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Interactions between the lattice and charge carriers can drive the formation of phases and ordering phenomena
that give rise to conventional superconductivity, insulator-to-metal transitions, and charge-density waves. These
couplings also play a determining role in properties that include electrical and thermal conductivity. Ultrafast
electron diffuse scattering (UEDS) has recently become a viable laboratory-scale tool to track energy flow
into and within the lattice system across the entire Brillouin zone, and to separate interactions in the time
domain. Here, we present a detailed quantitative framework for the interpretation of UEDS signals, ultimately
extracting the phonon-mode occupancies across the entire Brillouin zone. These transient populations are then
used to extract momentum- and mode-dependent electron-phonon and phonon-phonon coupling constants.
Results of this analysis are presented for graphite, which provides complete information on the phonon-branch
occupations and a determination of the A′

1 phonon-mode-projected electron-phonon coupling strength 〈g2
e,A′

1
〉 =

0.035 ± 0.001 eV2 that is in agreement with other measurement techniques and simulations.
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I. INTRODUCTION

Elementary excitations and their mutual couplings form the
fundamental basis of our understanding of diverse phenomena
in condensed matter. The interactions between collective ex-
citations of the lattice system (phonons) and charge carriers,
specifically, are known to lead to superconductivity, charge-
density waves, multiferroicity, and soft-mode phase transi-
tions [1,2]. These carrier-phonon interactions are also central
to our understanding of electrical transport, heat transport,
and energy conversion processes in photovoltaics and thermo-
electrics [3]. Phonons can themselves be intimately mixed in
to the very nature of more complex elementary excitations,
as they are in polarons or polaritons, or intertwined with
electronic, spin, or orbital degrees of freedom, as it now seems
is the case for the emergent phases of many strongly correlated
systems that exhibit complex phase diagrams like high-Tc

superconductors [4–6].
Our inability to fully characterize the nature of elementary

excitations and to quantify the strength of their momentum-
dependent interactions has been one of the primary barriers
to our understanding of these phenomena, particularly in
complex anisotropic materials. Ultrafast pump-probe tech-
niques provide an opportunity to study couplings between
elementary excitations rather directly. Photoexcitation can
prepare a nonequilibrium distribution of quasiparticles or
other selected modes whose subsequent relaxation dynamics
and coupling to other degrees of freedom can be followed in
the time domain. Under favorable circumstances, qualitatively
distinct channels can be disentangled by their associated
spectra (response functions) and time scales. This field has
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evolved rapidly over the last decade, both from the perspective
of the selectivity of the initial excitation and the ability to
probe the subsequent dynamics over a broad range of fre-
quencies. For example, spectroscopic pump-probe techniques
in the terahertz range have been used to interrogate the
link between electrons/holes and optical phonons in hybrid
lead halide perovskites [7] and to investigate the time order-
ing of phenomena behind charge-density waves in titanium
diselenide [8].

The low-photon momentum associated with optical fre-
quencies, however, prevents the most commonly applied op-
tical photon-in, optical photon-out techniques from providing
a full characterization of the wave-vector-dependent interac-
tions between elementary excitation. Time-resolved Raman
and Brillouin spectroscopies, for example, are limited to the
interrogation of zero-momentum (zone-center) phonons for
this reason [9–11].

In recent years, nonoptical ultrafast techniques have been
developed to probe wave-vector-dependent dynamics. The
most mature of these approaches is time- and angle-resolved
photoemission spectroscopy (trARPES), which has been used
to assemble a complete picture of the dynamics of the elec-
tronic and spin excitations following the photoexcitation of
materials [11–15].

The ability to directly interrogate wave-vector-dependent
dynamics within the phonon system, on the other hand,
is an extremely recent development. Ultrafast x-ray diffuse
scattering [16–18] is one technique that has the potential to
reveal lattice excitation dynamics across the whole Brillouin
zone. This approach leverages the remarkable brightness of
the beams available from the current generation of x-ray
free-electron laser facilities to measure the time dependence
of the diffuse (phonon) scattering from materials following
photoexcitation.
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FIG. 1. Schematic diagram of ultrafast electron diffuse scattering
experiments. Samples are photoexcited with ultrashort pulses of light
at time t = t0. After some delay τ , an ultrashort electron pulse
scatters through the sample. Elastic and inelastic signals are collected
in transmission geometry. By scanning time delays τ , a stroboscopic
movie of the dynamics can be assembled. This figure also shows the
example of a scattering vector q, and its associated reduced wave
vector k, which are related by the nearest Bragg reflection H.

At the laboratory scale, there has been similar progress
made in furthering ultrafast electron beam brightness which
has enabled equivalent diffuse scattering experiments to be
performed. Ultrafast electron diffuse scattering (UEDS) has
the potential to be transformative in that it can provide both a
wave-vector-resolved view of the coupling between electron
and lattice systems [19–23] and the wave-vector dependence
of the interactions within the phonon system itself. The large
scattering cross section of electrons, combined with the rel-
ative flatness of the Ewald sphere, potentially allows for the
simultaneous measurement of both the average lattice struc-
ture (via Bragg scattering) and lattice excitation dynamics (via
diffuse scattering) in specimens as thin as a single atomic layer
(Fig. 1).

In this work we provide a description of the signals
contained in UEDS measurements and a comprehensive and
broadly applicable computational method for UEDS data
reduction based on density functional perturbation theory
(DFPT). Specifically, we present a procedure to recover
phonon population dynamics as a function of the phonon
branch and wave vector, and a determination of wave-
vector-dependent (or mode-projected) electron-phonon cou-
pling constants from those phonon population measurements.
This method uses only the measured time-resolved UEDS
patterns and DFPT determinations of the phonon polarization
vectors as inputs. The application of this approach to the case
of photodoped carriers in the Dirac cones of thin graphite is
demonstrated. The electron-phonon coupling strength to the
strongly coupled A′

1 phonon at the K point of the Brillouin
zone, and the nonequilibrium optical and acoustic phonon
branch populations as a function of time following excitation
across the whole Brillouin zone are all determined from the
UEDS measurements.

