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Ion-induced interactions in a Tomonaga-Luttinger liquid
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We investigate the physics of a Tomonaga-Luttinger liquid of spin-polarized fermions superimposed on an
ion chain. This compound system features (attractive) long-range interspecies interactions. By means of density
matrix renormalization group techniques we compute the Tomonaga-Luttinger-liquid parameter and speed of
sound as a function of the relative atom/ion density and the two quantum defect parameters, namely, the even
and odd short-range phases which characterize the short-range part of the atom-ion polarization potential. The
presence of ions is found to allow critical tuning of the atom-atom interaction, and the properties of the system are
found to depend significantly on the short-range phases due to the atom-ion interaction. These latter dependencies
can be controlled, for instance, by manipulating the ions’ internal state. This allows modification of the static
properties of the quantum liquid via external driving of the ionic impurities.
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I. INTRODUCTION

The quantum physics of one-dimensional (1D) interacting
systems is rather peculiar as quantum fluctuations are strong
and only collective excitations are possible, i.e., there are no
single-particle excitations typical of Fermi liquids. Because
of this, when the transverse degrees of freedom are frozen
and a system acts as if one-dimensional, counterintuitive
phenomena occur, such as fermionization (bosonization) of
bosons (fermions) [1,2], perfect “collisional transparency” of
particles [3] (equivalent to zero crossing of the two-body cou-
pling constant), enhanced interparticle interactions in a bal-
listic expansion [4], and unusual cooling mechanisms [5,6],
to mention a few. While decades ago such manifestations
were regarded as mere mathematical curiosities, the advent
of degenerate atomic quantum gases has allowed the verifi-
cation of such predictions, as the atomic confinement can be
designed via optical laser fields [7] or, alternatively, magnetic
field landscapes can be engineered by means of tailored
configurations of current-carrying wires in atom chips [8]. The
understanding of the fundamental underlying mechanisms be-
hind such phenomenology is not only of academic interest, but
also has important practical applications, as the progressive
miniaturization of electronic devices is such that, for instance,
any quantitative description of transport in extremely reduced
spatial dimensions and extremely low temperatures must be
quantum mechanical.

Very recently, experimental advances in bringing different
atomic systems together to form a hybrid quantum system
have opened new possibilities for quantum physics research
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[9]. For instance, Rydberg [10–12] or other neutral impurities
[13–20] in quantum gases allow us to study the dressing
of the atomic impurities with gas excitations and of medi-
ated interactions [21–27] as well as to utilize impurities to
probe bath correlations and temperature [28–31]. In addition,
charged or dipolar impurities in degenerate atomic gases
allow us to study polarons in the strong coupling regime
[32], to quantum simulate Fröhlich-type Hamiltonians [33] as
well as extended Hubbard [34–37] and lattice gauge theories
[38]. Experiments with an ion immersed in a Bose-Einstein
condensate [39–45], and in a Fermi gas [46–49] have been
realized in recent years, albeit not yet in the deep quantum
regime of atom-ion collisions. Specifically, low-dimensional
quantum physics with impurities exhibits a variety of unusual
quantum phenomena. A few examples of this are as follows:
Bloch oscillations experienced by a moving impurity in a
strongly correlated bosonic gas without the presence of an
optical lattice potential [50], quantum flutters [51] (namely,
injected supersonic impurities that never come to a full stop),
so-called infrared-dominated dynamics [52], and clustering of
impurities [27].

Motivated by these advances and by recent experiments
that combine ytterbium ions with fermionic lithium atoms1

[47,48], we investigate the ground-state properties of a spin-
polarized fermionic quantum gas that is superimposed on an
ion chain (see Fig. 1), where the latter is treated statically.
Given the fact that the motion of the ions and their internal
states can be precisely controlled in experiments, atom-ion

1We note that currently the atom-ion species Li/Ca+ is also under
intense experimental investigations [90].
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FIG. 1. Sketch of the physical system considered in this work.
A linear ion crystal, whose ions are positively charged (big blue
spheres) and separated by a distance D, and a Tomonaga-Luttinger
liquid of ultracold atoms (indicated by the red cloud with small
spheres) that overlaps the crystal.

scattering properties can thus be manipulated. This can be use-
ful, e.g., for inducing macroscopic self-trapping or tunneling
dynamics in a bosonic Josephson junction [53–55]. Here, we
are interested in the impact of the long-ranged atom-ion polar-
ization potential on the 1D quantum fluid statical properties.
Specifically, we employ density matrix renormalization group
techniques to extract the Tomonaga-Luttinger-liquid (TLL)
parameter and the speed of sound, which fully characterize
the low-energy physics of the atomic fluid. We find that
these quantities have a significant dependence on the short-
range physics of the atom-ion scattering (i.e., short-range
phases), which can be controlled, for instance, by so-called
confinement-induced [56–58] or Fano-Feshbach resonances
[59,60]. Thus, our findings demonstrate that the quantum fluid
properties not only can be tuned by manipulating the ion
quantum state, but also that this dependence is strong. As has
been previously discussed, TLL’s of 1D Bose-Fermi mixtures
reveal a rich phase diagram [61] and our goal is to understand
how long-ranged interactions can affect the picture.

