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Quasicrystalline Chern insulators
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A Chern insulator or a quantum anomalous Hall state is a topological state with integer Hall conductivity but
in absence of the Landau level. It had been well established on various two-dimensional lattices with periodic
structure. Here, we report similar Chern insulators that can also be realized on a quasicrystal with fivefold
rotational symmetry. Providing the staggered flux through plaquettes, we propose two types of quasicrystalline
Chern insulators. Their topological characterizations are well identified by the robustness of edge states, nonzero
real-space Chern number, and quantized conductance. We further find the failure of integer conductivity but
with the quantized Chern number at some special energies. Our study, therefore, provides a new opportunity to
searching topological materials in aperiodic systems.
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I. INTRODUCTION

A Chern insulator (CI) or a quantum anomalous Hall
(QAH) state is a topological state with nonzero Chern number
but without symmetry protection. Unlike the conventional
integer quantum Hall state with highly degenerated Landau
level realized under strong magnetic field at low temperature
[1], the CIs have no Landau levels and have zero net flux, and
therefore have attracted much interest in recent years. Haldane
model is the first CI model established on the honeycomb
lattice with the staggered flux [2] and had been experimentally
realized in the ultracold atomic system [3]. So far, CIs had
been successively constructed on various periodic lattice by
introducing flux, including the checkerboard-lattice model
[4,5], the lattice-Dirac model [6], the kagome-lattice model
[7–10], the Lieb-lattice model [11–13], the ruby-lattice model
[14], the triangular-lattice model [15], the star-lattice model
[16–18], the square-octagon-lattice model [19,20], etc. In
principle, the topology of CIs with translational symmetry
can be well characterized by the topological invariant—the
Chern number or TKNN index [21], which integrates the
Berry curvature over the first Brillouin zone of the lattice
with periodic boundary conditions. The chiral edge states
emerge on the open boundary of CIs according to the bulk-
edge correspondence. These CIs are all constructed on the
crystal lattices with the periodic structure and will be referred
to as crystalline CIs below. Recently, the topological states
in crystals have been extended to some special geometries,
such as the fullerenes [22], the Möbius surfaces [23], and the
singular lattices [24,25]. Some exotic and intriguing features
are revealed, such as the fractional charge near the singu-
larity and many branches of edge excitations [24,25]. The
crystalline topological insulators with some special crystalline
symmetry protection are further proposed, for example, the

topological crystalline insulators with certain crystal point
group symmetry [26]. Those crystalline topological states
substantially enrich the families of topological insulators and
open up a new window for electronic devices. Very recently,
significant improvement in searching for topological materials
efficiently based on the crystal symmetries are developed
[27–29], and thousands of candidates are predicted. Whether
similar topological states can be established on the lattice
beyond the periodic lattice is surely interesting.

A quasicrystal is a structure with a long-range ordered
atomic arrangement but without translational symmetry,
firstly discovered in the aluminum-manganese alloy with five-
fold rotational symmetry in 1984 [30]. In fact, the concep-
tion of quasicrystals with fivefold rotational symmetry has a
long history far before their experimental discovery. Some
designs had been proposed in the early 16th century, such
as the Dürer’s pentagonal tiling [31], Keplers tiling [32], and
Penrose pentagon pattern [33]. The Dürer’s tiling is one of the
simplest patterns, consisting of only diamonds and pentagons.
Recently, some topological states in two-dimensional qua-
sicrystals have been proposed, such as the Hofstadter butterfly
under the uniform magnetic field [34–36], the weak topo-
logical superconductors [37], the quantum spin Hall states
[38,39], the high-order topological states [40,41], and even the
topological photonic states [42]. Some real-space topological
indices have been developed to characterized the topological
nature of these systems without translational symmetry, such
as the Kitaev formula [43], C� algebras [44], the local Chern
marker [34,45], the real-space formulation of weak invariant
[37], the spin Bott index [38,39], etc.