II. EXPERIMENTAL AND COMPUTATIONAL METHODS

The change in experimental electron scattering intensity
of graphite, photoexcited with 35-fs pulses of 800-nm light
at a fluence of 12 mJ cm−2, are presented in Fig. 2 for a
few representative time delays. This section provides details
on the experimental parameters, data processing steps, and
computational techniques that are used in this work.

A. Data acquisition

UEDS measurements are pump-probe experiments in
which an ultrafast laser pulse is used to photoexcite a thin
single-crystal specimen at t = t0, followed by probing the
specimen with an ultrafast electron pulse at t = t0 + τ , re-
sulting in the acquisition of a transmission electron scattering
pattern. By scanning across time delays τ , the dynamics in the
fs–ns (10−15–10−9 s) range can be recorded. UEDS data can
be acquired coincidentally during ultrafast electron diffraction
(UED) experiments with state-of-the-art detection cameras,
although UEDS intensities are empirically 104 to 106 times
less intense than those of Bragg diffraction. UEDS mea-
surements are inherently statistical. Pump-probe experiments
sample many decay processes, incoherently in time. Hence,
all possible decay channels are represented, proportionally to
their statistical likelihood.

Scattering measurements presented in this work use
bunches of 107 electrons, accelerated to 90 keV, at a repetition
rate of 1 kHz. A radio-frequency cavity is used to compress
electron bunches to ≈150 fs at the sample, as measured by a
home-built photoactivated streak camera [24]. More detailed
descriptions of this instrument are given elsewhere [25–27].
Analysis of static diffraction patterns indicate a momentum

resolution of 0.06 Å
−1

, while the range of visible reflections
is consistent with a real-space resolution of <1 Å. 35-fs pump
laser pulses of 800 nm (1.55 eV) light are used to photoexcite
a single-crystal flake of freestanding single-crystal natural
graphite, provided by Naturally Graphite. The flakes were
mechanically exfoliated to a thickness of 70 nm.

The interrogated film area covers 500 μm × 500 μm, with
a pump spot of 1 mm × 1 mm full-width at half-maximum
(FWHM) ensuring nearly uniform illumination of the probed
volume. The film was pumped at a fluence of 12 mJ cm−2,
resulting in an absorbed energy density of 8 Jm−3. The scat-
tering patterns are collected with a Gatan Ultrascan 895 cam-
era: a 2.54 cm × 2.54 cm phosphor screen fiber coupled to
a 2048 px × 2048 px charge-coupled detector (CCD) placed
25 cm away from the sample. The experiment herein consists
of time delays in the range of −40 ps to 680 ps. Per-pixel
scattering intensity fluctuations over laboratory time reveals
a transient dynamic range of 1 : 108, allowing the acquisition
of diffraction patterns and diffuse scattering patterns simulta-
neously.1

1The intensity fluctuations of pixel values across scattering patterns
acquired before photoexcitation are 108 times smaller than the bright-
est Bragg reflection.
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FIG. 2. Experimental change in transient electron scattering intensity �I (q, τ ) = I (q, t0 + τ ) − I (q, t0 ) of photoexcited graphite for a
few representative time delays. This figure shows the increase (red) in diffuse scattering intensity across a wide range of reciprocal space

(|q| < 12 Å
−1

). Negative changes (blue) are limited to Bragg peaks. Brillouin zones have been overlaid on half of the detector to highlight
diffuse intensity structure. Scattering intensities are rotationally averaged as described in Sec. II B.

B. Processing and corrections

Scattering intensity patterns are inherently redundant due
to the point-group symmetry of the scattering crystal. When
this symmetry is not broken by photoexcitation or the dynam-
ical phenomena itself, it is possible to use this redundancy
to enhance the signal-to-noise ratio of a UEDS data set.
No dynamical phenomena breaking point-group symmetry
were observable within the raw signal to noise of the current
measurements, so the measured patterns have been subject to
a sixfold discrete azimuthal average based on the D6h point
group of graphite. This discrete rotational average effectively
increases the signal-to-noise ratio of this data set by a factor
of

√
6 and is therefore an effective data processing step given

the weakness of the diffuse scattering signals. “Scattering
intensities” is henceforth implied to mean sixfold averaged
scattering intensities.

Scattering from a few samples with varying thicknesses (10
to 90 nm) was acquired. There was no quantitative difference
in the Bragg scattering dynamics, indicating that scattering
from these samples is kinematical to a good approximation.
The expected effects of multiple scattering on the diffuse scat-
tering intensity distribution will be discussed further below.

C. Computational methods

Structure relaxation was performed using the plane-wave
self-consistent field program PWSCF from the QUANTUM

ESPRESSO software suite [28]. The graphite structure was
fully relaxed using a 18 × 18 × 10 k-point mesh centered at
� and force (energy) threshold of 1 × 10−8 Ry/bohrs (1 ×
10−14 Ry). The dynamical matrices were computed on 5 ×
3 × 3 q-point grid using a self-consistency threshold of 1 ×
10−18 Ry. The resulting graphite structure has the following
lattice vectors:

a1 = ae1, a2 = a

2
(
√

3e2 − e1), a3 = ce3,

where a = 2.462 Å, c = 6.837 Å, and {ei} are the usual Eu-
clidean vectors. Graphite has four atoms in the unit cell, with
two groups of two atoms forming lattices rotated with respect
to each other. This structure respects the symmetries of the
D6h point group.2

2The space group of this structure is P63/mmc (Hermann-Mauguin
symbol) or D4

6h (Schoenflies symbol).

The phonon frequencies {ω j,k} and polarization vectors
{e j,s,k} were computed using the PHONON program in the
QUANTUM ESPRESSO software suite, using the B86b exchange-
coupled Perdew-Burke-Ernzerhof (B86bPBE) generalized
gradient approximation (GGA) and the projector augmented-
wave (PAW) method [29–31]. The cutoff energy of the wave
function was set to 100 Ry, while the cutoff energy for the
charge density was set to 1200 Ry, and a Fermi-Dirac smear-
ing of 0.06 Ry was applied. To include the dispersion energy
between the carbon layers, the exchange-hole dipole moment
(XDM) method was used [32].

