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Conduction of surface electrons in a topological insulator with spatially random magnetization
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4Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań, Poland
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Using the Green functions method we study the transport properties of surface electrons of topological
insulators in the presence of a correlated random exchange field. Such an exchange field may be induced by
a random magnetization with correlated fluctuations. We determine the relaxation times due to scattering from
the magnetization fluctuations and also from randomly distributed scalar impurities. The longitudinal charge
conductivity is evaluated and discussed while accounting for vertex corrections.
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I. INTRODUCTION

Topological properties of matter are currently at the front
line of research in condensed matter physics [1,2]. Much at-
tention has been focused recently on surface states in topolog-
ical insulators (TIs), where electrons at the surface behave as
massless Dirac fermions with spin-momentum locking [3–5].
This spin locking leads to novel spin-dependent transport
phenomena [6–12].

It is known that owing to the proximity-induced exchange
interaction, a thin ferromagnetic layer deposited on the surface
of a TI opens a gap at the Dirac point in the electronic
spectrum [13–15]. Generally, the proximity-induced exchange
field not only affects the spectrum of electronic surface states,
but the accompanied magnetic disorder at the interface also
modifies relaxation processes of surface electrons in TIs and
hence their spin-dependent transport properties. Indeed, the
impact of magnetic disorder on transport properties of TIs has
already been addressed [16]. It is also worth to note that hybrid
systems based on TIs and thin ferromagnetic films, or on TIs
with surfaces that are intentionally decorated by magnetic
adatoms, bear great potential for spin-to-charge conversion
phenomena [17–19].

The main objective of this paper is the description of the
impact of magnetic disorder at the surface of a TI on its trans-
port properties. It is well known that magnetic disorder may
have different sources. For instance, the intrinsic magnetic
properties of amorphous alloys such as local magnetization,
magnetocrystalline and exchange energies, etc., fluctuate in
space due to a random distribution of magnetic ions (as a con-
sequence of external and internal stresses) [20–22]. Spatially
random magnetic fields may also be realized in semiconductor
heterostructures leading to interesting magnetotransport phe-
nomena, including negative magnetoresistance due to weak
localization, positive magnetoresistance related to small angle
scattering of ballistic electrons by flux tubes, or the presence
of extended states analogous to quantum Hall edge states
in random magnetic fields with zero average value. Random
magnetic fields in 2DEG heterostructures are realized, e.g., by

capping the sample with a superconducting film that ensures
inhomogeneous distribution of magnetic flux tubes when an
external magnetic field is applied (see, e.g., Refs. [23–26]).
Another possibility is to place a rough demagnetized perma-
nent magnet (such as NdFeB) on top of the heterostructure
surface with two-dimensional (2D) electron gas [27,28].

According to the above, one may also expect a number
of transport phenomena induced by magnetic disorder at the
surface of TIs, 2D graphenelike crystals, and quantum-Hall
systems [29–32]. For instance, it was shown that the presence
of magnetic impurities at the surface of TIs may lead to a
planar Hall effect as well as to the in-plane magnetoresistance
which is a mixture of the anisotropic and spin magnetoresis-
tance [29]. Moreover, random magnetic impurities may lead
to an opening of an energy gap for the edge states [33–35],
and also may improve the quality of the quantum anomalous
Hall effect in magnetic TIs [36]. Recently, the electron states
at the surface of a TI attached to a ferromagnet described by
the XY model have also been considered, and it was shown that
the classical magnetic fluctuations in the ferromagnet could
be mapped onto the problem of Dirac fermions in a random
magnetic field [37].

Here we consider a model system where the spatially
fluctuating magnetization interacts with the surface electrons
in TIs due to an exchange field. We assume that the average
value of the magnetization (or the exchange field) vanishes.
However, 〈M(r) M(r′)〉 is finite and is described by a given
correlation function 〈M(r) M(r′)〉 = C(r − r′). One should
note that the problem of a random-mass term, as it appears in
the presence of a spatially fluctuating magnetization, has been
discussed for instance in Refs. [30–32], where the problem
of a spatially fluctuating gap in the Dirac model has been
considered in the context of integer quantum Hall effect [32]
and electronic transport in graphene [30,31]. In these works
the authors used white-noise Gaussian disorder. Here we
consider a 2D Dirac model with a correlated mass disorder,
which we relate to magnetization correlations on top of the
topological insulator. As we show, the choice of correlation
function, characterized by correlation length, is crucial for the
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dependence of electron relaxation on energy and, correspond-
ingly, for the dependence of resistance on temperature. The
model is described in Sec. II. In Secs. III and IV we show
that magnetic fluctuations have a significant impact on the
relaxation time and transport properties of surface electrons
in TIs. Summary and final conclusions are in Sec. V.