In this paper, we propose quasicrystalline CIs in Dürer’s
tiling with disk geometry. Two kinds of quasicrystalline CIs
are constructed by imposing the flux on the plaquettes of ei-
ther the diamonds (type I) or nonadjacent pentagons (type II).
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These quasicrystalline CI states are identified by the nonzero
real-space Chern number, and the robust gapless edge states.
We further check the topology of quasicrystalline CIs by the
integer conductance. Interestingly, a failure of conductance
plateau but with the nonzero real-space Chern number at
special Fermi energy is observed in type-I quasicrystalline CI,
where a core state emerges at the center of quasicrystalline
CI lattice. Our study enriches the Chern insulators and opens
up a new window to search the topological materials beyond
crystalline.

II. MODELS

The two-dimensional quasicrystal lattice we adopted is
the Dürer’s tiling with fivefold rotational symmetry in a
disk geometry, consisting of the pentagons and diamonds as
shown in Fig. 1. To realize the nontrivial topological state, the
inequivalent staggered flux is introduced on the polygons of
the quasicrystal lattice. There are different ways to construct
the quasicrystalline CIs, here we show two typical types. Type
I [Fig. 1(a)]: the staggered fluxes are imposed on all diamonds
(shadow), and all the pentagons (bright) except the central
pentagon (green) with specified magnitude, respectively. Type
II [Fig. 1(b)]: the staggered fluxes are imposed on all the
non-edge-shared pentagons (shadow), and the remaining pen-
tagons and all the diamonds (bright). A special gauge (arrows
in Fig. 1) is adopted, producing additional phase factor ±φ

in part of the hopping process between the nearest neighbors.
The physical properties are insensitive to the selected gauge.
We have checked that the total flux in the whole disk is exactly
zero if the regular pentagon shape in type I and equal number
of cycles of shadow and bright areas in type II is considered,
slightly differing from the Haldane model with zero flux in a
unit cell [2]. It should be reminded that the central pentagon
in type-I quasicrystal model [green pentagon in Fig. 1(a)]
is special, where the additional phase factor on all bonds is
missing.

The real-space Hamiltonian of these two types of qua-
sicrystalline CIs is therefore given by

H = −t
∑
〈rr′〉

a†
r′areiφr′r − t ′ ∑

♦,〈rr′〉′
a†

r′ar, (1)

where a†
r (ar) creates (annihilates) a particle at vertex (site)

r, 〈rr′〉 runs over all the nearest-neighbor sites, and ♦, 〈rr′〉′
denotes the next-nearest-neighbor sites in each diamond. φr′r
is the phase difference between the nearest-neighbor sites as
shown in Fig. 1. Here, we set the nearest-neighbor hopping t
as unit. Since the Hamiltonian is fivefold rotational invariant,
the angular momentum is a conservation with good quantum
number L (L = 0, 1, 2, 3, 4). In analogy to the Haldane model
in absence of the Semenoff mass [2], the CIs in quasicrystal
proposed here is induced by the staggered flux. Similar CIs
had also been realized on the crystalline lattice model, such as
the kagome-lattice [20] and star-lattice [18] models.

III. TOPOLOGICAL PROPERTIES

To investigate the topology of the above constructed qua-
sicrystal lattice models, we first show the single particle
energy spectra in Fig. 2 with 980 vertexes. The gapped bulk

FIG. 1. Two types of quasicrystalline CI lattice model realized
by imposing the inequivalent staggered flux in Dürer’s tiling with
fivefold rotational symmetry in the disk geometry. (a) Type-I qua-
sicrystalline CI model. The introduced staggered flux is −4φ for
diamonds (shadow), and +2φ for pentagons (bright) except for the
central one (green without flux). (b) Type-II quasicrystalline CI
model. The staggered flux is −5φ for the non-edge-shared pentagons
(shadow), and +3φ for the remaining pentagons and +2φ for dia-
monds (bright), respectively. The adopted gauge is explicitly shown
by arrows, which introduce an additional phase factor ±φ for part of
the nearest-neighbor hopping process.

states with gap about t , and the gapless edge states are ob-
served in both type quasicrystal lattice models, in agreement
with the general features in spectra of CI with periodic struc-
ture under the open boundary condition [24]. The robust edge
states are further manifested by the space distribution of wave
functions [Figs. 2(b) and 2(c)], which is mainly localized near
the boundaries. Interestingly, some additional energies emerge
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FIG. 2. Energy spectra of two designed quasicrystalline CIs with 980 vertexes (or sites). The bulk, edge, and core states are colored by the
black, red, and blue lines, respectively. (a) the spectra of type-I quasicrystalline CI with t ′ = −1.3 and φ = 1

