size scaling analysis of two-terminal
conductances and the inverse participation ratio (IPR) analysis
of wave functions obtained from the exact diagonalization
method. The marginal-metal (MM) phase exists between a
diffusive-metal (DM) phase at weak disorders and an Ander-
son insulator (AI) phase at strong disorders. Scaling analyses
of IPRs show wave functions of states in the MMs of fractals
of dimension D = 1.90 ± 0.02, a feature reminiscent of a
band of critical states in the random SU(2) model subject to
strong magnetic fields [21].

Our main result is a marginal-metal phase whose β

function (symbols and the black line in Fig. 1), defined
as β(ln gL ) = d ln gL/d ln L, vanishes. For a comparison, β

of other types of phase transitions in two dimensions are
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FIG. 1. β(ln gL ) of various 2D systems. The black solid line is
the result of current work (different symbols for different system
sizes). The black dashed line is plotted according to an analyti-
cal formula [15] (illustrated in the Appendix). For noninteracting
Schrödinger electrons, no delocalization-localization transition is
allowed for the Gaussian orthogonal ensembles (GOEs; the blue
line) [11,12], where time-reversal and spin-rotation symmetries are
preserved. For the GSEs [16–20,36], there is one β = 0 point (the
red line), corresponding to an unstable fixed point in renormalization
group flow. The KT transition (the green line) from a band of critical
states to localized states can also exist [21]. For a Dirac Hamiltonian,
numerical simulations suggest all states are extended in single-valley
graphenes [37] (the yellow line), while KT transitions are also
allowed if random fluxes [31] or intervalley scatterings [35,38] exist.

also sketched. Here gL and L are dimensionless conductance
and system size, respectively. Positive β for gL > gc,1 cor-
responds to a metallic phase, while negative β for gL < gc,2

corresponds to an insulating phase. Between the two critical
conductances gc,1 and gc,2, β = 0 describes a MM phase. Dif-
ferent from an ALT that occurs at a fixed point [16–20,22,23],
the MM phase between [gc,1, gc,2] is a fixed line on which
the conductance does not change as system size is uniformly
scaled. Furthermore, near both DM-MM and MM-AI transi-
tion points, correlation lengths ξ in both DM and AI phases
diverge exponentially with W at the transition point Wc,
ξ (W ) ∝ exp[α/

√|W − Wc|], similar to that in a KT transition
(the green line) [21,31,35].

This paper is organized as follows. The model and nu-
merical methods are described in Sec. II. Various results are
presented in Secs. III and IV. A summary is given in Sec. V.

II. MODEL AND METHODS

Our model is a tight-binding Hamiltonian on a square
lattice of size L2 and unit lattice constant,

H =
∑

i

c†
i εici −

∑
〈i, j〉

c†
i Ri jc j, (1)

where c†
i = (c†

i,↑, c†
i,↓) and ci are, respectively, the single-

electron creation and annihilation operators on site i =
(xi, yi ), with xi, yi being integers and 1 � xi, yi � L. Here
〈i j〉 denotes i and j as the nearest-neighbor sites. The first
term describes on-site energy with both spin-independent and
spin-dependent contributions,

εi = ε0σ0 − �σz + Viσ0, (2)

where σ0 and σx,y,z are the 2 × 2 identity and the Pauli
matrices, respectively. ε0 is the constant energy, and spin-
independent Vi is the uncorrelated random energy on site i that
follows the normal distribution of zero mean and the variance
of W 2. W therefore measures the degree of randomness. −�σz

is a ferromagnetic term that breaks the time-reversal symme-
try, and � measures the exchange splitting [39]. A Rashba
SOI is encoded in the hopping matrices Ri j , parameterized by
matrices Rx and Ry along the x and y directions, respectively,