II. THEORETICAL FRAMEWORK

In this section we describe the system we study, the in-
teraction between the two atomic species and between the
fermionic atoms, as well as provide the basic ingredients of
TLL theory that will be used later in the paper.

A. System Hamiltonian

We consider an ensemble of identical ultracold atoms,
which are spin-polarized fermions, confined to one spatial
dimension in the background of an ion chain with the ions
organized as an evenly spaced Coulomb crystal. The ions are
considered static, namely, their motion is neglected, e.g., be-
cause of tight confinement or heavy ions and light atoms. We
use realistic atom-ion interactions via an accurate mapping
of quantum defect theory (QDT) to an effective interaction
potential that also includes the asymptotic power-law tail
of the atom-ion forces. For the atom-atom interactions, we
use instead effective field theory (EFT), which is valid at
low energies and amenable to numerical treatment [62]. The
Hamiltonian for NA atoms in the presence of an ion chain with
NI ions takes the form

Ĥ =
NA∑

k=1

⎡
⎣ p̂2

k

2mA
+ U (xk )

+
NI∑

j=1

VAI(xk − Xj ) +
NA∑
j=1

VAA(xk − x j )

⎤
⎦, (1)

where mA is the atom mass, p̂k is the atomic momentum,
U (x) is the external trap (specifically a boxlike potential),
VAI(xk − Xj ) is the atom-ion interaction with xk and Xj denot-
ing the kth atom position and the jth ion position, respectively,
and VAA(xk − x j ) is the atom-atom interaction. The atom-ion
polarization potential is caused by the interaction between the
ion electric field and the induced electric dipole of the atom.
At long distances and in quasi-1D, it can be shown that the
interaction takes the form [56]

VAI(x − X ) = − αe2

2(x − X )4
, (2)

where e is the electron charge and α is the static polarizability
of the atom. The potential, which is attractive and supports
ion-bound atom states, is characterized by a characteristic
length R∗ and energy E∗,

R∗ =
√

αe2μ

h̄2 , E∗ = h̄2

2μ(R∗)2
, (3)

where μ is the reduced atom-ion mass. Hereafter, all lengths
are rescaled with respect to R∗. As we already pointed out,
we focus on the static ion scenario and a very favorable
choice for the atom-ion pair is 6Li/174Yb+. This pair appears
to be the most promising to attain the ultracold regime in
radio-frequency traps [63,64], i.e., s-wave collisions between
atoms and ions. For this pair we have E∗/h � 178.6 kHz,
R∗ � 69.8 nm, and mA/mI � 0.035.

Finally, the atom-atom interaction can be treated as short-
range two-body interaction with lattice EFT [62], where the
first natural nonzero term affecting spin-polarized fermions
is the lowest-order odd-wave interaction [65]. The lattice,
with a finite spacing, provides a regularization of the Cheon-
Shigehara interaction [62,66], and its coupling constant is
renormalized by fixing the atom-atom odd-wave scattering
length ap.

B. Model atom-ion potential

The previously introduced polarization potential (2) is
state independent, in that its form does not depend on the
internal electronic configuration of the atom and the ion, only
the polarizability. However, at short distances, below a few
nanometers, the form of the interaction changes to a generally
unknown form.

At that spatial range, the electronic configurations of the
two particles enter into play and render the interaction state
dependent. Such a reliance is included theoretically by assum-
ing that the only effect of the short-range part of the potential
on the atom-ion wave function is to induce phase shifts. This
effect is accounted for by introducing short-range phases φe,o,
which correspond to quantum defect parameters in the con-
text of quantum defect theory [56,67]. Practically, this is
handled by imposing appropriate boundary conditions in the
limit |x − X | → 0. In this limit, the polarization potential
becomes extremely dominant so that all other energies can be
neglected. In 1D such conditions are given by (X = 0) [56]

ψe(x) = |x| sin(1/|x| + φe), x � (R∗q)−1/2 (4)