5 π . L is the quantum number of
the angular momentum. (b) and (c) are the space distributions of wave function |ψ (r)|2 for edge states highlighted in (a). (d) and (e) are similar
|ψ (r)|2 but for the correspondingly core states in (a). (f) The energy spectra for type-II quasicrystalline CI with t ′ = 0 and φ = − 1

4 π . No core
state exists.

in the bulk gap [blue lines in Fig. 2(a)] in type-I quasicrystal
model. The space distribution of the wave function analysis
indicates that they well locate at the center, i.e., the core states.
As mentioned above, the flux phase vanishing in the central
pentagon in type-I quasicrystal system, these core states are
indeed the inner “edge states” around the central pentagon.
This is quite similar to the core states found in crystalline
CI with singular lattices [24]. In contrast, no additional core
states are observed in type-II quasicrystal model due to the
perfectness of pentagons. Comparison with the energy spectra
in the crystalline CIs, we believe the designed quasicrystal
systems are quasicrystalline CIs.

The topological characterization of quasicrystalline CIs
can be further identified by the Chern number in the system
with time inversion symmetry breaking. Unlike the crystalline
CI with periodic lattice, we have to calculate the Chern num-
ber in real-space due to the translational symmetry breaking.
There are some proposals to compute the real-space Chern
number [34,43–45]. Here, we show the results obtained from
the Kitaev formula [43] (Appendix A 1), and the local Chern
number maker (Appendix A 2). The Kitaev formula is ex-
pressed as

C = 12π i
∑
j∈A

∑
k∈B

∑
l∈C

(PjkPkl Pl j − Pjl PlkPk j ). (2)

The disk of quasicrystal lattice is now cut into three distinct
neighboring regions arranged in the counterclockwise order
shown in insert in Fig. 3(a). j, k, and l denote the vertex
(or site) in A, B, and C regions, respectively. P̂ is the pro-
jection operator defined up to Fermi energy EF , i.e., P̂ =∑

En<EF
|φn〉〈φn|, and Pjk = ∑

En<EF
φn(r j )φn(rk )∗ the matrix

elements of P̂ with φn(r j ) = 〈 j|φn〉. The real-space Chern

number is independent of the choices of the A, B and C
regions [46].

According to the Kitaev’s proposal in Eq. (2), the number
C is closely related to the Fermi energy, i.e., C ≡ C(EF ).
We show the real-space Chern number for two types of
quasicrystalline CIs as functions of the Fermi energy with
fixed 980 vertexes in Fig. 3. Substantial plateaus of quantized
real-space Chern number emerge in both types of quasicrys-
talline CIs when the Fermi energy EF locates in the bulk gap.
There are two plateaus in type-I, and one plateau in type-
II quasicrystalline CI, well consisting with the bulk gap in
respective type. To get insight into the Chern number plateaus,
we enumerate four specified EF at the fixed energy shown in
the spectra [Fig. 2(a)]. The corresponding real-space Chern
number is Cb = 0.9991, Cc = 0.9979, Cd = 0.9989, and Ce =
0.9724, respectively. These Chern numbers are nearly perfect
integer except Ce, where the core state energy is close to the
bulk band. The real-space Chern number is robust against
the selected size of quasicrystal lattice in bulk (details see
Appendix A 1). It should be reminded that the Chern number
is a topological invariant, and should be an integer, i.e., C = 0
for trivial and C �= 0 for nontrivial state. The noninteger C in
the metallic state just corresponds to the nonquantized Hall
conductivity, and is therefore not a topological invariant.

We also check the real-space Chern number by local Chern
number marker scheme, the averaged Chern number in large
enough bulk is about 1 ± 0.05, weakly depending on the
selected area (more details see Appendix A 2). Such uncer-
tainty, stemming from the significant inequivalance between
the diamonds and pentagons, is directly related to the highly
inhomogeneous local Chern number in present quasicrys-
talline CI models. This is in sharp contrast with the crystalline
CIs with equal unit cell, for example, the honeycomb lattice
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FIG. 3. Energy (E) dependence of the number C for two types
of quasicrystalline CIs with fixed 980 sites. (a) Type-I quasicrys-
talline CI. There are two real-space Chern number C ∼ +1 plateaus.
Some selected energies corresponding to the energies highlighted
in Fig. 2(a) are specified. Insert schematically shows three distinct
neighboring regions in the bulk of quasicrystal lattice illustrated in
the Kitaev formula as discussed in text. (b) Type-II quasicrystalline
CI. There is only one Chern number C ∼ +1 plateau. The adopted
parameters are same as Fig. 2.