Rx = 1
2 (tσ0 + iα̃σy), Ry = 1

2 (tσ0 − iα̃σx ), (3)

where the spin-independent hopping coefficient t can be used
as the energy unit and the parameter α̃ measures the strength
of SOIs. In the clean limit of Vi = 0, model (1) can be blocked
diagonalized in the momentum space as H = ∑

k c†
kh(k)ck,

with

h(k) = (ε0 − cos kx − cos ky)σ0 − �σz

+ α̃(sin kxσy − sin kyσx ). (4)

Hereafter, we fix ε0 = 2 such that the effective k · p Hamilto-
nian near the band edge reads p2

2 + α̃(p × σ) · ẑ − �σz. This
form of Hamiltonian has been widely employed to enlighten
the intrinsic and extrinsic mechanism of the anomalous Hall
effect, and possible physical realizations of model (1) include
a large family of ferromagnetic semiconductors such as Mn-
GaAs and other III-V host materials [39].

To investigate the localization properties of states of
model (1), we use the Landauer formula to calculate the
dimensionless conductance of a disordered sample between
two clean semi-infinite leads at a given Fermi level E , g̃L =
Tr[T T †], where T is the transmission matrix [40]. To ex-
clude the contribution from contact resistances, we define
the dimensionless conductance gL as 1/gL = 1/g̃L − 1/Nc,
where Nc is the number of propagating modes of the clean
sample at Fermi energy E [41]. Different quantum phases are
determined by the following criteria: (1) dgL/dL is positive
when the Fermi level is in the DM phase and negative in the
insulating phase. dgL/dL = 0 in the MM phase. (2) In the
vicinity of phase transition points, the one-parameter scaling
hypothesis [13] holds such that gL(W, E ) of different system
sizes collapse into a universal smooth curve f (x), i.e.,

gL = f (L/ξ ), (5)

with the correlation length ξ diverging at the transition points.
Since previous numerical studies suggest that the effect of
irrelevant variables plays a significant role in the finite-size
scaling analysis [42], we will also include the most important
irrelevant scaling variable (up to the first order) in our finite-
size scaling analysis. Following the method in Ref. [42],
Eq. (5) with the irrelevant scaling variable φ becomes gL =
f (L/ξ ) + φLy f̃ (L/ξ ), where y < 0 is the exponent for the
irrelevant variable. The corrected conductances gcor

L = gL −
φLy f̃ (L/ξ ) are used to obtain the scaling functions.

III. CONDUCTANCE

Two typical examples are shown in Fig. 2(a), which plots
gL as a function of W for E = 0.2 (near the band edge),
α̃ = 0.2, and � = 0.01 and 0 (inset). Clearly, in the absence
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FIG. 2. (a) gL as a function of W for L = 128, 192, 256, 384,
and 512 at E = 0.2 and � = 0.01. The inset is the same plot, but for
� = 0. (b) Enlargement of the regime near Wc,1. (c) Same as (b), but
for the regime near Wc,2.

of ferromagnetic coupling � = 0 when model (1) belongs
to the GSE, all curves cross at a single point Wc. dgL/dL
is positive for W < Wc and negative for W > Wc. These
scaling behaviors are support of an ALT at Wc. Finite-size
scaling analysis (elucidated in the Appendix) shows that gL for
different sizes L collapse into a single smooth scaling curve,
and ξ diverges as |E − Ec|−ν with a universal exponent ν =
2.8 ± 0.1, which is the same as those in the literature [18–20].

Strikingly, once systems enter the GUE by switching on
the ferromagnetic coupling, say, � = 0.01, we observe a MM
phase in the window of W ∈ [Wc,1 = 0.38 ± 0.01,Wc,2 =
0.43 ± 0.01] within which dgL/dL = 0 for all L while states
for W < Wc,1 and W > Wc,2 are extended and localized, re-
spectively. Two phase transitions are evident in Figs. 2(b)
and 2(c), which are the enlargements of Fig. 2(a) near Wc,1 and
Wc,2, respectively. The MM-AI transition at Wc,2, in addition
to the zero plateau of the β function shown in Fig. 1, is
highly evocative of the KT criticality arising in another unitary
ensemble with random SOIs [21], disordered graphene [35],
and 2DEGs with random fluxes [31]. Nonetheless, the
DM-MM transition at Wc,1 from a band of extended states to
a band of critical states is highly nontrivial since both of them
are of metallic phases in the sense that their wave functions
spread over the whole lattice (see Sec. IV).