II. MODEL

We consider 2D electrons at the surface of a topological
insulator in a random magnetization field (equivalently, in
a random exchange field). The system is described by the
following single particle Hamiltonian:

Ĥ = −ivσ · ∇ + V̂ , (1)

where v = h̄vF and vF is the electron (Fermi) velocity, while
σ = (σx, σy, σz ) is the vector of the Pauli matrices operating
in the spin space. The scattering potential V̂ describes the
spatial fluctuations of the random magnetization (exchange)
field M(r), and also includes the scattering potential from
random impurities,

V̂ = M(r) σz + V0(r) σ0. (2)

Here M(r) is measured in energy units and is Gaussian dis-
tributed, meaning that M(r) vanishes on average, 〈M(r)〉 = 0,
but the second statistical moment is finite and is given
in the form 〈M(r) M(r′)〉 = C(r − r′) = 〈M2〉 g(|r − r′|). All
higher even-order statistical moments reduce to the second-
order one, whereas the odd-order correlators vanish. The
correlation function g(|r − r′|) is governed by the char-
acteristic correlation length ξ of the fluctuations [38,39].
The Fourier transform of C(r − r′) has the Gaussian form
C(q) = 〈M2〉ξ 2e−q2ξ 2

. The second term in Eq. (2), V0(r)σ0,
is the scattering potential due to randomly distributed impu-
rities. We assume isotropic pointlike scalar potential of the
impurities, V0(r) = ∑

i V iδ(r − Ri ) (Ri indicates the random
positions of impurities), which vanishes on average, 〈V i〉 = 0,
and only the second statistical cumulant is finite, 〈(V i )2〉 =
V 2

0 �= 0. Thus, for the scalar part of the scattering potential we
consider the white-noise distribution 〈|V0 kk′ |2〉 = niV 2

0 , where
ni is the concentration of impurities.

In the following calculations, the influence of the random
magnetization and random impurities on the transport prop-
erties is treated perturbatively. The retarded Green function
corresponding to the unperturbed Hamiltonian reads

G0R(ε, k) = ε + vσ · k
(ε − ε1k + iδ)(ε − ε2k + iδ)

, (3)

where ε1,2 k = ±vk ≡ ±εk are the eigenvalues of the un-
perturbed part of the Hamiltonian (1). In the following we
show explicitly how scattering on random magnetization and
random impurities affects the relaxation time and the conduc-
tivity of the surface electrons in TIs.

III. SELF-ENERGY AND RELAXATION TIME

To calculate the electron self-energy due to scattering from
fluctuations of the exchange field and from localized impu-
rities we utilize the second-order perturbation theory which

yields

�R(ε, k) =
∫

d2k′

(2π )2
〈V̂kk′ G0R(ε, k′) V̂k′k〉, (4)

with the Green function given by Eq. (3). Since we are
interested in the relaxation time of quasiparticles we focus on
the imaginary part of self-energy Im[�R] only, i.e., we neglect
the real part of self-energy. From Eq. (4) we find

�R(ε, k) = −i�0σ0 − i� · σ, (5)

where

�0 = π

2

∫
d2k′

(2π )2
[〈|Vkk′ |2〉 + C(|k − k′|)]

× [δ(ε − εk′ ) + δ(ε + εk′ )], (6)

� = −π

2ε

∫
d2k′

(2π )2
C(|k − k′|) vk′

× [δ(ε − εk′ ) + δ(ε + εk′ )]. (7)

Upon integrating over the wave vector k′ on the surface of
a constant energy, k = k1 = |ε|/v, we find the solution

�0 = k1

4v
〈M2〉ξ 2e−xI0(x) + niV

2
0

|ε|
4v2

, (8)