[2] and kagome lattice [24]. It also differs from the previous
suggested quasicrystal model constructed by uniform dia-
monds, where the local Chern number is homogeneous in bulk
[34]. However, the average Chern number in large bulk area
remains nearly integer, manifesting topology is rather a global
property. Similar inhomogeneity is also observed in the den-
sities of many-particle integer filling in the lowest Chern band
(Appendix A 4), which can be further understood by the fact
that the number of “bands” cannot be directly associated with
the number of atoms in a “unit cell.” Therefore the inhomo-
geneity in present quasicrystal models is an intrinsic feature.
In this sense, the Kitaev formula is more robust in present
cases since it treats the system globally.

IV. TRANSPORT PROPERTY

The integer Hall conductivity is another hallmark of the
chiral edge states in CIs, and can be directly identified by the
transport measurements. The quantum transport for the non-
trivial states have attracted extensive attentions [37–39,47–49]
due to its potential applications in electronic devices.

FIG. 4. (a) Conductance G (in units of e2/h) with respect to
the Fermi energy EF for type-I quasicrystalline CI. Some specific
energies (marked with “b,” “c,” “d,” and “e”) corresponding to Figs. 2
and 3 are highlighted. (b) and (c) The distribution of LDOS ρ(r, EF )
with EF located in the bulk gap but other than the core state energies.
(d) and (e) Similar distribution of LDOS but with EF exactly at the
core state energies.

Here, we perform the quantum transport simulations by
using the Kwant. Kwant is a software package for quantum
transport and has been widely used to explore transport prop-
erties [37,49]. In this toolkit, the conductance G for a disk
geometry can be computed between the left lead (L) and
the right lead (R) (Fig. 7 in Appendix A 3) based on the
Landauer-Büttiker formula [50–53],

G = 2e2

h

∑
m∈L

∑
n∈R

|Smn|2, (3)

where Smn is the scattering matrix and |Smn|2 denotes the
probability that a carrier transmits from the mth incoming
mode at the left lead to the nth outgoing mode at the right
lead (more details see Appendix A 3). However, we can not
directly calculate the transverse conductance in disk geometry
as that for a multiterminal rectangular geometry or by using
the standard Kubo formula.

The conductance (G) as functions of the Fermi energy
(EF ) for type-I quasicrystalline CIs is plotted in Fig. 4(a).
We add the left and right leads at the edges of the quasicrys-
tal lattice with 980 vertices (sites). Nearly perfect plateaus
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with quantized conductance G = e2/h are observed, in well
agreement with the real-space Chern number. The observed
conductance quantization in such a two-lead disk geometry
can be explained by the formation of a chiral edge channel
along the disk edge, and the integer conductance plateau here
corresponds to the number of edge channels. Surprisingly, the
quantized conductance is significantly broken down at some
special EF , though the corresponding real-space Chern num-
ber remains integer. The corresponding EF is exactly at the
energy where the core state located. This failure of quantum
conductance is robust against the system size, and cannot be
removed by enlarging the quasicrystal lattice (Appendix A 3),
indicating an intrinsic feature for core states.

To get an insight into the breakdown, we show the distribu-
tion of the local density of states (LDOS) at specific energies
obtained by KWANT. The LDOS is well located around the
center for EF at the core state energy [Figs. 4(d) and 4(e)],
while it mainly located at the edge for other energies in
the bulk gap. In fact, the LDOS discussed here reflects the
distribution of moving electrons at the Fermi energy when
voltage difference is applied on the leads (Appendix A 3).
The electrons are blockaded by the insulating bulk and edge
[white area) in Figs. 4(d) and 4(e)], resulting in the failure
of quantized conductance. In contrast, they can move dissi-
pationlessly along the edge in Figs. 4(b) and 4(c), preserving
the integer conductance.Similar breakdown is also observed
in time-reversal symmetry protected topological insulators
with magnetic [54,55] or nonmagnetic [56] impurities due to
strong backscattering or antiresonance but is never reported
in the crystalline CI systems. We believe that the breakdown
of conductance quantization should be also found in the CI
lattices with singularities [24]. In comparison, this failure is
not observed in type-II quasicrystalline CI due to the absence
of the core states (Appendix A 3).