To substantiate the validity of the one-parameter scaling
hypothesis, we show that all curves in Figs. 2(b) and 2(c)
collapse into two smooth functions f (x = ln L/ξ ), shown in
Fig. 3. These are direct verification of quantum phase tran-
sitions at Wc,1 [gL(Wc,1) = gc,1] and Wc,2 [gL(Wc,2) = gc,2].
On the insulating side and near the phase transition point
Wc,2, the correlation length is expected to diverge as ξ ∝
exp[α2/

√|W − Wc,2|], with α2 = 8 ± 1, a fingerprint of the
KT transitions [21,31,35]. Differently, there are no reliable
analytical and numerical estimates for the divergence law
near the DM-MM transition Wc,1. Scaling analysis also sug-
gests ξ ∝ exp[α1/

√|W − Wc,1|], with α1 = 9 ± 4. We have
also carried out the finite-size scaling analysis by assuming
only one quantum phase transition point and the power-law-
divergent correlation length ξ ∝ |W − Wc|−ν (presented in the
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FIG. 3. Scaling functions f (x = ln L/ξ ) in the DM phase (W <

Wc,1 = 0.38 ± 0.01, the upper branch) and in the AI phase (W >

Wc,2 = 0.43 ± 0.01, the lower branch).

Appendix). We found that the critical exponent ν is bigger,
by at least one order of magnitude, than any known values in
2DEGs [11,12]. Moreover, ν is not universal and depends on
the range of disorders. ν keeps increasing as one approaches
the transition point. This is against the renormalization group
theory. We thus exclude the single quantum phase transition,
and our data support two KT transition points where the corre-
lation length diverges exponentially at the DM-MM transition.

So far, we have provided one example of the DM-MM-AI
transition in model (1). Needless to say, many questions arise,
and among them, the most important one may be the proof
of the universality of such quantum phase transitions. In fact,
we have observed the three phases at different Fermi energies
and exchange splitting energies with the same diverging ξ ,
i.e., ξ ∝ exp[α/

√|W − Wc|] near critical disorders of Wc and
α that are summarized in Tables I and II. The same physics
is observed if we choose E as the scaling variable at a fixed
disorder. One example is shown in Fig. 4, which depicts gL

as a function of E for W = 0.4. Apparently, the MM phase
appears between the DM and AI phases and persists in a finite
range of energy E ∈ [0.19, 0.38]. Finite-size scaling analysis
shows that the correlation lengths ξ (E ) diverge as ξ (E ) ∝
exp[α

√|E − Ec|], with Ec,1 = 0.19 ± 0.03, α1 = 14 ± 5 near
the DM-MM transition and Ec,2 = 0.38 ± 0.02, α2 = 5.1 ±
0.3 near the MM-AI transition. All these features indicate
that the MM phase prevails in ferromagnetic 2DEGs with
SOIs and favors the exponential divergence of ξ at critical
points.

TABLE I. Critical disorders Wc,1, exponents α1, degrees of free-
dom Nf , and goodness of fit Q of the DM-MM transitions for
different parameters.

Wc,1 α1 y Nf Q

E = 0.2, � = 0.005 0.45 ± 0.01 12 ± 3 −2 ± 1 35 0.2
E = 0.2, � = 0.02 0.28 ± 0.02 22 ± 3 −5 ± 2 30 0.2
E = 0, � = 0.005 0.24 ± 0.01 7 ± 4 −0.7 ± 0.5 30 0.4
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TABLE II. Critical disorders Wc,2, exponents α2, degrees of
freedom Nf , and goodness of fit Q of the MM-AI transitions for
different parameters.