ψo(x) = x sin(1/|x| + φo), x � (R∗q)−1/2 (5)
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with ψe,o(x) being the even (e) and odd (o) solutions of
the scattering, respectively, and q =

√
2μE/h̄2 with E being

the collisional energy at threshold. The short-range phases
are free parameters which must be fixed to reproduce the
scattering phase shifts found in experiment. Furthermore, the
short-range phases fix the values of the even- and odd-wave
scattering lengths as

ae,o
1D = R∗ cot(φe,o). (6)

Hence, tuning the short-range phases means to control the
above scattering lengths, and therefore the effective 1D atom-
ion interaction strength. The above QDT is cumbersome to
implement in a many-body Hamiltonian formalism. In order
to circumvent this difficulty, we use an effective interaction
that faithfully reproduces the long-distance tail of the atom-
ion potential, as well as the low-energy phase shifts. In
particular, we use the model potential [68]

VAI(x) = v0e−γ x2 − 1

x4 + 1/ω
, (7)

which is characterized by three parameters: v0, γ , and ω. We
fix v0 at 3ω so that the atom wave function (almost) vanishes
at x = 0, and γ is chosen such that

γ � γmin = 4
√

10ω. (8)

In this way, the Gaussian is kept from interfering with the
long-range part. We can systematically map the free parameter
ω and the semirestricted parameter γ to the quantum defect
parameters (φe, φo) (see Appendix A for more details). This
means that we can use this potential for numerical modeling,
while still considering the quantum defect parameters the
tunable parameters of the system.

C. Atom-atom interaction and discretization

We shall solve the many-body problem by discretizing it in
an equally spaced grid with Ns sites and spacing d , giving a
total system length of L = d (Ns − 1). This will be evaluated
in the continuum limit where L remains finite while d → 0.
The discrete Hamiltonian Hd is chosen so that

Ĥ = lim
d→0

Ĥd . (9)

On the lattice (grid), the kinetic part Ĥ0,d becomes (as for a
Hubbard-type model)

Ĥ0,d = −t (d )
L−1∑
j=1

(ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j ), (10)

where we have in the continuum limit

t (d ) = h̄2

2mAd2
, (11)

and ĉ j (ĉ†
j ) is the fermionic annihilation (creation) operator at

position x j , respectively. We will consider the atoms as inter-
acting through van der Waals forces. These can be treated as
short-range two-body interactions with lattice EFT, where the
first natural nonzero term affecting spin-polarized fermions is
the lowest-order odd-wave interaction [62]. In our choice of
lattice discretization, this corresponds to a nearest-neighbor

interaction between the atoms,

VAA,d

t (d )
= −2

1 − d/ap

Ns−1∑
j=1

n̂A
j n̂A

j+1, (12)

where n̂A/I
j is the number operator for atoms/ions. The in-

teraction strength is related to the tunneling rate, the lattice
spacing, and the p-wave (odd-wave) scattering length ap via

VAA(d ) = −2t (d )

1 − d/ap
. (13)

In our calculations we work with ap = −0.1R∗, corresponding
to an attractive interaction without bound states which has
strength VAA/t � −1.7 (see Appendix B for details). This
particular value was chosen since it gives significant effects
while keeping numerical stability. Note that odd-wave inter-
actions may be tuned through, e.g., Feshbach resonances or
confinement-induced resonances [3,69–73].

To evaluate the ground state of the discrete Hamiltonian,
we will employ numerical variational calculations using the
density matrix renormalization group (DMRG) [74,75]. For
such calculations it is convenient to express the Hamiltonian
in the characteristic energy t (d ), where we combine Eqs. (3)
and (11) to find the conversion factor

E∗

t (d )
= (1 + mA/mI )d2

(R∗)2
= 1.03456

d2

(R∗)2
. (14)

The effective atom-ion potential is discretized by introducing
xi j = d|i − j| and thus the full discretized Hamiltonian is

Ĥd

t (d )
= −

L−1∑
j=1

(ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j ) + −2

1 − d/ap

N−1∑
j=1

n̂A
j n̂A

j+1

+ E∗

t (d )

∑
i, j

n̂I
i n̂

A
j

(
v0e−γ x2

i j − 1

x4
i j + 1/ω

)
, (15)

which satisfies Eq. (9) up to a constant energy shift.
For the range of QDT parameters we investigate, the atom-

ion interaction supports one or two two-body bound states.
For ions in a finite lattice with open boundaries, this means we
have two type of states (see Fig. 2): states deep in the effective
atom-ion potential which would not exist in a flat potential,
corresponding to ion-bound (IB) atoms, and a discrete set
of states above the IB states similar to those found in a 1D
quantum well, which we will call trap bound (TB) since the
discretization is due to the presence of the (boxlike) trap. Note
that the TB states are still affected by the presence of the ions.
We will consider two different NA/NI fillings of the system.
An fIB filling, where NA = NI, and each atom will occupy an
IB state, and two fTB fillings, where all IB states are filled
and NI atoms are added, which, because of quantum statistics,
occupy NI TB states. Two such fillings must be considered to
take into account the difference in the number of IB states.

