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Stress-driven nonlinear dynamics of ion-induced surface nanopatterns
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For many solid targets, like semiconductors, that become amorphous under irradiation by energetic ions,
the outermost surface layer displays formation of asymmetric nanoscale ripples in macroscopic timescales. In
contrast to the well-known macroscopic case of an incompressible thin fluid film spreading down an incline, in
which the morphological instability is controlled by gravity, here we prove that residual stress induced by the
ions is responsible for pattern formation and accounts for its long-time dynamics, even in absence of sputtering
effects. Using a continuum framework, we derive closed nonlinear evolution equations for the depth of the
irradiated layer. This description includes novel terms associated with the spatial distribution of damage that
builds up through sustained bombardment, thus extending to the nanoscale classic models of macroscopic fluid-
flow systems, and providing detailed information on the pressure and velocity fields within the irradiated layer.
Numerical simulations reproduce the main dynamical features of surface nanopatterning under the assumed
conditions, elucidating the ensuing nonlinear properties on ripple amplification and transport.
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I. INTRODUCTION

Nonlinear effects are well known to control the large-scale
properties of spatially extended systems far from equilibrium
[1]. For example, for pattern-forming systems, in which the
selection of a typical scale can be described (via the interplay
between stabilizing and destabilizing mechanisms) within lin-
ear approximation of perturbations around the homogeneous
state [2], the system behavior is ultimately dictated by the
nonlinear effects triggered by perturbations themselves. Es-
sential pattern properties influencing their practical use, like,
e.g., stability with respect to secondary instabilities, detailed
space structure, and other, crucially depend on nonlinear
interactions [3].

Historically, important instances for pattern formation have
included hydrodynamic instabilities in macroscopic fluid-flow
systems [4]. Nowadays, nanoscience is showcasing a host of
systems and processes with novel pattern-forming properties
[5], and also analogies of macroscopic behavior. Recent ex-
amples include the classic Rayleigh-Taylor instability being
reproduced by nanodot formation via laser melting of Au thin
films [6], or soft-matter-like surface wrinkles being induced at
nanoscales by ion bombardment [7]. Precisely, ion-beam sput-
tering (IBS) stands out as the particularly versatile nanopat-
terning technique which prompted Taniguchi to coining the
term “nanotechnology” in the early 70’s [8]. It consists in ir-
radiating a solid target with a broad ion beam impinging under
a well-defined incidence angle θ to the surface normal [9,10];
this erodes material out, surprisingly inducing nanoscale sur-
face ripples, as experimentally found quite early on [11,12].
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To date, these nanopatterns have found a large number of
applications for, e.g., optoelectronics [13,14], photovoltaics
[15], nanolithography [16,17], biomedicine [18,19], or the
synthesis of novel structures [20] and materials [21], holding
potential for many other [7].

For low-to-medium ion energies E , roughly between 0.5
and 100 keV, semiconductors and other materials become
amorphized by IBS [22]. An ultrathin, highly viscous amor-
phous layer is produced and maintained under irradiation on
top of an unirradiated bulk. In line with recent results for, e.g.,
quartz, according to which ion-irradiated materials are more
similar to fluids than to amorphous phases [23], a model based
on the flow of the irradiated layer, within linear approximation
[24], has shown how the dynamics of such layer controls key
morphological properties of the surface seen in experiments.

Although the linear stages of evolution of IBS nanopatterns
have thus been understood, nonlinear properties including
their stabilization, ordering, and in-plane transport, have re-
mained theoretically elusive, see, e.g., Ref. [25] for a re-
cent review. Indeed, nonlinear descriptions of IBS surface
nanopatterning are available [26–30], but they assume erosion
(sputtering) as the main cause for the surface instability, which
implies for instance that pattern formation can occur for any
value of the incidence angle including θ = 0◦, contradicting
recent experimental observations [25]. The limitations to the
predictive power of such nonlinear descriptions are under-
scored by yet more recent experiments on Si with Ar+ ions
for very low E at which the sputtering yield is negligible [31],
which find a pattern formation process just like the one seen
at higher E and erosion rates [24,25,32].