Wc,2 α2 y Nf Q

E = 0.2, � = 0.005 0.47 ± 0.03 6 ± 4 −0.7 ± 0.3 25 0.4
E = 0.2, � = 0.02 0.44 ± 0.05 6 ± 1 −2 ± 1 35 0.5
E = 0, � = 0.005 0.28 ± 0.02 4 ± 2 −1.6 ± 0.9 30 0.8

IV. FRACTAL NATURE OF THE WAVE FUNCTION
AND INVERSE PARTICIPATION RATIO

Having established the universality of DM-MM-AI transi-
tions, we further consider the nature of wave functions in three
phases, especially the fractal structure of wave functions in the
MM phase. Wave functions at an isolated critical point of an
ALT or in the critical band are known to have multifractal
structures characterized by a set of anomalous dimensions
measuring how their moments scale with sizes [12,21,35,43].
Among them, the fractal dimension is related to the IPR
defined as

p2(E ,W ) =
∑

i

|ψi(E ,W )|4, (6)

with ψi(E ,W ) being the renormalized wave functions of
energy E and disorder W at site i for a specific realization.
For large enough systems, the average IPR scales with size L
as [43–45]

p2(E ,W ) ∝ L−D, (7)

with D being the fractal dimension. If the state is extended
(localized), D = d (D = 0), where d = 2 is the spatial dimen-
sion. However, for a critical state, an anomalous scaling with
L is expected, i.e., D ∈ [0, d]. Thus, we expect that states in
the MM phase have a universal fractal dimension such that
their wave functions occupy a sparse space.

Eigenfunctions of model (1) are obtained from the exact
diagonalization method. Our numerical computation was
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(green), 384 (yellow), and 512 (red). Here � = 0.01, and α̃ = 0.2.
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FIG. 5. (a) −〈lnp2〉 vs lnL for E = 0.2. Several disorders in
different phases are chosen. DM: W = 0.08 (squares) and 0.28 (cir-
cles); MM: W = 0.42 (upward triangles); AI: W = 0.56 (downward
triangles) and 0.66 (diamonds). Solid lines are linear fits of numerical
data. (b) D as a function of W for E = 0.2 (circles). The dashed line
shows the plateau of D = 1.90. The dot-dashed line is the schematic
plot for L → ∞. The three phases, colored magenta (DM), blue
(MM), and green (AI), are identified according to data in Fig. 2.

done in PYTHON. We first use the KWANT package [46]
to construct a Hamiltonian matrix H out of tight-binding
model (1). We then solve the eigenequation Hψ = Eψ using
the SCIPY library [47] for various L ranging from 350 to 450.
The average logarithms of IPR for state E = 0.2 [the same as
in Fig. 2(a)] as a function of ln L for W = 0.08, 0.28, 0.42,
0.56, and 0.66 are shown in Fig. 5(a). The corresponding
curves are virtually straight lines, which provide strong
evidence of the scaling law Eq. (7). The slopes (fractal
dimensions) clearly decrease with the increase of W from
the DM phase to the AI phase, and D = 1.90 ± 0.02 for
Wc,1 < W = 0.42 < Wc,2 in the MM phase.

We further authenticate the universality of the fractal nature
by displaying D(W ) at E = 0.2 for a large range of disorders
covering the three phases in Fig. 5(b). Apparently, a plateau of
D = 1.90 is observed in the MM phase determined by data in
Fig. 2(a), indicating that the fractal dimension of the fixed line
does not depend on W . For W < Wc,1 (DM), wave functions
are not a fractal anymore since D � d , while, for W � Wc,2,
IPRs are found to be independent of L, i.e., D = 0 [see the
inset of Fig. 5(b)], a typical feature for AIs.

TABLE III. Fractal dimensions D obtained from different ranges
of L for some typical disorders.