III. THEORY

Similar to x-ray scattering, under the kinematical approx-
imation the measurement of the total scattering intensity at
scattering vector q and time t , I (q, t ), of an electron bunch
interacting with a thin film of crystalline material, can be
separated as follows:

I (q, t ) = I0(q, t ) + I1(q, t ) + · · · ,

where the intensity In represents the scattered intensity of
an electron that interacted with n phonons. Specifically, I0

represents diffraction, or Bragg scattering, and I1 represents
the first-order diffuse scattering intensity. The experimentally
observed ratio I0/I1 ranges between 104–106.3 Higher-order
terms have much smaller cross sections, hence much lower
contribution to scattering intensity, and are therefore ignored
in this work. The expressions for the intensities I0 and I1 are
given below:

I0(q, t ) = NcIe

∣∣∣∣∣
∑

s

fs(q) e−Ws (q,t ) e−i[q·Rs (t )]

∣∣∣∣∣
2

, (1)

I1(q, t ) = NcIe

∑
j

n j,k(t ) + 1/2

ω j,k(t )
|F1 j (q, t )|2, (2)

where Nc is the number of diffracting cells, Ie is the intensity
of scattering from a single event, q is the wave vector (or

3Detector counts for the brightest Bragg peak reaches as much as
20 000 counts, while the average diffuse feature shown in Fig. 2 is
0.2 counts.
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scattering vector), k = q − H is the reduced wave vector
associated to q with respect to the nearest Bragg reflection
H (see Fig. 1), s are indices associated with atoms in the
crystal unit cell, Rs(t ) is the real-space atomic position of
atom s, Ws(q, t ) is the Debye-Waller factor of atom s, fs(q) are
the atomic form factors, j ∈ {1, 2, . . . , N} runs over phonon
modes, and {nj,k(t )} and {ω j,k(t )} are the population and fre-
quency associated with phonon mode j, respectively [33,34].

The diffuse scattering intensity contribution of each mode j
is weighted by a factor, called the one-phonon structure factor
|F1 j (q, t )|2:

|F1 j (q, t )|2 =
∣∣∣∣∣
∑

s

e−Ws (q,t ) fs(q)√
μs

(q · e j,s,k )

∣∣∣∣∣
2

, (3)

where μs is the mass of atom s, and {e j,s,k} are the wave-
vector-dependent polarization vectors associated with phonon
mode j for atom s. The one-phonon structure factors represent
the contribution of phonon mode j on the overall intensity
at a specific scattering vector q and time t . |F1 j (q, t )|2 are a
measure of two things: the locations in Brillouin zone where
the phonon-mode polarization vectors {e j,s,k} are aligned in
such a way that they will contribute to diffuse scattering
intensity on the detector, expressed via the terms {q · e j,s,k},
and the strength of the contribution of a single scattering
event, including the effect of the instantaneous disorder in the
material, expressed via the quantities {e−Ws (q,t ) fs(q)/

√
μs}.

Instantaneous disorder is described by the Debye-Waller
factors {Ws(q, t )}. The general expression of the anisotropic
Debye-Waller factor for atom s, Ws(q, t ), is given below:

Ws(q, t ) = 1

4μs

∑
j,k

|a j,k(t )|2 |q · e j,s,k|2, (4)

where a j,k(t ) is the phonon-mode vibration amplitude for
mode j at reduced wave vector k [34]:

|a j,k(t )|2 = 2h̄

Ncω j,k(t )

(
n j,k(t ) + 1

2

)
. (5)

Debye-Waller factors describe the reduction of intensity at
scattering vector q due to the effective deformation of a single
atom’s scattering potential that results from the collective
lattice vibrations in all phonon modes. Wave-vector-specific
information is in general impossible to extract from the tran-
sient changes to the Debye-Waller factors that result from
photoexcitation and the nonequlibrium phonon populations
that such excitation produces.

The expression for I1(q, t ) in Eq. (2) (and related quanti-
ties) applies rigorously under single-electron scattering con-
ditions. The most probable type of multiple scattering event
affecting I1(q, t ) is diffuse scattering followed by secondary
Bragg scattering, not multiple or consecutive diffuse scat-
tering events [33,35]. A secondary Bragg scattering event
only changes the electron wave vector by a reciprocal lattice
vector; thus, this type of multiple scattering results in a
redistribution of diffuse intensity from lower-order to higher-
order Brillouin zones (further from |q| = 0). However, the
wave-vector dependence of experimental diffuse intensities is
not strongly influenced, even under experimental conditions
where such dynamical effects are important. The strength of

the scattering selection rules implied by the {q · e j,s,k} terms,
and described further below, are reduced as the proportion of
multiple scattering increases.

IV. RESULTS AND DISCUSSION

In this section a comprehensive procedure for ultrafast
electron diffuse scattering data reduction will be presented.
This approach recovers the time- and wave-vector-dependent
phonon population dynamics in each of the phonon branches.
In addition, the population dynamics of the A′

1 phonon,
a strongly coupled optical phonon in graphite, is used to
demonstrate the extraction of wave-vector-dependent (mode-
projected) electron-phonon coupling constants from ultrafast
electron diffuse intensities.

A. Calculation of phonon polarization
vectors and eigenfrequencies

The quantitative connection between the observed diffuse
intensity I1(q, t ) and the phonon populations {nj,k} is provided
by the one-phonon structure factors |F1 j (q, t )|2. A determi-
nation of |F1 j (q, t )|2 requires phonon polarization vectors
{e j,s,k} and associated frequencies {ω j,k}. Density functional
perturbation theory (DFPT) is a widely used, readily available
method to compute these phonon properties.

The separation of frequencies and polarization vectors into
modes is key to the calculation of one-phonon structure fac-
tors |F1 j (q, t )|2. The phonon frequencies {ω j,k} and polariza-
tion vectors {e j,s,k} were computed independently at every k;
however, diagonalization routines have no way of clustering
eigenvalues and eigenvectors into physically relevant groups
(i.e., phonon branches). Association between atomic motions
(given by polarization vectors) and a particular mode is only
well defined near the � point [36]. Clustering of phonon
properties into phonon branches is described in detail in
Appendix A.