However, assuming viscous flow as the main relax-
ation mechanism, the source of nonlinear behavior in IBS
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FIG. 1. (a) Sketch of the physical system. Ions arrive under incidence angle θ . (b) Morphological diagram in terms of θ and the stress ratio
g defined in Eq. (6). Ripples (respectively, do not) form for θ > θc (respectively, θ < θc) throughout the lighter (respectively, darker) shaded
area. The solid line provides the critical angle for pattern formation θc as a function of g, as predicted by Eq. (7), with θc = 0◦ for g � −2.25.
Symbols x, +, and ◦ indicate conditions for the representative numerical simulations defined in Table I. The symbol • highlights the fact that
θc(g = 0) = 45◦. Within the rippled phase, the dashed line separates regions in which the (linear) velocity of ripple motion V is negative (left
of the line) or positive (right of the line) according to Eq. (13).

surface nanopattrening is not apparent either. Indeed, in
general nanosystems present conspicuous challenges to di-
rect replication of classic hydrodynamical instabilities. Leav-
ing aside the potential breakdown of continuum approaches
like the Navier-Stokes equation at sufficiently small scales
[33], additional difficulties exist. For instance, both grav-
ity and fluid inertia are expected to be irrelevant at the
nanoscale, since the Reynolds number unavoidably becomes
small [34,35], rendering inoperative the basic mechanisms
controlling pattern formation in, e.g., the analogous classic
problem of a macroscopic fluid layer flowing down an in-
clined plane (at angle θ ) [4,36]. Hence, the physical origin of
the nonlinearities expected to control the long-time properties
of pattern formation [2] is not obvious in nanometric systems.
In particular, convective nonlinear effects associated with
inertia are absent for IBS.

In this paper, we elucidate the nonlinear effects that control
the large-scale evolution of IBS surface nanopatterns for
amorphizable targets close to pattern onset, as emerging from
the interplay between the space distribution of residual stress
induced by sustained bombardment, and its subsequent relax-
ation via highly viscous flow. While we focus on the case of
IBS systems with a negligible sputtering rate [31], we expect
our results to apply to more general cases, sufficiently close
to onset of the pattern formation instability. Specifically, we
implement a lubrication approximation [36,37] of a contin-
uum flow model to obtain a strongly nonlinear time evolution
equation for the thickness of the irradiated layer. Closely re-
lated models display a plethora of fascinating, nontrivial non-
linear properties, like, e.g., localized structures and solitonlike
behavior [36,38,39], which may thus prove of relevance also
in the nanoscale IBS context. Our theory reveals nontrivial
correlations between dynamic and morphological properties
of the patterns which are robust to nonlinear effects and are
susceptible of experimental verification. This would further
confirm viscous flow driven by ion-induced stress as a crucial
contribution to the nonlinear dynamics of IBS surface nanos-
tructuring, not only under negligible sputtering conditions
[31] but also at higher energies and erosion rates [24,25,32].

This paper is organized as follows. Section II contains the
presentation and derivation of our continuum model, many de-
tails of which are left to Appendices A through C. Section III
presents analytical predictions which can derived from the
model within a linear approximation. A more complete study
needs to address nonlinear properties and is carried out numer-
ically in Sec. IV which, after considering the informative case
of one-dimensional (1D) systems, also deals with the full 2D
dynamics of the irradiated layer. Finally, Sec. V summarizes
the main results of our work, and states our conclusions and
outlook on future developments.