DM MM AI

W 0.32 0.36 0.40 0.42 0.46 0.50

L = 150–250 1.93 1.91 1.89 1.90 1.89 1.85
L = 200–300 1.94 1.91 1.90 1.90 1.88 1.81
L = 350–450 1.96 1.93 1.90 1.90 1.82 1.78
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FIG. 6. −〈ln p2〉 vs ln L for W = 0.32 (the DM phase), W =
0.42 (the MM phase), and W = 0.50 (the AI phase). Other param-
eters are the same as in Fig. 2. For each disorder, solid and dashed
lines are obtained by performing linear fits of data of L = 350 to 450
and L = 150 to 250, respectively, with slopes measuring the fractal
dimensions.

We note that the dimension of those states in the DM
(AI) regime near the phase transition point is not exactly
D = d = 2 (D = 0) for W < Wc,1 (W > Wc,2). However,
D become respectively larger and smaller for W < Wc,1

and W > Wc,2 when the system size increases, while D
does not change with system size for W ∈ [Wc,1,Wc,2], as
demonstrated in Table III and Fig. 6. Naturally, we expect
that D drops from 2 to 1.9 and from 1.9 to 0 at Wc,1 and Wc,2

under the thermodynamic limit of L → ∞ [see the schematic
plot in Fig. 5(b)]. Therefore, our calculations on the fractal
dimensions, as additional evidence, support the existence
of the marginal metals and the quantum phase transitions
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FIG. 7. Schematic phase diagram in the �-W plane: DM
(magenta), MM (blue), and AI (green) at E = 0.2. Only an iso-
lated critical level exists at � = 0 (symplectic ensemble) with ξ ∝
|W − Wc|−ν and ν = 2.8 ± 0.1. For � = 0, the MM phase exists
within a window of [Wc,1(�),Wc,2(�)], and ξ in the vicinity of Wc,1

(black squares) and Wc,2 (black circles) diverges exponentially as
ξ ∝ exp[α/

√|W − Wc|].

from the diffusive metals to the marginal metals and from the
marginal metals to the Anderson insulators.

It is also enlightening to compare the fractal dimensions
of the MM phase in model (1) with those of critical states in
other 2D materials. The fractal dimension of isolated critical
levels for ALTs in the symplectic ensemble is found to be
1.66 ± 0.05 [48], while D = 1.75 for the quantum Hall-type
criticality [49]. Thus, wave functions in the MM phase with
D = 1.90 ± 0.02 are more packed than those critical states of
the random SU(2) model under strong magnetic fields [21].

A more inclusive picture is procured by exhaustive simu-
lations of different � and the same E = 0.2. The fixed line
persists at finite � as expected, such that the three phases
coexist, and model (1) always experiences the DM-MM-AI
phase transitions at �-dependent transition points Wc,1 and
Wc,2. However, for � = 0, there is only one quantum critical
state at which the system undergoes a normal ALT. Further-
more, it is numerically justified that the correlation lengths ξ

always diverge as ξ ∝ exp[α/
√|W − Wc|] near Wc,1 (squares)

and Wc,2 (circles) in Fig. 7.

V. SUMMARY

In conclusion, the dimensionless conductance and the IPR
provide substantial evidence of the existence of a marginal-
metallic phase between a diffusive-metal phase and an
Anderson insulator phase in ferromagnetic 2DEGs with SOIs.
Such systems undergo a DM-MM-AI transition as either
disorder strength or Fermi level varies. Near the transition
points, the conductance can be described well by the one-
parameter scaling hypothesis. The criticality of the DM-MM-
AI transitions is consistent with the notion of universality
of a quantum phase transition in the sense that correlation
lengths diverge exponentially with the inverse square root of
|W − Wc| for all critical points. In addition, eigenfunctions in
the MM phase are of fractals of dimension D = 1.90, while
extended states in the DM phase spread over the entire lattice.
A schematic phase diagram in the �-W plane was presented.