The polarization vectors and frequencies, calculated for
irreducible k points,4 were extended over the entire reciprocal
space based on crystal symmetries using the CRYSTALS soft-
ware package [37].

B. Debye-Waller calculation

A key component of the computation of one-phonon struc-
ture factors |F1 j (q, t )|2 is the calculation of the Debye-Waller
factors {Ws(q, t )}, representing the instantaneous disorder of
the material. Based on Eq. (4), terms of the form {Ws(q, t )}
are not sensitive reporters on the wave-vector dependence of
nonequilibrium phonon distributions because their value at
every q involves a sum of all modes, at every reduced wave
vector k. Phonon population dynamics can only affect the
magnitude of the Debye-Waller factors. The potential time
dependence of the Debye-Waller factors was investigated, via
the time dependence of mode populations {nj,k}. Profoundly

4The coverage of irreducible k points is important. Only computing
phonon properties along high-symmetry lines is fraught with peril,
given that polarization vectors can vary significantly not only along
high-symmetry lines, but over the entire Brillouin zone.
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nonequilibrium distributions of phonon modes were simu-
lated, with all modes populated equivalently to a tempera-
ture of 300 K except one mode at high temperature.5 These
extreme nonequilibrium distributions increased the value the
terms

∑
s Ws(q, t ) by at most 1.5% for optical modes, and

5% for acoustic modes. Since these fractional changes are
constant across q, wave-vector-dependent changes in UEDS
signals are not impacted significantly by transient changes
to the Debye-Waller factors and any time dependence of the
one-phonon structure factors |F1 j (q, t )|2 that result from the
Debye-Waller factors themselves can be ignored to a good
approximation.

C. One-phonon structure factors

Using the computed Debye-Waller factors from the pre-
vious section, the calculation of |F1 j (q, t )|2 was carried out,
from Eq. (3), for the eight in-plane phonon modes of graphite:
the longitudinal modes LA, LO1–LO3, and the transverse
modes TA, TO1–TO3.6 The resulting one-phonon structure
factors of a few in-plane modes, with occupations equivalent
to a temperature of 300 K, are shown in Fig. 3. One-phonon
structure factors |F1 j (q, t )|2 display striking scattering vector
dependence (selection rules) based on the nature of phonon
polarization vectors {e j,s,k}. Specifically, near �, the one-
phonon structure factor for longitudinal modes is highest in
the radial direction because the polarization of those modes
is parallel to q. On the other hand, |F1 j (q, t )|2 for transverse
modes is highest (near �) in the azimuthal direction for
transverse modes because the polarization of those modes is
perpendicular to q.

An alternative view of one-phonon structure factors is pre-
sented via weighted dispersion curves, an example of which is
shown in Fig. 4. This presentation allows easy comparison of
the relative weights of the one-phonon structure factors along
high-symmetry lines for different phonon branches.

A cursory inspection of the weighted dispersion curves in
Fig. 4 suggests that there are regions in the Brillouin zone
where diffuse intensity is strongly biased toward a single
mode (strong scattering selection rule) based on the relative
intensities of one-phonon structure factors. Careful analysis
reveals that there are very few wave vectors q for which
a particular phonon mode’s one-phonon structure factor is
strongly dominant. Figure 5 presents a comparison of the
relative intensities of one-phonon structure factors weighted
by phonon frequency, which is indicative of mode popula-
tion as per Eq. (2). Only 37% of wave vectors visible in
measurements shown in Fig. 2 have a mode that contributes
over 50% of the quantity

∑
j |F1 j (q)|2/ω j,k; only 1% of wave

vectors have a phonon mode that contributes more than 75%.
The results of Fig. 5 show that quantitative answers regarding
phonon dynamics from UEDS measurements cannot gener-
ally be obtained by inspection; at almost any wave vector

5A maximum of 5000 K for optical modes, and 1000 K for acoustic
modes. The discrepancy between maximum temperatures represents
the fact that the heat capacity of acoustic modes is much higher.

6The calculation of |F1 j (q, t )| is trivial for out-of-plane modes ZA,
ZO1–ZO3 because q · e j,s,k ≡ 0 for these modes.

FIG. 3. Calculated one-phonon structure factors |F1 j (q, t )|2 of
selected in-plane modes of graphite, at 300 K (t = t0), for q vectors
equivalent to the detector area shown in Fig. 2. Bright spots indicate
locations in reciprocal space where the associated mode contributes
strongly to the diffuse scattering intensity. Brillouin zone outlines are
overlaid, and their centers (Bragg peaks) are marked with a white
dot. While one would expect a wave-vector-dependent behavior
|F1 j (q, t )|2 ∝ |q|2 from Eq. (3), the Gaussian nature of the Debye-
Waller factor terms {Ws(q, t )} and of the atomic form-factor terms
{ fs(q)} decrease the amplitude of the one-phonon structure factors at
larger q.

q, at least two phonon modes contribute significantly to the
transient diffuse scattering intensity. Therefore, a more robust
procedure, presented in the next section, must be employed
to extract wave-vector- and mode-dependent phonon popula-
tions from UEDS intensities.

D. Population dynamics across the Brillouin zone

Transient electron diffuse intensity has been used else-
where [20–23] as an approximation to the population dy-
namics of particular modes. However, one can extract the
transient wave-vector-dependent phonon population dynam-
ics {�n j,k(t )} by combining the measurements of �I (q, t )
with the calculations of one-phonon structure factors and
associated quantities presented above.