II. THEORETICAL DESCRIPTION

Under standard low-to-medium E conditions for IBS, im-
pinging ions loose their kinetic energy through a series of
binary collisions inside the solid [9]. For a typical ion flux
of 10 ion nm−2 s−1 or smaller, this amorphizes a surface
layer atop an underlying pristine (unirradiated) target [see
a sketch in Fig. 1(a)], with a density and depth (a few nm,
of the order of the ion range) which stabilize after a few
seconds of irradiation [25,40,41]. The structural disorder in
the irradiated layer makes it more similar to a highly viscous
fluid than to an amorphous phase of the same material [23].
In particular, experimental estimates for noble-gas irradiation
of Si conclude [32,42] that the viscosity μ of this layer is
very high, close to 1 GPa min, while assuming viscoelastic-
like constitutive laws between strain and stress, which are
more complex than that for a simple Newtonian fluid, does
not improve predictive power in our experimental context
[32,43]. Thus the effect of the irradiation can be expressed
as residual stress (forcing) that is relaxed via Newtonian vis-
cous flow (relaxation) [44–46] and which, as experimentally
assessed [47], does not depend on the initial structural state
(e.g., crystalline or amorphous) of the target. Results from
molecular dynamics (MD) simulations indicate [24] that the
corresponding stress tensor is traceless, so that the irradiated
layer is incompressible.
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TABLE I. Parameter values employed in our numerical simulations, as obtained from Eq. (2), for Gs = 0.4 GPa, σ = 10 GPa nm, μ =
0.83 GPa min with Gb = −0.1 GPa nm−1 implying g = g1 = −1.25 [x symbols in Fig. 1(b)], Gb = 0.05 GPa nm−1 implying g = g2 = 0.625
[+ symbols in Fig. 1(b)], and Gb = −0.06 GPa nm−1 implying g = g3 = −0.75 [◦ symbols in Fig. 1(b)]. Incidence angles θ as indicated.

Coefficient g = g1, θ = 50◦ g = g1, θ = 60◦ g = g2, θ = 60◦ g = g2, θ = 70◦ g = g3, θ = 50◦ g = g3, θ = 70◦ Physical units

a1 0.71 0.62 0.63 0.46 0.71 0.46 1/min
a2 −0.18 −0.21 0.10 0.11 −0.11 −0.14 1/(nm min)
b1 −0.12 −0.36 −0.36 −0.55 −0.13 −0.55 1/min
b2 0.30 0.18 0.18 0.08 0.30 0.08 1/min
c −0.05 −0.04 0.02 0.01 −0.02 −0.01 1/(nm min)
γ 4 4 4 4 4 4 nm/min

Name (a) (b) (c) (d) (e) (f)

Hence, we formulate a flow model in which we assume
∇ · v = 0 (fluid incompressibility), where v(r, t ) = (u, v,w)
is the fluid velocity at point r = (x, y, z) in the irradiated layer
and time t , momentum conservation for this highly viscous
layer [32,42] reducing to [4,36] ∇ · T = 0, where inertial
terms are dropped and the stress tensor T = TF + Text is the
sum of the fluidic term TF = −p I + μ(∇v + ∇vT ) and an
external contribution Text due to the irradiation. Here, p(r, t )
is hydrostatic pressure, μ is viscosity, and I is the identity ten-
sor. MD results additionally indicate [24,41,47] that the resid-
ual stress is nonhomogeneously distributed in the irradiated
layer and that its value Text, for a target bombarded under an
oblique incidence angle θ is well approximated by a θ rotation
of the stress distribution generated under normal incidence
[24]. Still, very little additional information is available on the
detailed space variation of Text. In order to make analytical
progress, we will simplify such a space variation and assume
it to occur only along the ion-beam direction and with a
constant (bulk) gradient Gb (see Appendix A for details). Re-
markably, very recent MD simulations [48] of Ar+ irradiation
of Si for E = 30 eV (under which the sputtering yield is
negligible [31]) seem consistent with such a simple variation
for Text. Combined with the previous assumption on θ de-
pendence, this implies ∇ · Text = (2Gb sin θ, 0, −2Gb cos θ ),
see Appendix A.

Thus far, the fluid-flow model just proposed generalizes
to 2D substrates the one put forward in Ref. [24] for 1D
substrates. To complete the description, the previous conser-
vation and constitutive laws have to be supplemented with
boundary conditions. Although more elaborate conditions can
be considered [24], in view of the present stage of develop-
ment, and as a compromise between mathematical simplicity
and predictive power, we assume the interface between the
irradiated layer and the unirradiated bulk to be flat, with-
out slip or fluid penetration. If pattern formation onset is
dominated by redistributive rather than by sputtering effects
[25,31], the latter can be neglected. At the free surface [z =
h(x, y, t ), see Fig. 1(a)] simple stress-balance and kinematic
conditions are imposed, i.e., T · n̂ = 2σκn̂ and Dz/Dt = w,
respectively, where σ is surface tension, κ is curvature, n̂ is the
exterior unit normal, and D/Dt is the total or convective time
derivative [36,37,49]. While our present boundary condition
at the irradiated/unirradiated (i/u) interface is simplified, the
advantage is that we can now make further analytical progress,
which was hampered in Ref. [24] and remained limited to
linear approximations.