V. SUMMARY AND DISCUSSION

We propose two types of quasicrystalline CIs by elabo-
rately imposing staggered flux on disk geometry with fivefold
rotational symmetry in Dürer’s pentagonal quasicrystal. Our
study therefore enriches the family of CIs, and provides
new opportunity to search for topological materials beyond
the crystal. The topological properties of these two types of
quasicrystalline CIs are well identified by the robust edge
states, the nonzero real-space Chern number, and are fur-
ther checked by the quantized conductance through elec-
tronic transport simulations. Interestingly, some core states
emerge in the type-I quasicrystalline CI, where the flux phases
vanishing in the central pentagon. These core states cause
transmission blockade when the Fermi energy locates at the
core states energies, leading to the failure of conductance
quantization.

To realize the proposed Chern-insulator states in quasicrys-
tal, a potential way is the ultracold atomic system, in which
the Haldane model had been experimentally realized [3]. The
quasicrystalline Chern-insulator states may also be simulated
by the designed photonic system, in which the topological
phase transition [57] and fractal topological spectrum [42]
had been reported. The higher-order topological insulators
in quasicrystal was recently proposed to be mapped into

an electrical-circuit lattice [41], providing new feasibility to
realize nontrivial topological states. Recently, a dodecagonal
quasicrystal was realized in twisted bilayer graphene with
12-fold rotational symmetry [58], creating new opportunity to
find the potential quasicrystalline Chern insulators.
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APPENDIX

In the main text, we construct two types of quasicrystalline
Chern insulator in disk geometry with fivefold rotational
symmetry in the Dürers tiling quasicrystal. Here, we show
some details about the real-space Chern number calculated
by the Kitaev formula [43] and the local Chern marker [45]
for the quasicrystalline CIs, the local density of states through
the transport property and some exotic features of particles
filling in the Chern band. Differing from the previous CI
states in crystalline systems with equivalent unit cell, there
are significant inhomogeneities in present quasicrystalline CIs
due to the inequivalence of the elemental shapes between the
diamonds and pentagons, such as the local Chern markers in
the bulk sites, the many-particle densities.

1. Real-space Chern number: Kitaev formula

Chern number, integrating the Berry curvature over the
first Brillouin zone, is well defined in the crystalline CIs
with periodic structures. In comparison, the real-space Chern
number is developed due to the invalidity of Chern number in
the translational symmetry breaking system. Here, we show
some details about the real-space Chern number using the
Kitaev formula [43]. The quasicrystal lattice should be cut
into three distinct neighboring regions (A, B, and C) arranged
in the counterclockwise order. We circle the bulk around the
center with radius r. The number C with varying radius r for
two types of quasicrystalline CI is shown in Fig. 5. C is far
from 1 for smaller radius r < 8, and tends to be a nonzero
quantized plateau for larger radius r > 8. Furthermore, the
integer real-space Chern number is robust against the size of
quasicrystal lattice if large enough bulk is selected. Since the
Kitaev formula treats the bulk as a whole, the corresponding
real-space Chern number is indeed a globally invariant num-
ber for the bulk and is in good agreement with the Chern
number obtained from the momentum-space.

2. Real-space Chern number: local Chern marker

The bulk topological invariant for quasicrystalline CIs can
also be calculated by the local Chern marker introduced by
Bianco and Resta [45]. The details about the general definition
of the real-space Chern number C and the Chern marker
in quasicrystal lattice model have been proposed previously
[34,45]. Here, we directly apply the expressions of the local
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FIG. 5. The stability of real-space Chern number C. We choose
the bulk around the center of lattice with varying radius r for two type
of quasicrystalline CIs with fixed 980 sites. The parameters adopted
are same as Fig. 3 in main text.