For many materials (including graphite), the temperature
dependence (and hence time dependence) of the phonon-
mode vibrational frequencies is negligible because such de-
pendence is proportional to anharmonic couplings between
branches [38,39]; hence, ω j,k(t ) ≡ ω j,k(t0). Moreover, as is
discussed in Sec. IV B, the temperature dependence (and
hence time dependence) of the Debye-Waller factors, and
therefore the one-phonon structure factors, has a much smaller
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FIG. 4. Calculated one-phonon structure factors |F1 j (q, t )|2 visualized as weighted dispersion curves for selected in-plane modes of
graphite, along the high-symmetry lines �(010) − M − K − �(010) (left) and �(1̄10) − K − M − �(1̄10) (right). The color saturation of dispersion
curves is proportional to |F1 j (q, t )|2 of the associated mode, at 300 K (t = t0). The left and right paths are shown in a diagram on the bottom
left. This figure highlights that one-phonon structure factors values are highly variable, and that their values can differ significantly even when
comparing neighboring Brillouin zones. A striking example of this is the relative strengths of the one-phonon structure factors of LA and TA
modes near �(010) and �(1̄10). At these locations, the ratio of values of |F1 j (q, t )|2 completely flips, even though the paths are equivalent in the
reduced zone scheme.

magnitude than the variations due to other terms in Eq. (2).
Therefore, we have |F1 j (q, t )|2 ≡ |F1 j (q, t0)|2 for all times. In
this case, transient scattering intensity at the detector �I (q, t )
can be expressed as follows:

�I (q, t )

NcIe
=

∑
j

�n j,k(t )

ω j,k(t0)
|F1 j (q, t0)|2 (6)

for k away from �, where there might be interference with
elastic scattering signals.

At every reduced wave vector k and time delay t , there
are N different values {�n j,k(t )} that must be determined,
one for each phonon mode. Since the one-phonon structure
factors |F1 j (q, t0)|2 vary over the total wave vector q, the

FIG. 5. Reciprocal-space locations where |F1 j (q, t0 )|2/ω j,k(t0) is
dominated by one mode j, for q vectors equivalent to the detector
area shown in Fig. 2. Modes other than those shown here (e.g., TO2)
are not dominant anywhere. (a) |F1 j (q, t0)|2/ω j,k(t0) is dominated
(>50%) by one mode j. White (∅) regions account for 63% of the
wave vectors, where no phonon mode is dominant. Bragg peaks have
been marked by black dots. (b) Locations where |F1 j (q, t0)|2/ω j,k(t0)
is dominated (>75%) by one mode j. White (∅) regions account for
99% of the wave vectors where no mode reaches the 75% threshold.

transient diffuse intensity for at least N Brillouin zones must
be considered so that Eq. (6) can be solved numerically. A
linear system of equations must be solved at every reduced
wave vector k.

Let {H1, . . . , HM | M � N} be the chosen reflections from
which to build the system of equations. Then, the transient
phonon population of mode j at every k and time t , �n j,k(t ),
solves the linear system:

Ik(t ) = Fk nk(t ), (7)

where

Ik(t ) = 1

NcIe
[�I (k + H1, t ) . . . �I (k + HM, t )]T , (8)

nk(t ) = [�n1,k(t )/ω1,k(t0) . . . �nN,k(t )/ωN,k(t0)]T , (9)

Fk =

⎡
⎢⎣

|F11(k + H1, t0)|2 . . . |F1N (k + H1, t0)|2
...

. . .
...

|F11(k + HM, t0)|2 . . . |F1N (k + HM, t0)|2

⎤
⎥⎦
(10)

for k vectors away from the � point. These linear systems
of equations can be solved numerically, provided enough
experimental data (M � N).

The choice to solve for nk(t ), rather than for the change
in population, is related to the degree of confidence that
should be placed in the calculation of phonon polarization
vectors and frequencies. The phonon polarization vectors are
mostly affected by the symmetries of the crystal. On the other
hand, phonon vibrational frequencies might be influenced by
nonequilibrium carrier distributions. Solving for the ratio of
populations to frequencies, rather than populations, is more
robust against the uncertainty in the modeling because the
one-phonon structure factors only take into account the po-
larization vectors.
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FIG. 6. Experimental change in transient population, across the Brillouin zone, of relevant in-plane modes of graphite following

photoexcitation. The decomposition of transient diffuse intensity change (Fig. 2) yields stable solutions for |k| > 0.45 Å
−1

. The bounds of the

solutions domain are highlighted by a white circle at |k| = 0.45 Å
−1

and by a white hexagon at the Brillouin zone edge. The Brillouin zone
midpoints are shown with a dashed hexagon. Uncertainty on the population values is approximately 4 × 10−5, calculated via the covariance

matrix of the matrix solution. The differential A′
1 phonon population is highlighted by a circular arc centered at K (radius of 0.3 Å

−1
) in the

TO2 phonon population images; its dynamics are discussed in Sec. IV E.

We also note that the procedure presented above can be
easily extended to (equilibrium) thermal diffuse scattering
measurements, where the phonon populations are known at
constant temperature, but the phonon vibrational spectrum is
unknown. Therefore, using prephotoexcitation data of a time-
resolved experiment, one could infer the phonon vibrational
frequencies, which are then used to determine the change
in populations using the measurements after photoexcitation.
This scheme only relies on the determination of phonon
polarization vectors.

Wave-vector-dependent phonon population dynamics in graphite

We applied this general formalism for wave-vector-
dependent phonon population decomposition to the transient
diffuse intensity patterns of photoexcited graphite shown in
Fig. 2. Since the diffraction patterns have been symmetrized,
one would expect that using intensity data for reflections
related by symmetry would be redundant. However, better
results were achieved by using the entire area of the detector.
We expect this is due to minute misalignment of the diffrac-
tion patterns and uncertainty in detector position which are

averaged out when using all available data. The Brillouin
zones associated with all in-plane Bragg reflections H such

that |H| � 12 Å
−1

were used, for a total of 44 Brillouin zones
(M = 44), many more than the minimum required for the
8 in-plane phonon modes of graphite (N = 8). The physical
constraint that �n j,k(t ) > 0 ∀ t was applied7 via the use of a
non-negative approximate matrix inversion approach [40] to
solve Eq. (7) at every reduced wave vector k and time delay
t . Stable solutions were found for reciprocal space points

where |k| > 0.45 Å
−1

, where there is no interference between
elastic I0(q, t ) and diffuse I1(q, t ) signals. Figure 6 presents
the direct decomposition of diffuse intensity into wave-vector-
dependent, transient phonon population changes {�nj,k(t )},
for a few in-plane modes that are particularly relevant to
graphite. The discussion of physical processes that explain the
wave-vector-dependent transient phonon populations follows.