The present model, although being conspicuously free
from inertial terms, is still highly nonlinear. In order to
simplify it, we perform a gradient expansion similar to the
classical long-wave theory of falling films for low flow rates
[4,36]. This will allow us to derive a single nonlinear evolution
equation for h, which captures the nontrivial morphological
dynamics both, for short irradiation times in which linear ap-
proximations are accurate, and well into the nonlinear regime.
Specifically, our next step is to consider σ = αε−2, where α

is an arbitrary proportionality constant and ε is dimensionless
and small. At this, we anticipate that the typical pattern
wavelength scales with σ 1/2, as in the linear stability analysis
of related, experimentally validated, IBS models [24,44–46].
Then, we introduce slow scales X = εx, Y = εy, and T =
εt , and perform a series expansion of v and p in powers
of ε to obtain a closed nonlinear evolution equation for h;
see Appendix A for details. To order ε2, using the original
coordinates and the corresponding subscripts to denote the
partial derivatives, this reads

ht = − a1 hhx − a2 h2hx + ∇ · (h2 B · ∇h) + c ∇ · (h3 ∇h)

− γ∇ · (h3 ∇∇2h), (1)

where the coefficients are

a1 = 3Gs sin(2θ )

2μ
, a2 = 2Gb sin(θ )

μ
, γ = σ

3μ
,

B =
[ 3Gs cos(2θ )

2μ
0

0 3Gs cos2(θ )
2μ

]
, c = 2Gb cos(θ )

3μ
, (2)

and Gs is the value of the ion-induced stress at the free
surface, up to numerical constants, see Eq. (A16). Consistent
with the neglect of sputtering, Eq. (1) conserves the total
mass of the irradiated layer, reading as ht = −∇ · J with J =
(a1h2/2 + a2h3/3, 0) − (h2 B + ch3I) · ∇h + γ h3 ∇∇2h. All
terms on the right-hand-side of Eq. (1) are nonlinear, this
equation providing the IBS analog of the classic Benney
equation for a macroscopic fluid film down an incline [4,36].
Such as they appear in the conserved surface current J, they
correspond, respectively, to Burgers-like terms reflecting a
non-null streamwise component of the external driving, the
anisotropic cross-stream component of the latter, and the clas-
sic contribution of surface tension to viscous film spreading
[37,49,50]. The precise form of the Benney equation for a
macroscopic fluid flowing down an inclined plane can be
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retrieved from (the one-dimensional version of) Eq. (1) by
replacing a1 → 0 and h2B → h6I.

Likewise, the particular B = 0 case of Eq. (1) happens to
also describe, within a lubrication approximation, the dynam-
ics of another macroscopic system with fluid thicknesses be-
tween two and three orders of magnitude larger than the ones
we are presently considering. Specifically, that of a viscous
film destabilized by a surface tension gradient induced by an
external temperature field, which is opposed by a stabilizing
gravitational force [51,52]. Besides lacking the B term, the
only difference between the evolution equation considered in
Refs. [51,52] and Eq. (1) is that, in the former, a2 < 0 and
c > 0 have fixed signs imposed by the stabilizing role of
gravity, while in our case both c and a2 take the sign of Gb,
which can be arbitrary in principle.

For small-amplitude waves, so-called weakly nonlinear
approximations have been successful to derive equations more
amenable to mathematical and numerical scrutiny for falling
films [36]. Equations with a similar structure have actually
played a very important role in the theoretical description of
surface nanostructuring by IBS [10,25], hence it is instructive
to see the form they take in our present case. Thus, for
Eq. (1), we perform such a weakly nonlinear expansion of
the irradiated thickness around the uniform-thickness solution
h0 (see Appendix A for details). We obtain the following
equation for the perturbation, h̃(x, y, t ), around h0:

h̃t = − ã1h̃x − ã2h̃h̃x − a2h̃2h̃x + h2
0∇ · (B · ∇h̃) + ch3

0∇2h̃

+ ∇ · (h̃ B̃ · ∇h̃) − γ h3
0∇4h̃ − 3γ h2

0∇ · (h̃ ∇∇2h̃), (3)