� = −k
k

〈M2〉
4ε

ξ 2k2
1e−xI1(x). (9)

I0(x) and I1(x) are the modified Bessel functions of the ze-
roth and first kind, respectively, and x = 2ξ 2k2

1 . Accordingly,
the averaged retarded/advanced Green function in the weak
scattering approximation has the form

GR/A(ε, k) = εσ0 + vk · σ

(ε − εk ± iγ1)(ε + εk ± iγ2)
, (10)

where

γ1,2 = �0 ± k
k

· �. (11)

The relaxation rates γ1,2 take the following explicit form:

γ1,2 = γM + γ0, (12)

with

γM = k1

4v
〈M2〉ξ 2 exp

( − 2ξ 2k2
1

)
× [

I0
(
2ξ 2k2

1

) + (ε)I1
(
2ξ 2k2

1

)]
, (13)

γ0 = niV
2

0
|ε|
4v2

. (14)

The expression for the relaxation rate is the same for the neg-
ative and the positive energy branches, γ1 = γ2 ≡ γ , and is
fully determined by the intrinsic properties of the topological
insulator, i.e., by vF , kF , and the two parameters describing
the spatial magnetization fluctuations 〈M2〉 and ξ , and by the
two parameters describing the scalar impurities V0 and ni. The
electron relaxation time is given by the relation

τ = h̄

2γ
. (15)

Note, 1/τ = 1/τM + 1/τ0, according to Eq. (12).
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From the above formulas one can see how the random
magnetization fluctuations influence the relaxation processes.
Generally, one can distinguish two situations. In the first
one the magnetization fluctuations follow from the presence
of the random magnetic impurities. The impurity scattering
potential contains then magnetic and the scalar components.
The second situation corresponds to a topological insulator
covered by a magnetic insulator. The proximity effect and
the interface roughness result in effective spatially fluctuating
magnetization which is exchange coupled to the electronic
surface states of the topological insulator. In other words,
one may assume the relaxation times τM and τ0 are either
correlated or independent. In the following we will treat them
as independent parameters.

The correlation length of spatial fluctuations of the magne-
tization may be temperature dependent, ξ = ξ (T ). Such a de-
pendence is a consequence of the fact that the fluctuations of
magnetization (fluctuations of magnetic moments of adatoms)
depend in general on the temperature. In such a case, one
can introduce the temperature dependence of the correlation
length by the following phenomenological formula [40]:

ξ = ξ0

[
1 − exp

(
− �

kBT

)]
, (16)

where ξ0 = ξ (T = 0) and � is the energy scale for magnetic
interaction between the impurities.

Figure 1 shows behavior of the relaxation time with energy
and temperature for indicated parameters of the magnetic fluc-
tuations (〈M2〉, �, ξ0), and for a constant impurity scattering
potential niV 2

0 . Figures 1(a) and 1(b) present the relaxation
time as a function of energy ε for different values of 〈M2〉
[Fig. 1(a)] and different values of the correlation length ξ0

[Fig. 1(b)]. The curves corresponding there to 〈M2〉 = 0 de-
scribe the relaxation time due to random impurities only. This
relaxation time decreases with energy as 1/ε [see Eq. (14)].
Note, the energy dependence is shown only for positive values
of ε.

The other curves in Figs. 1(a) and 1(b) present modification
of the relaxation time due to magnetic fluctuations. One can
distinguish the range of the parameters for which the relax-
ation time is strongly modified compared to a system without
random magnetization. This modification is determined by the
two factors in the correlation function: ξ 2 and exp(−q2ξ 2).
The former factor reduces the scattering rate due to magnetic
fluctuations γM for small values of ξ , while the second one
reduces the scattering rate for large values of ξ , ξ � (1/q),
i.e., for the correlation length much longer than the electron
wavelength λ (the latter is determined by the Fermi energy μ).
For sufficiently high energies, the magnetic fluctuations play
a minor role in the relaxation processes and τ is determined
mainly by the scattering on scalar potential due to impurities.