Chern number defined at the lattice site ri [34],

C(ri ) = −4π Im

⎡
⎣∑

r j

〈ri|x̂Q|r j〉〈r j |ŷP |ri〉
⎤
⎦, (A1)

where

〈ri|x̂Q|r j〉 =
∑

rk

Q(ri, rk )xkP (rk, r j ), (A2)

〈r j |ŷP |ri〉 =
∑

rk

P (r j, rk )ykQ(rk, ri ), (A3)

with

P (ri, r j ) =
∑

Eλ<EF

〈ri|ψλ〉〈ψλ|r j〉, (A4)

Q(ri, r j ) =
∑

Eλ>EF

〈ri|ψλ〉〈ψλ|r j〉 . (A5)

Here, 〈ri|ψλ〉 = ψλ(ri ) is the real-space wave function at the
site ri with energy Eλ, EF is the Fermi energy. We plot
the local Chern number C(ri ) in Fig. 6(a) with fixed the
Fermi energy EF = −1.764 located in the lower bulk gap in
type-I quasicrystalline CI. The local Chern number C(ri ) is
highly inhomogeneous even in the bulk. This inhomogeneity
stems from the inequivalence between the elemental shapes of
the Dürers tiling quasicrystal—the diamonds and pentagons.
Similar inhomogeneity can also be found in type-II quasicrys-
talline CI. The present inhomogeneity is in sharp contrast
with the previous crystalline CI model with same unit cell,
such as the Haldane model, where the local Chern number
in bulk is homogeneous and equals to 1 [Fig. 6(b)]. It also
differs from the previous constructed quasicrystal lattice with
uniform diamonds, where the local Chern number is almost 1
[34].

FIG. 6. (a) Local Chern marker C(ri ) for type-I quasicrystalline
CI with fixed 980 sites. We select a region D with radius rD in bulk
circled by red line. The adopted parameters are same as Fig. 5. (b)
Local Chern marker C(ri ) in the Haldane model.

The averaged Chern number CD in bulk for the quasicrys-
talline CI lattice can be defined as

CD = 1

AD

∑
ri

C(ri ), (A6)

where AD = πrD
2 is the area of of the selected region D

with radius rD in bulk. Here, we show a typical value of the
averaged Chern number in the disk with radius rD = 10.706
shown in Fig. 6(a). The averaged Chern number C(rD) is
0.9996, nearly perfect integer. However, this averaged Chern
number is not stable with CD ≈ 1 ± 0.05, weakly depending

FIG. 7. (a) Schematic simulation of the quantum transport using
the Kwant. Two leads (L/R) are introduced at the edge of the qua-
sicrystal lattice to calculate the conductance G using the Landauer-
Büttiker formula. (b) Conductance G (in units of e2/h) with respect
to the Fermi energy EF for type-II quasicrystalline CI.
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FIG. 8. Robustness of the failure of conductance quantization.
Here, we choose the first type of quasicrystalline CI with different
sizes, i.e., (a) 720, (b) 500, and (c) 320 sites.

on the selected region. In this sense, the real-space Chern
number calculated by the Kitaev formula is more robust than
the local Chern marker scheme. The former treats the bulk
globally while the latter locally instead.

3. Local density of states and failure of quantized conductance

In Fig. 7(a), we schematically illustrate the process of the
transport simulation by KWANT. Two leads (L and R) are set at
the edge of the quasicrystal lattice. The conductance is there-
fore calculated by the Landauer-Büttiker formula [50–52]

G = 2e2

h

∑
m∈L

∑
n∈R

|Smn|2. (A7)

Here, |Smn|2 is the transmitting probability for a carrier from
the mth incoming mode at the left lead to the nth outgoing

FIG. 9. Inhomogeneous many-particle density of quasicrys-
talline CIs. (a) Many-particle density of quasicrystalline CIs with
different sizes of the quasicrystal lattice (300, 500, 600, and 980
sites, respectively). For comparison, the many-particle density with
particles filling the low energy band (1/2 or 1/3 filling for Haldane
and kagome models, respectively) is homogeneous in crystalline CIs
(Haldane, kagome, etc). (b) Many-particle density of two types of
quasicrystalline CIs with fixed 300, 500, 600, and 980 sites. For type-
I quasicrystalline CI, we show two kind of filling with occupying the
core states or not.

mode at the right lead with Smn the scattering matrix. This
formula as well can be described by the Greens function
method, i.e., G = 2e2

h T with the transmission coefficient T =
Tr[�LGr�RGa]. Here, �L/R = i[	r

L/R − 	a
L/R] is the linewidth

function defined by the retarded/advanced self-energy 	
r/a
L/R.