D. Tomonaga-Luttinger-liquid theory

A system of interacting fermions in one dimension is fully
characterized at low energy by the renormalized speed of
sound u and the TLL parameter K , which is a dimensionless
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FIG. 2. A diagram of the effective potential generated by two
ions. The black line shows the total potential, in this case a box
with two ions as described by the model potential, whereas the blue
horizontal lines indicate the energy of a specific eigenstate. A blue
circle on a blue line indicates that this eigenstate has been occupied
by a fermion. The number of ion-bound states per ion depends on the
model parameters. The upper diagram shows the ion-bound (IB) and
trap-bound (TB) filling types for the case of one ion-bound state, the
lower for the case of two ion-bound states.

parameter with K < 1 for repulsive fermions, K = 1 for non-
interacting fermions, and K > 1 for attractive fermions. The
goal of our study is to investigate the impact of an ion lattice
on such parameters. From the previous discussion on fillings
we would expect the ions to act as attractive wells in the low-
filling cases fIB. As the filling rises, the attraction becomes
screened by the atoms, and at high filling, fTB, the atom-ion
potentials effectively become soft barriers as shown pictori-
ally in Fig. 3. The expected effects are that in the fIB case,
the atoms are forced closer together, effectively increasing
their mutual attraction, i.e., the value of K would rise. In the
fTB case, the atom-ion potential is repulsive, and the expected
effect is an induced repulsion between atoms, corresponding
to a lowering of the value of K . In all cases we would expect
a lowering of the speed of sound due to the introduction of
barriers in the fluid, corresponding to a higher effective atomic
mass. However, none of these behaviors follow trivially from
the shape of the potential. Note that the degree of all these
effects will depend on the nature of the atom-ion interaction
as determined through the short-range phases φe,o.

The ground-state properties of the quantum fluid can be
analyzed through the bosonized Hamiltonian

Ĥ = 1

2π

∫ [
uK (∂xθ )(x)2 + u

K
(∂xφ)(x)2

]
dx, (16)

where θ and φ are the standard bosonic fields. This effective
Hamiltonian is a linearization of Eq. (1) around the Fermi
points. We will extract u and K as functions of the quantum
defect parameters, by treating the microscopic Hamiltonian
(1), in a DMRG calculation and evaluating the ground-state

FIG. 3. Filling of the lower-energy states will correspond to a
screening of the attractive part of the atom-ion potential. As shown on
this diagram, this can be understood microscopically as an effective
cancellation of the wells on either side of the ion, ultimately only
leaving a soft barrier. The expected effect in TLL terms would
be a raising of the value of K for low filling, corresponding to
induced attraction, and a lowering of the value of K for high fillings,
corresponding to induced repulsion.

properties of systems with varying quantum defect parame-
ters. This will allow us to extract the TLL parameters using
the methods outlined below. Let us stress here that the dis-
cretization has no physical significance, but it is done merely
to allow a numerical treatment of the continuous system.

Specifically, we consider that on the Ns sites of our system
there are NA atoms and NI ions. When NA, NI � Ns and
d � R∗ (i.e., low-filling factor), we can use DMRG on the
discretized system to approximate the d → 0 continuum
limit [76,77]. When we approach the thermodynamic limit
numerically

Ns → ∞, d = const, NA/I/Ns = const, (17)

we can extract K from the momentum-space density-density
correlation function for the minimum lattice momentum
k0 = 2π/Ns as [78]

K = lim
Ns→∞

2(〈n̂(k0)n̂(−k0)〉 − 〈n̂(k0)〉〈n̂(k0)〉). (18)

Here, the expectation value is with respect to the ground
state ψ0 of the fermionic system. We have used the
Fourier-transformed number operator

n̂(k) = n̂†(−k) =
Ns∑
j=1

e−ik( j− jc )ĉ†
j ĉ j, (19)

with k being lattice momentum, j being the lattice site index,
and jc being the central site. To reach this limit, we use
Eq. (18) on a number of finite systems with increasing size
and constant lattice spacing, atom density, and ion density.
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We then extrapolate K to the infinite-size limit using a linear
fit (see Appendix B for further details).