Temperature dependence of the relaxation time is shown
in Figs. 1(c)–1(f) for indicted parameters of magnetic fluctu-
ations and for low [Figs. 1(c) and 1(d)] and high [Figs. 1(e)
and 1(f)] energy. This temperature dependence is due to the
decrease of the correlation length with increasing temperature
according to Eq. (16). The relaxation time due to scattering
on impurities only (〈M2〉 = 0) is roughly independent of
temperature, see Fig. 1. The situation is different for 〈M2〉 >

0. For the zero-temperature values of the correlation length

FIG. 1. Relaxation time τ as a function of energy (a) and (b) and
as a function of temperature (c)–(f) for indicated values of 〈M2〉,
correlation length ξ0, and the parameter �. (c) and (d) and (e) and
(f) The relaxation time for the low and high energy. The curves
corresponding to 〈M2〉 = 0 present relaxation time due to scattering
on impurities only. All curves are for the Fermi velocity vF = 3.8 ×
105 m/s and niV 2

0 = 9.14 × 10−25 eV2 m2.

ξ0 assumed in Fig. 1, the fluctuations for a fixed chemical
potential change character with increasing temperature from
the long range (ξ � λ) to short range (ξ 	 λ). Accordingly,
a minimum of the relaxation may be observed at a certain
temperature between these two regimes, as clearly visible in
Fig. 1(f).

IV. VERTEX FUNCTION AND CONDUCTIVITY

To determine the electrical conductivity, the vertex func-
tion is required. Thus, we write the DC current density within
the Kubo formalism [41] as

jx = −evEx

2π
Tr

∫
d2k

(2π )2

∫
dε f ′(ε)Jx(k) GR

k (ε) σx GA
k (ε),

(17)

where f (ε) is the Fermi-Dirac distribution function, and Jx

is the renormalized current density vertex function. Note, in
the above formula we have omitted the terms proportional
to GAGA and GRGR. Such terms in the problems that can be
treated perturbatively (like in our case) give a small correction
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to the main term determined by the product GRGA (see the
Appendix for more details).

The renormalized current vertex in the ladder approxima-
tion can be calculated from the self-consistent equation

J(k) = ĵ + niV
2

0

∫
d2k′

(2π )2
GA(ε, k′) J(k′)GR(ε, k′)

+
∫

d2k′

(2π )2
C(k − k′)σz GA(ε, k′) J(k′)GR(ε, k′)σz,

(18)

where ĵ = evσ/h̄ is the operator of electrical current density.
Generally, the current density vertex function can be written
in the form

J(k) = ev

h̄
(k g0kσ0 + g1kσ ). (19)

Inserting then Eq. (19) into Eq. (18) one finds the solutions for
g0k and g1k in the following form:

g0k1 = v

κ

η

ε
I1(x), (20)

g1k1 = 1

κ
[1 − ηI1(x)], (21)

where κ and η are defined as

κ = 1 − 1

2
η0 + η

4
{3I0(x) − 4I1(x) + I2(x)

+ I1(x)[I2(x) − I0(x)]η}, (22)

η = 〈M2〉ξ 2 k1

4vγ
e−2ξ 2k2

1 , (23)

and η0 = γ0/γ . Importantly, the renormalized vertex function
contains two components. One component [the second term
in Eq. (19)] is in fact a simple renormalization of the current
density operator ĵ → g1kĵ, while the second component is
proportional to kσ0. Because of this, one cannot rewrite J(k)
simply in terms of the transport relaxation time τtr, as it can
be done in quasiclassical calculations, where ĵ → ĵ τtr/τ . Note
also that in the limit 〈M2〉 = 0 (no magnetic fluctuations) we
obtain immediately: g0 k1 = 0 and g1k1 = 2, as it has been
derived previously (see, e.g., [29]) for short-range pointlike
scalar impurities. Taking into account the explicit form of
the current density vertex function, one finds the diagonal
conductivity in the form

σxx = −e2v2

2π h̄
Tr

∫
d2k

(2π )2

∫
dε f ′(ε)

{
kxg0kGR

k (ε) σx GA
k (ε)

+ g1kσxGR
k (ε) σx GA

k (ε)
}
. (24)

Upon integrating the above equation over the wave vector k
one can rewrite it as

σxx = − e2

8π h̄

∫
dε f ′(ε)

[
ε2 g1k1

vk1γ
+ ε

k1

γ
g0k1

]
. (25)