The physical mechanism behind the marginal metal phase
is still an open question and deserves further study. However,
we notice that such two-step quantum phase transitions of
KT type can occur in some 2D spinful systems driven by
thermal spin fluctuations, e.g., the six-clock model [50]. More
interestingly, such a two-step KT-type phase transition was
also reported in the quantum anomalous Hall system [51]
recently, but the MM phase is separated by two insulating
phases: The normal insulator and the Chern insulator.
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FIG. 8. Scaling function f (x = ln(L/ξ )) for E = 0.2 and � = 0
(GSE).
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APPENDIX: ONE-PARAMETER SCALING ANALYSIS

The one-parameter scaling hypothesis claims that near the
quantum phase transition points the dimensionless conduc-
tance is a function of a single parameter, x = L/ξ [Eq. (5)],
i.e., gL = f (L/ξ ), with L being the system size and ξ being
the correlation length and diverging at the critical point.
However, previous numerical studies suggested that irrelevant
scaling variables, as well as the nonlinearity of the scaling
variables, can play a significant role in the finite-size scaling
analysis [42] when the system size is not large enough. We
therefore follow the proved method in the literature [42] and
carry out finite-size scaling analysis by including irrelevant
scaling variable φ (up to the first order):

gL = f (L/ξ ) + φLy f̃ (L/ξ ), (A1)

where y < 0 is the exponent of the irrelevant variable. We
expand f (x) and f̃ (x) as

f (L/ξ ) = gc + (L/ξ )1/v + a1(L/ξ )2/v,

f̃ (L/ξ ) = a2 + (L/ξ )1/v + a3(L/ξ )2/v. (A2)

Here φ, y, ν, gc, a1, a2, a3 are fitting parameters.
If the system undergoes an ALT at a critical disorder W =

Wc, the correlation length diverges as

ξ = (b1w + b2w
2)−ν, (A3)

TABLE IV. Correlation length exponents (ν and y), critical dis-
orders Wc, degrees of freedom Nf , and goodness of fit Q for different
ranges of disorders and E = 0.2 and � = 0.

Range of disorders ν Wc y Nf Q

W ∈ [0.45, 0.63] 2.9 ± 0.2 0.53 ± 0.01 −2.4 ± 0.8 60 0.3
W ∈ [0.48, 0.60] 2.9 ± 0.4 0.53 ± 0.01 −1.6 ± 0.9 50 0.2
W ∈ [0.50, 0.63] 2.7 ± 0.3 0.53 ± 0.01 −2.1 ± 0.8 50 0.6
W ∈ [0.50, 0.60] 2.8 ± 0.1 0.53 ± 0.01 −1.5 ± 0.3 45 0.7
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FIG. 9. Scaling functions f (x = ln(L/ξ )) based on the hypoth-
esis of the Anderson localization transition (single fixed point Wc

and correlation lengths diverging as a power law ξ ∝ |W − Wc|−ν)
for E = 0.2, � = 0.01, and different ranges of disorder: (a) W ∈
[0.36, 0.44], (b) W ∈ [0.37, 0.43], (c) W ∈ [0.38, 0.43], and (d) W ∈
[0.39, 0.43].

where w = |W − Wc|/Wc and b1,2 are extra fitting parameters.
By performing a χ2 fit of the gL(W ) numerically obtained
with Eqs. (A2) and (A3) (we use the nonlinear surface fit
of ORIGINPRO [52]), we can calculate the critical disorder Wc

and the critical exponent ν for a given set of parameters,
e.g., the Fermi energy E , the Rashba SOI α̃, and the ferro-
magnetic coupling �. In our analysis we use the percentile
conductances of q = 0.5 [53] to estimate the likely accuracy
of conductances.