7The positivity constraint �nj,k(t ) > 0 ∀ t means that the phonon
population of a branch cannot drop below its equilibrium level. While
not necessary, it leads to more reliable solutions.

214115-7



LAURENT P. RENÉ DE COTRET et al. PHYSICAL REVIEW B 100, 214115 (2019)

In graphite, optical excitation creates a nonthermal phonon
distribution, increasing population primarily in two strongly
coupled optical phonons (SCOP): A′

1, located near the K
point, and E2g, at � [41]. Dynamics measured at the earliest
timescales (<5 ps) are discussed qualitatively in a previous
publication [22]. Using the measured population dynamics of
Fig. 6, we can track the transfer of energy across the Brillouin
zone quantitatively.

By conservation of both momentum and energy, the an-
harmonic decay of the two SCOP transfers population into
mid-Brillouin zone acoustic modes. The early time points
presented in Fig. 6 confirm that quickly after photoexcitation
(<500 fs), the transverse optical mode TO2 is strongly popu-
lated at K, indicative of the expected strong electron-phonon
coupling to the A′

1 phonon. The transfer of energy away from
the TO2 mode is already well underway at 5 ps, associated
with an increase in acoustic modes along the �-M line. This
is in accordance with the phonon band structure, where the
midpoint along the �-M line favors occupancy of the TA
mode (Fig. 4). This behavior intensifies from 1.5 to 100 ps.

The initial increase (<5 ps) of TA population along the
�-M line is in excellent agreement with predicted anharmonic
decay probabilities from the E2g phonon [42]. The (small)
increase at 500 fs in LA population at 1

2 K is also in line
with calculated decay probabilities from the E2g phonon by
anharmonic coupling.8

Over longer timescales (>25 ps), the TA population has
pooled significantly at 1

3 M and M. There are no three-phonon
anharmonic decay processes that start in a purely transverse
mode; the only allowed interband transitions are L ↔ T
+ T and L ↔ L + T, where L (T) represents a longitudinal
(transverse) mode [43,44]; therefore, a buildup of population
in the TA mode is expected. At 1

2 M, computed lifetimes
predict that both LA and TA phonons will favor decay pro-
cesses into out-of-plane phonons (ZA) [36] that are not visible
(have zero one-phonon structure factor) in the [001] zone-axis
geometry in which these UEDS experiments were conducted.
Similarily, the ZA phonons predominantly decay back into in-
plane phonons, implying that the phonon thermalization in the
acoustic branches occurs through a mechanism that exchanges
in-plane and out-of-plane modes. Additionally, the computed
LA and TA anharmonic lifetimes are predicted to significantly
drop at 1

2 K and 1
2 M, respectively, due to the activation of

umklapp scattering to the ZA phonons. Our measurements
corroborate these predictions, as can be seen by TA and LA
population at the mid-Brillouin zone (dashed white hexagon)
being relatively lower than average. The confirmation of those
predictions fundamentally relies on UEDS’ ability to probe
the entire Brillouin zone at once.

The robustness of such an analysis must be emphasized.
The decomposition of transient diffuse intensity change via
Eq. (7) admits no free parameter. Given sufficient data, a
single optimal solution exists.

8On the other hand, a monotonic increase in LA population at �

is expected from the decay of the other SCOP, A′
1, which has a high

probability to decay into a pair of LA-LO modes. However, we were
not able to measure population changes close enough to �.

E. Wave-vector-dependent electron-phonon coupling

The flow of energy between electronic and phononic
subsystems is typically crudely modeled using the two-
temperature model [45]. This model assumes that the
electronic system and the phononic system can each be
associated with temperatures Te and Tph, throughout the dy-
namics. Effectively this approximation assumes that the in-
ternal thermalization dynamics of each system is much more
rapid than any processes that couple the two systems. It is
evident from the earlier description of the UEDS data from
graphite that this assumption is (rather generally) quite a
poor one; the idea that the phononic subsystem is internally
thermalized does not hold on the timescales typically asso-
ciated with energy flows between the electron and phonon
systems following photoexcitation. On these timescales, the
phonon occupations are generally very far from being ther-
malized. UEDS allows to move beyond the two-temperature
approximation; by leveraging momentum resolution, mode-
dependent electron-phonon and phonon-phonon couplings
can be extracted from the transient change in mode popula-
tions {�n j,k(t )}. Specifically, wave-vector-dependent phonon
population dynamics determined in the previous section will
now be used to determine the electron-phonon and phonon-
phonon coupling strength of the A′

1 phonon.
The formalism of the two-temperature model can be ex-

tended to the nonthermal lattice model (NLM) model [46],
where every phonon branch j has its own molar heat capacity
Cph, j , and temperature Tph, j :

Ce(Te)
∂Te

∂t
=

∑
i

Gep,i(Te − Tph,i ) + f (t − t0), (11)⎧⎨
⎩Cph, j (Tph, j )

∂Tph, j

∂t

=
∑
i �= j

Gep,i(Te − Tph,i ) + Gpp,i j (Tph, j − Tph,i )

⎫⎬
⎭

N

j=1

, (12)

where f (t − t0) is the laser pulse profile, and Ce and Te are
the electronic heat capacity and electron temperature, respec-
tively.9 This model accounts for discrepancies in coupling
between the electronic system and certain phonon modes,
which occurs for example in graphite, where some modes
are strongly coupled to the electron system via Kohn anoma-
lies [47].

Observations of transient changes in mode populations are
related to mode temperatures Tph, j (t ) via the Bose-Einstein
distribution:

n j,k(t ) ∝
[

exp

(
h̄ω j,k

kBTph, j (t )

)
− 1

]−1

. (13)

We can decompose the above expression with a Laurent
series [48] to show explicitly that the mode population is

9The electronic system thermalizes in approximately 100 fs [14],
and hence after we can consider the electronic system to be well
described by a single temperature Te.
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proportional to temperature, for appropriately high Tph, j :

n j,k(t ) ∝ kBTph, j (t )

h̄ω j,k
− 1

2
+ O

(
T −1

ph, j (t )
)
. (14)

Hence, in the case of measurements presented herein,
�n j,k(t ) ∝ �Tph, j (t ), where the initial temperature is known
to be 300 K.