In order to find u, we estimate the compressibility κ of the
system, whose inverse is related to TLL theory [Eq. (18)] as
[79]

1

κ
= uπ

K
= L

2

d2E

dN2
A

� L

2

(
E (NA + 2) + E (NA − 2) − 2E (NA)

4

)
, (20)

where E (NA) is the energy of a system with NA atoms. The
factor 1

2 in the second line of Eq. (20) accounts for the spin
polarization. The derivative must be approximated as a finite
difference since the number of particles is discrete, and we
use a difference of two atoms to avoid any effects which might
arise due to the differences between having an odd and an even
number of particles. By computing the ground-state energy of
the system for different numbers NA of fermions, we can thus
calculate both TLL parameters by using Eqs. (18) and (20).

Since the ions in our systems are equally spaced, effec-
tively forming a periodic potential, the noninteracting variant
can be accurately described using Bloch waves and band the-
ory [36] in the thermodynamic limit. Such a system contains
gaps between the bands at integer fillings, i.e., NA = nNI

where n is an integer. If our system is in such a gapped
state, it cannot be modeled using TLL theory. However, we
are considering a system of interacting atoms, where the
lattice model of the atom-atom interaction (12) is inversely
proportional to the lattice spacing. By approximating the con-
tinuum with a small lattice spacing, the interaction becomes
comparably large, which can lead to a closing of said gaps,
and ensure noninsulating behavior. However, an interacting
system might still be a Mott insulator. To classify the behavior
of the systems treated, we have calculated κ for each system
and extrapolated it to the thermodynamic limit. In this limit,
κ → 0 for any type of insulator since the energy gap causes
the energy difference in Eq. (20) to remain finite at infinite
length. It was found that none of the systems treated exhibited
such behavior, with the smallest extrapolated value being
κ = 0.16(3)(R∗E∗)−1. From this we conclude that all systems
considered can be accurately modeled using TLL theory.

In the rest of the paper we will assume an ion density of
NI/L = 0.25/R∗. This means that in the thermodynamic limit,
the ions have a separation of D = 4R∗, which for the atom-ion
pair 6Li/174Yb+ corresponds to 279.2 nm. In the case of NI =
7, the ion spacing is D = 4.6R∗, corresponding to 321.1 nm.
For the atom-ion pair 40K/174Yb+, the ion spacing would
correspond to 1.1 μm. For instance, for a 174Yb+ ion chain
with NI = 7 ions and a radio frequency of 2π × 2 MHz, the
minimal separation is about 1.2 μm, whereas with a radio
frequency of 2π × 10 MHz it is 398.22 nm [80]. Although
the latter frequency is higher than typical values encountered
in experiments, the quoted separations can be obtained by
just generating time-dependent fields of higher frequency.
Attempts at reaching ion separations that are currently at-
tained in trapped-ion experiments are beyond the capabilities
of our DMRG calculations. Nonetheless, since the smaller ion
separation we have considered, i.e., D = 4R∗, is large enough
that the atom-ion potentials have negligible overlap (see also

TABLE I. Number of ion-bound atomic states per ion for those of
the model parameter combinations considered in this study involved
in the transition from one to two such states. This transition is marked
schematically by a dashed line in Figs. 4 to 7.
�����������ω/(R∗)−4

γ /γmin

1 2 5 10

4 1 1 1 1
6 1 2 2 2
8 2 2 2 2

Fig. 2), we do not expect any qualitative differences from
increasing the separation.

III. RESULTS

The following results were obtained by using the DMRG
algorithm as outlined above. Errors on K are the 2σ confi-
dence intervals in the linear fits used for extrapolation. To en-
sure the correct implementation of our method, we tested the
calculation without ions. For ap = 0 we find the free-fermion
limit K = 1.0000(2), as expected for noninteracting atoms,
while the slightly attractive interaction ap = −0.1R∗ gives
K = 1.0525(9). This is similar to the result we get by ap-
proximating the fermions as hard rods [81] with length ap in a
system with fermionic density ρ, Khs = (1 − ρap)2 = 1.0506.
When comparing the calculated speed of sound for a free-
fermion gas with the Fermi velocity vF of the same system, we
find u/vF = 1.03(5), where the error is due to discretization.