Let us consider the case of � = 0 (GSE) shown in the
inset of Fig. 2(a) as one example. The χ2 fit yields Wc =
0.53 ± 0.01, v = 2.8 ± 0.1, gc = 1.40 ± 0.01, φ = −0.22 ±
0.06, y = −1.5 ± 0.3, a1 = −0.27 ± 0.02, a2 = −120 ± 20,
a3 = 670 ± 60, b1 = −1.25 ± 0.02, and b2 = 3 ± 1 for W ∈
[0.50, 0.60]. We plot the scaling function by subtracting the
correction of the one-parameter scaling hypothesis,

gcor
L = gL − φLy f̃ (L/ξ ), (A4)

and use gcor
L to obtain the β function:

β = d ln gcor
L

d ln L
≈ 1

gcor
L

1

ν

(
L

ξ

)1/ν

≈ 1

ν

(
ln gcor

L − ln gc
)
, (A5)

as shown in Fig. 1 (the red line). Our numerical calcula-
tions yield a universal critical exponent of ν � 2.8 ± 0.1,

TABLE V. Correlation length exponents (ν and y), critical disor-
ders Wc, degrees of freedom Nf , and goodness of fit Q for different
ranges of disorders and E = 0.2 and � = 0.01.

Range of disorders ν Wc y Nf Q

W ∈ [0.36, 0.44] 30 ± 10 0.39 ± 0.09 −1.2 ± 0.9 100 0.2
W ∈ [0.37, 0.43] 50 ± 20 0.40 ± 0.01 −5.0 ± 0.5 65 0.4
W ∈ [0.38, 0.43] 80 ± 20 0.42 ± 0.02 −2.5 ± 0.7 55 0.5
W ∈ [0.39, 0.43] 140 ± 40 0.42 ± 0.08 −2 ± 1 40 0.5
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FIG. 10. Scaling functions f (x = ln(L/ξ )) assuming correlation
lengths diverging as ξ ∝ exp[α1/

√
W − Wc,1] in the DM phase

closed to the phase transition points. Here E = 0.2, and � = 0.01,
with different ranges of disorders: (a) W ∈ [0.32, 0.37], (b) W ∈
[0.32, 0.36], (c) W ∈ [0.33, 0.37], and (d) W ∈ [0.33, 0.36].

independent of the range of disorders, as shown in Fig. 8 and
in Table IV.

For � = 0, we first carry out the finite-size scaling analysis
by assuming only one quantum phase transition point for
the data presented in Fig. 2(a). We further assume that the
correlation length ξ diverges as a power law ξ ∝ |W − Wc|−ν .
Under these assumptions, the obtained critical exponent ν

dramatically increases from 30 to 140 when data closer to the
transition point are used (see Fig. 9 and Table V). Therefore,
our finite-size scaling analysis excludes the possibility of the
single quantum phase transition.

We thus assume that for � = 0 the system undergoes two
quantum phase transitions. One is from DMs to MMs, and the
other is from MMs to AIs as the disorder strength increases.
The scaling function that expands in terms of the irrelevant
variable φ up to first order is

gL = gc + c1

(
L

ξ

)u

+ c2

(
L

ξ

)2u

+φLy

[
1 + c3

(
L

ξ

)u

+ c4

(
L

ξ

)2u
]
, (A6)

similar to Eq. (A1), but with an exponentially di-
verging correlation length, ξ = exp[α/

√|W − Wc|]. Here
gc,Wc, u, α, φ, y, c1, c2, c3, c4 are the fitting parameters.
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FIG. 11. Scaling functions f (x = ln(L/ξ )) by assuming correla-
tion lengths diverging as ξ ∝ exp[α2/

√
W − Wc,2] in the AI phase

closed to the phase transition points. Here E = 0.2, and � = 0.01,
with different ranges of disorders: (a) W ∈ [0.45, 0.58], (b) W ∈
[0.44, 0.55], (c) W ∈ [0.44, 0.53], and (d) W ∈ [0.43, 0.50].