The retard/advance Green function is Gr = (Ga)† = [μI −
HC − 	r

L − 	r
R]−1 with HC the Hamiltonian matrix of the

central scattering region and μ the chemical potential [52,53].
The conductance for type-II quasicrystalline CI is shown in
Fig. 7(b). Due to the absence of the core state, the conduc-
tance plateau well matches the previous plateau in real-space
number (Fig. 3 in main text). On the other hand, we show
the breakdown of the quantized conductance with EF at the
core state energy though the real-space Chern number remains
integer (Fig. 4 in main text). Here, we further show that such
failure of quantized conductance is robust against the size
of quasicrystal lattices in Fig. 8. Therefore it is an intrinsic
property of core states, and cannot be eliminated by enlarging
the system size.
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4. Many-particle states

The filling of free spinless fermions in crystalline CIs
can be constructed based on the single-particle states and
the Pauli principle [24]. Here, we show the many-particles
states with free spinless fermions filling in the Chern bands
in quasicrystal lattice in quasicrystalline CIs. The density of
many particles can defined as

ρ(r) =
∑

Eλ<EF

|ψλ(r)|2. (A8)

Interestingly, the many-particle densities with near 1/4 filling
are not flat around the center of the disk for both types of

quasicrystalline CIs (Fig. 9), i.e., the many particle densi-
ties are inhomogeneous. We also include the many-particle
density as function of bulk area with fixed EF in Fig. 9(b).
For type-I quasicrystalline CI, we choose two Fermi energies
below and above the core state energy (E = −1.8802), E1 =
−1.887 and E2 = −1.764. For type-II quasicrystalline CI,
we choose the Fermi energy in the bulk gap. All exhibit
significant inhomogeneity. In comparison, the many particle
density is homogeneous in bulk for the crystalline CIs, such
as honeycomb and kagome lattice. As mentioned above,
the inhomogeneity originates from the inequivalence be-
tween the diamonds and pentagons in present quasicrystalline
CIs. The number of “bands” cannot be directly associated with
the number of atoms in a “unit cell.”
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sierpiński-hofstadter problem, Phys. Rev. B 98, 205116 (2018).

[47] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[48] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[49] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal,
Kwant: A software package for quantum transport, New J. Phys.
16, 063065 (2014).

[50] R. Landauer, Spatial variation of currents and fields due to
localized scatterers in metallic conduction, IBM J. Res. Dev.
1, 223 (1957).

[51] M. Büttiker, Absence of backscattering in the quantum hall
effect in multiprobe conductors, Phys. Rev. B 38, 9375 (1988).

[52] S. Datta, Quantum Transport: Atom to Transistor, 2nd ed.
(Cambridge University Press, Cambridge, England, 2005).

[53] R. Chen, D.-H. Xu, and B. Zhou, Topological anderson insu-
lator phase in a quasicrystal lattice, Phys. Rev. B 100, 115311
(2019).

[54] X. Dang, J. D. Burton, and E. Y. Tsymbal, Magnetic gating of a
2d topological insulator, J. Phys.: Condens. Matter 28, 38LT01
(2016).

[55] J.-H. Zheng and M. A. Cazalilla, Nontrivial interplay of strong
disorder and interactions in quantum spin-hall insulators doped
with dilute magnetic impurities, Phys. Rev. B 97, 235402
(2018).

[56] P. Novelli, F. Taddei, A. K. Geim, and M. Polini, Failure
of Conductance Quantization in Two-Dimensional Topological
Insulators due to Nonmagnetic Impurities, Phys. Rev. Lett. 122,
016601 (2019).

[57] M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y.
Silberberg, Observation of Topological Phase Transitions in
Photonic Quasicrystals, Phys. Rev. Lett. 110, 076403 (2013).