The parameter space which gave significant effects while
being numerically feasible was found to be [82]

1 � ω

(R∗)−4
,

γ

γmin
� 10, (21)

where the combinations
ω

(R∗)−4
= 2, 4, 6, 8, 10,

γ

γmin
= 1, 2, 5, 10 (22)

give a relatively even spread of quantum defect parameters.
Importantly, there is a transition in the number of bound states
per ion within this parameter space (see Table I). In the rest of
the text, the systems with two bound states will be said to be in
the “strong”-ion domain (since the potential has deeper wells
and higher central Gaussian), while the systems with one
bound state will be said to be in the “weak”-ion domain. In the
QDT parameter plots, Figs. 4 to 7, this transition is schemati-
cally marked with a dashed line. This is particularly relevant
for the investigation of TB states, and will be discussed
further in Sec. III B below. Note that ions located on an edge
site will always have one bound state, which is a finite-size
effect. Further technical details can be found in Appendix B.
Finally, for all plots in the following section, the points signify
calculation results and the surface is a linear interpolation.

A. Ion-bound atomic states

In Fig. 4 we show the speed of sound u of the system
of interacting atoms and ions. Generally, the presence of the
ions lowers this speed considerably compared to the Fermi
velocity of a free-fermion system, with the clearest effects
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0.1

0.15

0.2

0.25

0.3

FIG. 4. Speed of sound for ion-bound states of a system of
ions and interacting fermionic atoms with NA = NI. All points have
errors of ±0.05. The dashed line schematically marks the transition
from the weak-ion domain (above the dashed line) the strong-ion
domain (below the dashed line) (see the text for further details). The
ions significantly lower the speed, corresponding to a hindering of
collective excitations, especially in the strong domain (below the
dashed line).

in the strong domain. Since we are effectively introducing
potential wells and barriers into the system, it is to be expected
that collective excitations across the systems will be damped
by these “obstacles,” corresponding to a lower speed of sound,
or equivalently a higher effective mass of the fermions. The
introduction of ions into our system of interacting fermions
induces a significant effective attraction between the interact-
ing atoms, as shown in Fig. 5, where the K parameter varies
approximatively from 1.20 to 1.58, with a dip to 1 in the deep
weak domain (above the dashed line). This depends mostly
on φe, and peaks for −0.3 < φe/π < −0.2. For values larger
than this, we see hints at a sharp dip toward the noninteracting
limit.

1.1

1.2

1.3

1.4

1.5

FIG. 5. TLL parameter for a range of QDT parameters in systems
of ions and interacting fermionic atoms with filling NA = NI. All
results have errors less than ±0.02.

1.04

1.05

1.06

1.07

1.08

FIG. 6. Luttinger-liquid parameter for a range of QDT parame-
ters in systems of ions and interacting fermionic atoms with filling
NA = 2NI. All results have errors less than ±0.02.

B. Trap-bound atomic states

Due to the previously mentioned transition in the number
of IB states per ion, in order to study the behavior of a
system of TB states, we must consider different fillings in the
different domains. In the weak domain we consider the fTB,1

filling NA = 2NI, while in the strong domain we consider the
fTB,2 filling NA = 3NI − 2, where two states are subtracted
due to the fact that the ions at the edges can only host one
odd-wave bound state. Figure 6 shows the fTB,1 filling over
both domains, and with K varying between approximatively
between 1.03 and 1.08, we see that the ions barely tune it
away from the 1.05 value from the system with no ions,
with slightly induced attraction in the weak domain. Figure 7
shows the fTB,2 filling over both domains, and with K varying
from 0.56 to 0.95 we can see a strong induced repulsion.
Remarkably, there is a smooth transition between domains
for both fillings, but drastically different K values between
the fillings, suggesting that the deciding factor in the value
of K is not the density of TB or IB states, but rather the
total number of atoms per ion. The smooth transition between

0.6

0.65

0.7

0.75

0.8

0.85

0.9

FIG. 7. Luttinger-liquid parameter for a range of QDT parame-
ters in systems of ions and interacting fermionic atoms with filling
NA = 3NI − 2. All results have errors less than ±0.05.
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domains indicates that the difference between a low TB state
and a shallow IB state has very little influence on the physics
of our system.

C. Discussion

Taken together, Figs. 5 to 7 indicate that the effect of the
ions on the atom-atom interaction can be separated into three
different categories:

(1) Stronger attraction. This is the case when NA = NI,
and the atoms are bound relatively deep in the atom-ion
potential.

(2) No effect or slightly stronger attraction. This is the
case when NA = 2NI, with slightly more attraction in the weak
domain.

(3) Shift to repulsive interaction. This is the case when
NA = 3NI − 2 in the strong-ion domain, with tendency toward
the noninteracting limit in the weak domain.