Following the same procedures as those for the ALTs
explained earlier, we can obtain all the parameters, including
the critical disorder Wc and α.

Taking data in Fig. 3 as an example, we obtain
Wc,1 = 0.38 ± 0.01, α1 = 9 ± 4, gc = 3.5 ± 0.5, φ = 0.25 ±
0.03, y = −0.7 ± 0.5, u = 0.05 ± 0.03, c1 = 3.5 ± 0.2, c2 =
9.1 ± 0.5, c3 = −110 ± 20, and c4 = 520 ± 50 for the DM-
MM transition and Wc,2 = 0.43 ± 0.01, α2 = 8 ± 1, gc =
2.6 ± 0.2, φ = 9 ± 1, y = −1.2 ± 0.4, u = 0.05 ± 0.01,
c1 = −2.0 ± 0.3, c2 = −3.5 ± 0.6, c3 = −6.4 ± 0.7, and
c4 = 6.8 ± 0.4 for the MM-AI transition. As before, the cor-
rected conductance can be obtained with

gcor
L = gL − φLy

[
1 + c3

(
L

ξ

)u

+ c4

(
L

ξ

)2u
]
. (A7)

Figures 10 and 11 show the scaling functions obtained by
collapsing all gcor

L for different sizes L near Wc,1 (DM to MM)
and Wc,2 (MM to AI) into a single curve. Since gcor

L is obtained
from the raw numerical data by subtracting contributions from
the irrelevant variable that are given by the fitting parameters,
it is important that the final results do not vary with the data
sets used. Indeed, our scaling functions for both the DM and
AI phases do not depend on the ranges of disorders used (see
Table VI), which is strong support for the hypothesis of two
quantum phase transitions.

TABLE VI. Correlation length exponents (α1, α2), critical disorders (Wc,1,Wc,2), degrees of freedom Nf , and goodness of fit Q for different
ranges of disorders and E = 0.2 and � = 0.01.

Diffusive metals to marginal metals Marginal metals to Anderson insulators

Range of disorders α1 Wc,1 y Nf Q Range of disorders α2 Wc,2 y Nf Q

W ∈ [0.32, 0.37] 9 ± 3 0.39 ± 0.01 −0.3 ± 0.1 60 0.3 W ∈ [0.45, 0.58] 8 ± 1 0.43 ± 0.06 −1.5 ± 0.3 65 0.4
W ∈ [0.32, 0.36] 9 ± 3 0.38 ± 0.01 −0.2 ± 0.1 45 0.2 W ∈ [0.44, 0.55] 8 ± 1 0.43 ± 0.01 −1.2 ± 0.4 65 0.6
W ∈ [0.33, 0.37] 9 ± 3 0.39 ± 0.01 −0.3 ± 0.2 50 0.5 W ∈ [0.44, 0.53] 8.2 ± 0.9 0.42 ± 0.01 −1.2 ± 0.6 55 0.4
W ∈ [0.33, 0.36] 9 ± 4 0.38 ± 0.01 −0.7 ± 0.5 40 0.5 W ∈ [0.43, 0.50] 8.1 ± 0.8 0.42 ± 0.01 −1.3 ± 0.5 55 0.5
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The corresponding β function in both the DM and AI
phases is

β = 1

gcor
L

[
uc1

(
L

ξ

)u

+ 2uc2

(
L

ξ

)2u
]
, (A8)

and

β = 0 (A9)

in the MM phase since ξ = +∞. For large gL, we assume the
following analytical expression:

β = f1g−1
L + f4g−4

L + o
(
g−5

L

)
, (A10)

where f1 and f4 are fitting parameters. When f1 = 1/π and
f4 = −3ζ (3)/4 [ζ (x) is the Riemann zeta function], this is
the β function of the 2D GUE obtained from the nonlinear σ

model [15]. We use Eqs. (A8), (A9), and (A10) to draw the β

function in Fig. 1 (the black line).
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