We now use the NLM to extract the couplings to the
A′

1 mode from population measurements. The differential A′
1

phonon population �nA′
1
(t ) is obtained by integrating over the

region of the wave-vector-dependent TO2 phonon population,

in a circular arc centered at K (|k − K| � 0.3 Å
−1

). This
location is shown in Fig. 6. In order to correlate the mode
population measurements with the NLM, the heat capacities
of the electronic system and every phonon mode must be
parametrized.

The electronic heat capacity Ce is extracted from experi-
mental work by Nihira and Iwata [49]:

Ce(Te) = 13.8Te + 1.16 × 10−3T 2
e + 2.6 × 10−7 T 3

e . (15)

Over this range of time delays, thermal expansion (or con-
traction, in the case of graphite) has not yet occurred [50].
No changes in Bragg peak positions, indicative of lattice
parameter changes, is observed within the experimental range
of time delays τ � 680 ps. We can therefore calculate the
heat capacity of each graphite mode j as the heat capacity
at constant volume [51]:

Cph, j (Tph, j ) = kB

∫ ωD

0
dω D(ω)

(
h̄ω

kBTph, j

)2 eh̄ω/kBTph, j

(eh̄ω/kBTph, j − 1)2
,

(16)

where kB is the Boltzmann constant, ωD is the Debye fre-
quency, and D(ω) is the phonon density of states. Momentum
resolution of UEDS allows for a simplification, where a
single frequency contributes to the heat capacity in the A′

1
mode, D(ω) = δ(ω). Moreover, we can reduce the number
of coupled equations in Eqs. (11) and (12). Simultaneous
conservation of momentum and energy during the decay of
an A′

1 phonon can only be satisfied in a few reciprocal space
locations. Using first-principles calculations, it is possible
to determine the decay probabilities. One such calculation,
reported by Bonini et al. [42], allows us to define an effec-
tive heat capacity into which the A′

1 population drains Cl .10

Therefore, the energy dynamics at K can be specified in terms
of a system of three equations:

Ce(Te)
∂Te

∂t
= f (t − t0) − Ge,A′

1
(Te − TA′

1
) − Ge,l (Te − Tl ),

(17)

CA′
1
(TA′

1
)
∂TA′

1

∂t
= Ge,A′

1
(Te − TA′

1
) − GA′

1,l (TA′
1
− Tl ), (18)

Cl (Tl )
∂Tl

∂t
= Ge,l (Te − Tl ) + GA′

1,l (TA′
1
− Tl ), (19)

10This effective heat capacity Cl is composed of 9% chance to
decay into two TA modes, 36% chance to decay into a TA mode
and an LA mode, and 55% chance to decay into either an LA and
TA, or LO and LA.

FIG. 7. Evolution of the A′
1 mode population in graphite after

ultrafast photoexcitation. Differential population measurement of A′
1,

shown in black (circle), is obtained from the integration of the TO2

mode population in a circular arc centered at K (|k − K| � 0.3 Å
−1

),
visible in Fig. 6. Error bars are determined from the standard error
in the mean of population before photoexcitation (t < t0). The fit
to the population change is shown in pink (solid). The effective
temperature of the modes in which the A′

1 phonon can decay is shown
as an orange (dotted) line. Inset: temperature dynamics at early times
(<1000 fs) show that thermalization between the electronic system
(purple, dashed) and the A′

1 phonon population (pink, solid) is very
fast, indicative of strong electron-phonon coupling. The effective
temperature of the modes in which the A′

1 phonon can decay is shown
as an orange (dotted) line.

where Ge,A′
1
, GA′

1,l , and Ge,l are constants. Solving this system
of equations gives the temperature evolution of each of the
subsystems. The evolution in the A′

1 population can be used
as a proxy for the mode temperature TA′

1
(t ); minimizing

the difference between observed population dynamics and
modeled temperature changes yields the coupling constants
Ge,A′

1
, GA′

1,l , and Ge,l . The resulting temperature transients are
presented in Fig. 7. The extracted coupling constants have
been listed in Table I. This model correctly identifies the
strong electron-phonon coupling of the A′

1 mode, Ge,A′
1
, as

compared with the rest of the relevant modes, Ge,l .
From the coupling constant Ge,A′

1
, mode-projected

electron-phonon coupling value 〈g2
e,A′

1
〉 can be determined.

In the case of the coupling between the electron
system and the A′

1 phonon, the heating rate of Ge,A′
1
=

6.8 ± 0.3 × 1017 W m−3 K−1 (Table I) corresponds to

TABLE I. Coupling strength between electronic system, the A′
1

phonon, and the lattice system. Uncertainty is derived from fit
covariances.

Coupling strength (W m−3 K−1)

Ge,A′
1

(6.8 ± 0.3) × 1017

GA′
1,l (8.0 ± 0.5) × 1017

Ge,l (0.0 ± 6.0) × 1015
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a mode-projected electron-phonon coupling value of
〈g2

e,A′
1
〉 = 0.035 ± 0.001 eV2 (see Appendix B for details).

These values are in agreement with recent trARPES
measurements and simulations [12,14,15,52].

V. CONCLUSION

UEDS provides direct access to wave-vector-resolved,
nonequilibrium phonon populations and is, in this sense, a
lattice-dynamical analog of trARPES. A robust and generally
applicable UEDS data reduction method has been described
that provides detailed information on transient changes in
phonon populations across the entire Brillouin zone that
follow photoexcitation in single-crystalline materials. This
method takes only the observed UEDS patterns and computed
one-phonon structure factors as inputs and can easily be
extended with minimal alterations to ultrafast x-ray diffuse
scattering. A procedure for computing the required phonon
properties using DFPT, and their potential time dependence
via the Debye-Waller factors, was described in detail. This
method was demonstrated for the case of photodoped carriers
in the Dirac cones of thin graphite, where the phonon popula-
tions were tracked. Finally, the mode dependence of couplings
between electron and phonons has been demonstrated at a
specific point in the Brillouin zone, where the strongly cou-
pled optical phonon A′

1 is located. Mode-projected electron-
phonon coupling value for the A′

1 phonon was extracted, using
the nonthermal lattice model, and corroborated with numerous
other experiments and simulations.