Taking into account the relation

ε2 g1k1

vk1γ
+ ε

k1

γ
g0k1 = vk1

γ κ
, (26)

FIG. 2. Parameter 1/κ , describing the vertex correction to con-
ductivity, plotted as a function of energy ε and correlation length ξ0

for � = 5 meV, 〈M2〉 = 0.4 × 10−7 eV2 (a), and as a function of
energy and 〈M2〉 for � = 5 meV, ξ0 = 2 nm (c). (b) and (d) The
corresponding cross sections for indicated values of ξ0 (b) and 〈M2〉
(d). Other parameters, if not indicated, are the same as in Fig. 1.

the conductivity is cast in the following form:

σxx = −e2

h

∫
dε f ′(ε)

|ε|
4γ κ

, (27)

where f ′(ε) = ∂ f /∂ε.
As follows from Eqs. (11) and (22), both the relaxation

rate γ and the parameter κ depend on energy. The latter
parameter describes the influence of vertex correction due
to scalar impurity potential and magnetic fluctuations. More
specifically, the electrical conductivity is renormalized due to
vertex corrections by a factor 1/κ , see Eq. (27). Figures 2(a)
and 2(c) present 1/κ as a function of energy and correlation
length ξ0 (a) and as a function of energy and amplitude of the
magnetization fluctuations 〈M2〉 (c). The corresponding cross
sections are presented in Figs. 2(b) and 2(d). As already men-
tioned above, the parameter 1/κ is equal to 2 in the absence of
magnetic fluctuations 〈M2〉 = 0 [see the corresponding curves
in Figs. 2(b) and 2(d)]. The magnetic fluctuations reduce the
parameter 1/κ to values lower than 2. This is clearly seen,
especially for lower energies, where the relative contribution
due to scattering on magnetic fluctuations is remarkable.

The formula (27) is our final result which will be now
used for further analysis and discussion of numerical results.
The longitudinal conductivity is presented in Fig. 3, where
Figs. 3(a) and 3(b) present the conductivity as a function of
the chemical potential μ and correlation length ξ0, and as
a function of the chemical potential and 〈M2〉, respectively.
Both Figs. 3(a) and 3(b) are for the same temperature T =
10 K. The corresponding cross sections for indicated values of
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FIG. 3. Electrical conductivity as a function of the chemical potential μ and correlation length ξ0 for � = 5 meV, 〈M2〉 = 0.4 × 10−7 eV2

(a), and as a function of the chemical potential and 〈M2〉 for � = 5 meV, ξ0 = 2 nm (b). The corresponding cross sections for indicated values
of ξ0 and 〈M2〉 are shown in (c) and (d), respectively. The results shown in (a)–(d) are for the temperature T = 10 K. (e) and (f) The same as in
(c) and (d), except for the temperature which now is T = 50 K (e). Temperature dependence of the electrical conductivity is shown explicitly
in (g) and (h) for different values of the chemical potential μ = 20 meV (g) and μ = 60 meV (h). Other parameters as in Fig. 1.

ξ0 and 〈M2〉 are shown in Figs. 3(c) and 3(d), respectively. As
one can note, the magnetic fluctuations remarkably change the
longitudinal conductivity in comparison to the conductivity of
surface electrons in a nonmagnetic TI [shown in Figs. 3(c)–
3(h) by the curves for 〈M2〉 = 0]. Note, when 〈M2〉 = 0,
then the conductivity is determined by scattering on impu-
rities and is roughly independent of the chemical potential,
see Figs. 3(c) and 3(d). This behavior is a consequence of
two facts: (i) the relaxation time decays with increasing the
chemical potentials as 1/|μ|, and (ii) the carrier density is
proportional to the chemical potential |μ|. As a result, the
conductivity is then roughly independent of μ. Some devia-
tion from this appear at higher temperatures and low chemical
potentials, see Figs. 3(e) and 3(f) which show the same as in
Figs. 3(c) and 3(d), except temperature which now is T =
50 K. This is also visible in Figs. 3(g) and 3(h) for higher
temperatures. In agreement with our earlier discussion, the
conductivity in the presence of magnetic fluctuations grows
with increasing chemical potential and tends to the value
determined by scattering on impurities. This is clearly seen
in Figs. 3(c)–3(f).