As predicted in Sec. II D, we have induced attraction at
low fillings (cat. 1), which transitions over a cancellation of
attractive and repulsive effect (cat. 2) to induced repulsion at
high fillings (cat. 3). A remarkable result is the shift of K from
K > 1 to K < 1, meaning that the introduction of ions causes
the initially attractive atoms to have an effectively repulsive
interaction. These results are in clear contrast to the behavior
of a TLL in a flat potential, where changing the atomic density
cannot tune the effective interaction across the free-fermion
limit [83]. To tune an initially attractive TLL into a repulsive
TLL through a change in the atom density thus requires an
inhomogeneous potential such as the one generated by an ion
chain.

The fact that the ions induce repulsion between the
fermions indicates that the atomic gas has a tendency to form
a so-called charge density wave, i.e., an ordered state. In our
setting, this means a density wave of fermionic atoms. A
similar phenomenon has been observed for a 1D Fermi gas
coupled parallel to an ion chain [33,84], where the (transverse)
atom-phonon coupling induces a Peierls instability below a
critical separation between the two quantum systems.

Current experiments with ytterbium ions and lithium atoms
[47] show very low Langevin collisional rates, thus indicating
that atoms do not occupy bound states within the ions, and so
the points 2 and 3 above are the most experimentally relevant.
Note that these effects are genuinely induced by the atom-ion
scattering physics, that is, the occurrence of one or two bound
states at threshold is a physical effect tunable by Feshbach or
confinement-induced resonances.

IV. CONCLUSIONS AND OUTLOOKS

We have investigated the ground-state properties of a
fermionic quantum fluid superimposed on a uniform ion
chain. Particularly, we have assessed the Luttinger-liquid pa-
rameters K and u, which fully characterize the ground state of
the spin-polarized Fermi gas and its low-energy excitations.
Our goal was to analyze the reliance of the TLL parameters
on the short-range phases of the atom-ion scattering. To this
aim, we performed numerical density matrix renormalization
group simulations on a high-resolution discretized fermionic
Hamiltonian modeling a static linear ion chain. Thus, we

have been able to map the Luttinger-liquid parameters to the
two short-range phases characterizing the atom-ion polariza-
tion potential. By changing these scattering parameters, e.g.,
via external driving of the ionic impurities, we have shown
that the Luttinger-liquid parameters can be tuned within a
broad range of values. While the speed of sound is generally
decreased, corresponding to a hindering of collective exci-
tations by the ions, the interaction as measured by K has
a more intricate behavior. Depending on the density of the
initially weakly attractive atoms, changing the ion scattering
parameters can tune the interaction within a repulsive regime,
an attractive regime, or have completely negligible effect.
The result of most immediate experimental relevance is the
induced repulsion.

Finally, future work could address the dimensional
crossover by replacing the setup we investigated purely in
1D with an atomic waveguide, where the motional transverse
degrees of freedom are taken into account, too. Recently
the analytical solution of the 3D scattering problem of a
trapped atom interacting with an array of contact potentials,
i.e., representing the static scattering centers akin to the ions,
was presented [85]. Hence, one could solve the many-particle
problem using this analytical solution and investigate the
impact of the transverse confinement of the atoms on the TLL
parameters and excitation spectrum of the liquid in order to
understand the interplay between external confinement and
impurity-atom scattering characteristics. An alternative ap-
proach could be by means of bosonization techniques, where
the transverse modes are coupled [86]. Moreover, another
interesting research direction is to study the role of spatial
inhomogeneities in the impurity-atom interaction strength,
thus adding controlled disorder in the system.
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APPENDIX A: MODEL POTENTIAL

For the sake of numerical efficiency, we have chosen the
atom-ion model potential parameters within the range

1 � ω

(R∗)−4
,

γ

γmin
� 10. (A1)

2See https://hpc.uni.lu
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The mapping between the QDT parameters, i.e., short-range
phases, and model potential parameters is performed by fol-
lowing this procedure:

(1) We choose some values for ω and γ within the range
outlined above as well as E = k2 (all parameters are in units of
E∗ and R∗), the latter of which must be small (i.e., in the low-
energy limit), but positive. We then use the Numerov method
[88] to solve the Schrödinger equation for the two-body atom-
ion problem for this potential by iterating the wave function
from x = 0 to x 
 R∗.