[58] S. J. Ahn, P. Moon, T.-H. Kim, H.-W. Kim, H.-C. Shin, E. H.
Kim, H. W. Cha, S.-J. Kahng, P. Kim, M. Koshino, Y.-W. Son,
C.-W. Yang, and J. R. Ahn, Dirac electrons in a dodecagonal
graphene quasicrystal, Science 361, 782 (2018).

214109-9

https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevB.91.085125
https://doi.org/10.1103/PhysRevB.91.085125
https://doi.org/10.1103/PhysRevB.91.085125
https://doi.org/10.1103/PhysRevB.91.085125
https://doi.org/10.1103/PhysRevB.94.205437
https://doi.org/10.1103/PhysRevB.94.205437
https://doi.org/10.1103/PhysRevB.94.205437
https://doi.org/10.1103/PhysRevB.94.205437
https://doi.org/10.1103/PhysRevB.98.165427
https://doi.org/10.1103/PhysRevB.98.165427
https://doi.org/10.1103/PhysRevB.98.165427
https://doi.org/10.1103/PhysRevB.98.165427
https://doi.org/10.1103/PhysRevLett.116.257002
https://doi.org/10.1103/PhysRevLett.116.257002
https://doi.org/10.1103/PhysRevLett.116.257002
https://doi.org/10.1103/PhysRevLett.116.257002
https://doi.org/10.1103/PhysRevLett.121.126401
https://doi.org/10.1103/PhysRevLett.121.126401
https://doi.org/10.1103/PhysRevLett.121.126401
https://doi.org/10.1103/PhysRevLett.121.126401
https://doi.org/10.1103/PhysRevB.98.125130
https://doi.org/10.1103/PhysRevB.98.125130
https://doi.org/10.1103/PhysRevB.98.125130
https://doi.org/10.1103/PhysRevB.98.125130
https://doi.org/10.1103/PhysRevLett.123.196401
https://doi.org/10.1103/PhysRevLett.123.196401
https://doi.org/10.1103/PhysRevLett.123.196401
https://doi.org/10.1103/PhysRevLett.123.196401
http://arxiv.org/abs/arXiv:1904.09932
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1209/0295-5075/92/67004
https://doi.org/10.1209/0295-5075/92/67004
https://doi.org/10.1209/0295-5075/92/67004
https://doi.org/10.1209/0295-5075/92/67004
https://doi.org/10.1103/PhysRevB.84.241106
https://doi.org/10.1103/PhysRevB.84.241106
https://doi.org/10.1103/PhysRevB.84.241106
https://doi.org/10.1103/PhysRevB.84.241106
https://doi.org/10.1103/PhysRevB.98.205116
https://doi.org/10.1103/PhysRevB.98.205116
https://doi.org/10.1103/PhysRevB.98.205116
https://doi.org/10.1103/PhysRevB.98.205116
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1103/PhysRevB.38.9375
https://doi.org/10.1103/PhysRevB.38.9375
https://doi.org/10.1103/PhysRevB.38.9375
https://doi.org/10.1103/PhysRevB.38.9375
https://doi.org/10.1103/PhysRevB.100.115311
https://doi.org/10.1103/PhysRevB.100.115311
https://doi.org/10.1103/PhysRevB.100.115311
https://doi.org/10.1103/PhysRevB.100.115311
https://doi.org/10.1088/0953-8984/28/38/38LT01
https://doi.org/10.1088/0953-8984/28/38/38LT01
https://doi.org/10.1088/0953-8984/28/38/38LT01
https://doi.org/10.1088/0953-8984/28/38/38LT01
https://doi.org/10.1103/PhysRevB.97.235402
https://doi.org/10.1103/PhysRevB.97.235402
https://doi.org/10.1103/PhysRevB.97.235402
https://doi.org/10.1103/PhysRevB.97.235402
https://doi.org/10.1103/PhysRevLett.122.016601
https://doi.org/10.1103/PhysRevLett.122.016601
https://doi.org/10.1103/PhysRevLett.122.016601
https://doi.org/10.1103/PhysRevLett.122.016601
https://doi.org/10.1103/PhysRevLett.110.076403
https://doi.org/10.1103/PhysRevLett.110.076403
https://doi.org/10.1103/PhysRevLett.110.076403
https://doi.org/10.1103/PhysRevLett.110.076403
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1126/science.aar8412