Direct determination of wave-vector-dependent, transient
phonon populations hold great promise for the study of
phenomena that emerge primarily due to the coupling of
electronic and lattice degrees of freedom, and specifically
those involving strongly anisotropic interactions. In partic-
ular, with sufficient time resolution, the applicability of the
Kramers-Heisenberg-Dirac theory to Raman scattering mea-
surements in graphene/graphite could be explored, via the
detection of early times (<50 fs) phonon populations in the
strongly coupled optical phonon E2g [53]. Another potential
extension concerns influence of nonequilibrium carrier dis-
tributions on phonon vibrational frequencies. Many systems,
charge-density wave materials in particular, exhibit phonon
modes that harden or soften at high temperatures and selec-
tive electronic excitation which can be used to explore such
phenomena in greater depth.
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APPENDIX A: CLUSTERING OF PHONON EIGENVALUES
AND EIGENVECTORS INTO BRANCHES

This section describes the clustering of phonon polariza-
tion vectors {e j,s,k} and frequencies {ω j,k} into physically
relevant categories, i.e., branches. The general idea behind
the procedure is that phonon properties are continuous. The
variation of a property should not display any discontinuity
along any path in the Brillouin zone.

Let P j,k be an abstract vector representing the polarization
vectors and frequency of branch j at reduced wave vector k.
We represent P j,k as the following vector:

P j,k = [ω j,ke j,s=1,k . . . e j,s=M,k]T , (A1)

where the index s runs for all M atoms in the unit cell (M = 4
in the case of graphite). We define the metric between two
abstract vectors Pi,k and P j,k as follows:

‖Pi,k − P j,k′ ‖ = |ωi,k − ω j,k′ |2 +
∑

s

‖ei,s,k − e j,s,k′ ‖. (A2)

A one-dimensional path γ (k) connecting all k points was
defined, starting at �. At �, polarization vectors are associated
with a mode based on geometry and oscillation frequency.
For example, polarization vectors {e j,s,k} parallel to their wave
vector k for all atoms s is a longitudinal mode; if the associ-
ated frequency is ≈0 THz, this mode can be labeled longitudi-
nal acoustic. Then, polarization vectors and frequencies at any
point along the path were assigned to modes that optimized
continuity. That is, the assignment of phonon branches j at
γ (k + �), P j,γ (k+�) based on the assignment at γ (k), Pi,γ (k),
minimized the distance ‖Pi,γ (k) − P j,γ (k+�)‖. The procedure
described above, adapted for numerical evaluation, is part of
the SCIKIT-UED software package [37].

APPENDIX B: CALCULATION OF MODE-PROJECTED
ELECTRON-PHONON COUPLING FROM

HEATING RATES

Consider the coupled equations of the nonthermal lattice
model in Eqs. (11) and (12). These coupled first-order ordi-
nary differential equations will admit solutions for Te(t ) and
{Tph, j (t )}. After photoexcitation [ f (t − t0) → 0], the appro-
priate summations of those equations yields the following
single equation:

∂Te

∂t
−

∑
j

∂Tph, j

∂t
=

∑
j

[
Gep, j

Ce
(Te − Tph, j )

−
∑

i

(
Gep,i

Cph, j
(Te − Tph,i )

+Gpp,i j

Cph, j
(Tph,i − Tph, j )

)]
, (B1)
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where the temperature dependence of Ce and {Cph, j} has been
omitted for brevity. In the case of graphite, at early times
(<5 ps), phonon-phonon coupling Gpp,i j is much weaker at
the K point (Table I). Therefore, we may simplify the above
equation to a more manageable system:

∂Te

∂t
−

∑
j

∂Tph, j

∂t
=

∑
j

Gep, j

Ce
(Te − Tph, j )

−
∑
i, j

Gep,i

Cph, j
(Te − Tph,i ). (B2)

By performing a substitution λ = Te − ∑
j Tph, j , the equation

above simplifies to a familiar situation:

λ̇(t ) − a(t )λ(t ) = 0, (B3)

where

a(t ) =
∑

j

(
Gep, j

Ce
−

∑
i

Gep,i

Cph, j

)
. (B4)

The time dependence comes from the time evolution of the in-
dividual temperatures. In the case of phonon temperatures, the
phonon population dynamics is directly related to temperature
dynamics according to Eq. (14). Equation (B3) is a separable
equation with solution

λ(t ) = exp
∫

dt[a(t )]. (B5)

For a slow-varying integrand a(t ) ≈ a, then a = 1/τ , where
τ is a compound variable representing the relaxation of the

13Note that factors of h̄ are often ignored, including in the accom-
panying reference.

system. This leads to the following form:

1

τ
≈

∑
j

(
Gep, j

Ce
−

∑
i

Gep,i

Cph, j

)
. (B6)

As a specific example, the above expression reduces nicely
in the case of the two-temperature model, where all phonon
modes are considered to be thermalized with each other, with
isochoric heat capacity Cph:

1

τ
= Gep

(
1

Ce
− 1

Cph

)
(B7)

and we see that τ physically represents the relaxation time of
the electronic system into the lattice. Equation (B6) can be
thought of as a sum of relaxation times between the electronic
subsystem and specific modes τe, j :

1

τe, j
= Gep, j

Ce
−

∑
i

Gep,i

Cph, j
. (B8)

The final state in relating heating rates to their mode-projected
coupling values requires knowledge about density of states.
Because the measurements herein consider only in-plane in-
teractions, we use an approximate electronic density of states
for graphene close to the Dirac point [54]:

De(ε) = 2A

π

|ε|
(h̄ vF )2

, (B9)

where A is the unit-cell area and vF = 9.06 × 105 m s−1 is
the Fermi velocity.13 The electronic density of states is related
to the mode-projected electron-phonon coupling 〈g2

ep, j〉 as
follows [52]:

h̄

τe, j
= 2π

〈
g2

ep, j

〉
De(h̄ων − h̄ω j,k ), (B10)

where h̄ων corresponds to the optical excitation energy
(1.55 eV or 800 nm).
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