(2) We determine the phase shifts ξe,o of the solution
at large distances, i.e., far from the ion, by comparing the
logarithmic derivative of the solution to a plane-wave solution
at x = x0 
 R∗,

cot(ξe,o) = k + Ae,o cot(kx0)

−Ae,o + k cot(kx0)
, (A2)

Ae,o = dψe,o(x)/dx

ψe,o(x)

∣∣∣∣
x=x0

. (A3)

(3) We test QDT solutions of different φe,o and determine

the corresponding phase shifts as in the previous step 2.
(4) We compare the phase shift, ξe,o(φe,o), obtained via

QDT for a certain pair of short-range phases φe,o with the
sample of phase shifts ξe,o(ω, γ ), obtained with the model
potential for various parameters ω, γ . The one that is most
similar to ξe,o(φe,o) gives the mapping.

We note that the last step of this procedure always yields
a numerical error, i.e., the difference between the QDT result
and the model potential will be around 10−12. We also note
that for perfect precision in the mapping, the atom-ion wave
function would have to be zero at the ion position. This is only
true for the model potential to a good approximation since the
model parameter v0 is finite.

APPENDIX B: DMRG CALCULATIONS AND
EXTRAPOLATION

The DMRG solutions were found by using the implemen-
tation from the ITENSOR library [89]. The time taken and ac-
curacy achieved depends on a number of supplied parameters:

Sweeps. The number of sweeps to achieve convergence
depends heavily on the size and complexity of the system of
interest, ranging from ∼100 for small atom-only systems with
simple interactions, to 1000–2000 for large atom-ion systems
with many atoms and all interactions turned on.

Cutoff. DMRG uses a singular value decomposition (SVD)
procedure, where all singular values below this cutoff
value are truncated. The value was kept similar to that of
Refs. [76,77], namely, ∼10−13.

Maximum bond dimension. It was found that setting this
value at 1000 gives a good convergence time.

The ITENSOR implementation automatically converts com-
mon operators into matrix product operators (MPOs). This
renders the implementation of the Hamiltonian as well as the
extraction of the ground-state energy and the density profile

〈ρ̂(x j )〉 = 〈ψ0|
ĉ†

j ĉ j

d
|ψ0〉 (B1)

rather simple. A straightforward way to confirm that the algo-
rithm has converged is to check the symmetry of the density

FIG. 8. An example of values of K (Ns) for trap-bound systems
with constant atom and ion densities, constant lattice separation,
and different sizes (as measured by number of lattice points Ns).
To calculate K = limNs→∞ K (Ns) we apply to finite systems and
extrapolate the results to the infinite-size limit 1/Ns → 0 using a
linear fit. The value of K in the limit is shown with an error which
is the 2σ confidence interval on the fit. This example has ω =
10(R∗)−4, γ = γmin, and a = 0.1R∗, and NA = 3NI − 2.

profile. The true ground state will be completely symmetric
around the center of the trap, but it was found that the DMRG
algorithm would only return states with symmetric density
profiles once it had completely converged.

The parameter space which gave significant effects while
being numerically feasible was found to be (21), whereas
the combinations (22) give a nice spread of quantum defect
parameters. Smaller parameters would make the features of
the potential too weak, while larger parameters tend to give
a nonsmooth potential, requiring a finer lattice to properly
resolve. Within this parameter range it was found that a
lattice constant of d ∼ 0.01R∗ with ∼400 sites per ion was
a minimum for reliable calculations. Extrapolation was done
from the results of calculations with 5 to 12 ions, a density of
NI/L = 0.25/R∗, and a lattice separation of d = 0.01667R∗
(see Fig. 8). Since the data points cluster closer together
toward 1/Ns → 0, and to have more efficient calculations,
it was chosen to only extrapolate using NI = 5, 6, 7, 9, 12,
which still gives a reliable extrapolation. For ω/(R∗)−4 < 5,
the NI = 5 results were found to be unreliable and had to
be excluded from the extrapolation. The remaining points
sufficed for reliable extrapolation.

The main system of interest in this paper is that with
trap-bound filling and nonzero atom-atom interactions. It is,
however, noteworthy that the extrapolation procedure failed
for the ion-bound filling when atom-atom interactions were
neglected (i.e., VAA = 0). One would expect this to be a
simpler system to work with, but our numerical procedure
failed in this case. Extraction of K using Eq. (18) can be
readily done by seeing that the sum is symmetric around jc,
meaning the imaginary parts of the exponential cancel, and
one is left with

n̂(k) = n̂(−k) =
Ns∑
j=1

cos[k( j − jc)]ĉ†
j ĉ j, (B2)

which is real and even, and which can be converted to an MPO
and applied to the ground state before calculating the overlap
in Eq. (18).
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