Temperature dependence of the electrical conductivity is
shown explicitly in Figs. 3(g) and 3(h) for different values
of the chemical potential. Interestingly, in the presence of
magnetic fluctuations, the conductivity for low values of
chemical potential [see Fig. 3(g)] increases with temperature
due to the reduction of the correlation length. However, after
reaching a maximum, it decreases with a further increase
of T . For high temperatures, the conductivity tends to that
in the nonmagnetic case due to suppression of the mag-
netic fluctuations with increasing temperature. For higher

chemical potentials, see Fig. 3(h), the temperature dependence
is more complex and the conductivity may reach a mini-
mum at a certain temperature and then grow with a further
increase in T . This is a consequence of the interplay of
both scattering processes contributing to the vertex function
and both sources of temperature dependence (Fermi-Dirac
distribution and temperature dependence of the correlation
length).

V. SUMMARY AND CONCLUSIONS

We studied the impact of correlated fluctuations of magne-
tization (exchange field) on the transport properties of surface
2D electrons in topological insulators. The fluctuations have
been described by their amplitude

√
〈M2〉 and correlation

length ξ . We have also taken into account the reduction of
the correlation length with increasing temperature, following
a simple phenomenological formula. The description is based
on a perturbative approach. Thus, the amplitude of the fluc-
tuations as well as the appropriate correlation length cannot
be arbitrarily large. To infer the electrical conductivity we
determined at first the relaxation rate and then the appropriate
current density vertex function. The latter turned out to have a
significant influence on the conductivity. The relaxation time
and electrical conductivity were calculated assuming addi-
tional scattering on impurities with pointlike scalar scattering
potential. Both scattering on magnetization fluctuations and
scattering on nonmagnetic impurities were taken into account
on equal footing in the calculations of both the relaxation time
and the vertex function.
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The conductivity is remarkably reduced by scattering on
magnetization fluctuations in comparison to that in the ab-
sence of such fluctuations—especially at higher Fermi ener-
gies, where scattering on impurities plays a dominant role.
The temperature dependence of transport properties was also
calculated and discussed. The temperature dependence of the
conductivity follows not only from the Fermi distribution
function, but also from the temperature dependence of the cor-
relation length of the magnetization fluctuations. This results,
for a specific range of parameters, in an increase of the longi-

tudinal conductivity with temperature. A similar behavior of
the longitudinal conductivity with the temperature has been
observed recently for surface states of TI in experiments with
Mn-doped Bi2Te3−ySey [42], Cr-doped (BixSb1−x)2Te3 [43].
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APPENDIX: CONTRIBUTION OF TERMS WITH GRGR AND GAGA

Let us estimate the contribution of terms with GRGR and GAGA to the conductivity

δσ RR+AA
xx = −e2v2

2π h̄
Tr

∫
d2k

(2π )2

∫
dε f ′(ε) σx

[
GR

k (ε) σx GR
k (ε) + GA

k (ε) σx GA
k (ε)

]
. (A1)

Substituting (10) to (A1) and calculating the trace we get

δσ RR
xx = − e2

4π h̄

∫
d2k

(2π )2

∫
dε f ′(ε)

ε2

k2

(
1

ε − vk + iγ1
− 1

ε + vk + iγ2

) (
1

ε − vk + iγ1
− 1

ε + vk + iγ2

)
(A2)

� − e2

8π2h̄v2

∫
ε2dε f ′(ε)

∫ ∞

0

dk

k

[
1

(k − k1)2
+ 1

(k + k1)2
+ 2

(k − k1)(k + k1)

]
, (A3)

where k1 = |ε|/v.
Then after calculating the integrals over k we obtain

δσ RR
xx = e2

4π2h̄v2

∫
ε2dε f ′(ε)

1

k2
1

k2

k2 − k2
1

∣∣∣∣
∞

0

� − e2

4π2h̄
. (A4)

Since the real parts of contributions coming from GRGR and GAGA are equal we obtain

δσ RR+AA
xx � − e2

2π2h̄
. (A5)

This contribution is small comparing to (27) since γ 	 μ and κ ∼ 1. In other words, the correction from terms with GRGR and
GAGA is small if μτtr/h̄ � 1.
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