where ã1 = a1h0 + a2h2
0, ã2 = a1 + 2a2h0, and B̃ = 2h0B +

3ch2
0 I. This equation coincides with the perturbed anisotropic

Kuramoto-Sivashinsky (KS) equation derived in Ref. [53]
for a macroscopic film flowing down an inclined plane in
the strong-surface-tension limit, save for linear third-order-
derivative terms, absent from Eq. (3). In our case, nonlinear-
ities include Burgers’ (with coefficient ã2), the (anisotropic)
derivative of a generalized Burgers term (with coefficient
matrix B̃), and a nonlinear contribution to surface-confined
viscous flow (last term) [54]. At any rate, Eq. (3) already
suggests that long-time properties of IBS nanopatterns, such
as amplitude saturation, ripple shape, in-plane motion, and
spatial structure, emerge as a balance among the nonlinearities
induced by the streamwise and cross-stream components of
the external driving, and by the stabilizing surface tension.

Formally, both partial differential equations, Eqs. (1) and
(3), depend on five different physical parameters, namely,
θ , Gs, Gb, μ, and σ . However, as shown in Appendix C, a
suitable choice of coordinates allows us to rewrite a rescaled
form of, e.g., Eq. (1) which depends on two dimensionless
quantities only. These two parameter combinations can be
chosen as the incidence angle θ and

ĝ ≡ 2σGb

9G2
s

. (4)

The dimensionless ratio (4) is analogous to the so-called
Bond number in fluid mechanics [4,36], which quantifies the
relevance of bulk (e.g., gravity) to surface forces. At any rate,
once the relevant scale along the vertical direction has been
fixed, e.g., via initial conditions or otherwise, the parameter

space for the continuum model, Eq. (1) or (3), is merely
two-dimensional, being fully parameterized by θ , and the
ensuing ĝ.

III. LINEAR REGIME: ANALYTICAL PREDICTIONS

As noted above, the full free-boundary system for the
fluid velocity has been previously studied by means of linear
stability analysis, for related IBS models [24,44–46,55]. In
this section, we perform this type of analysis directly on
the thickness equation, Eq. (1), to find that it is also quite
informative in this case, as it retrieves the main qualitative
properties of the onset of ripple formation as assessed in
experiments [25]. Indeed, small periodic perturbations of the
uniform solution, h = h0 + h1ei(qxx+qyy)+ω t , evolve with linear
dispersion relation

ω(q) = − i
(
a1h0 + a2h2

0

)
qx

− h2
0

(
b1 q2

x + b2 q2
y + c h0q2

) − γ h3
0 q4, (5)

where q = (qx, qy) is the 2D wave vector, q = |q|, and bi =
Bii (i = 1, 2). Perturbations grow in amplitude for q such that
Re ω(q) > 0. For positive values of σ and μ, the existence
and range of unstable perturbations depend on the parameters
reflecting the physical conditions for irradiation, Gb, Gs, and
θ , the first two of which characterize the space distribution
of residual stress and are expected to depend, primarily, on
ion/target species combination and ion energy E [24]. Note
that the precise polynomial form of ω(q) predicted by Eq. (5)
has been validated recently by in situ x-ray analysis [32,56].

As also experimentally observed [25,31], for fixed E
and ion/target combination, a morphological transition takes
place at a critical incidence angle θc such that the flat solution
is stable for θ < θc and unstable for θ > θc. In this sense,
the role of the ion incidence angle θ is analogous to that of
the incline tilt for the macroscopic problem [4,36]. However,
notably, the physical mechanism driving pattern formation
is not inertia in the IBS case but, rather, the induced stress
distribution. Indeed, assuming for definiteness a compressive
value of the external stress at the free surface (Gs > 0), as
obtained by MD for, e.g., Ar+ irradiation of Si [24,41], b1

becomes negative for θ > θc and a band of unstable modes
appears making positive the real part of the linear dispersion
relation. Since b1 < b2 for all incidence angles, perturbations
will grow along the x axis only if b1 h2

0 + c h3
0 is negative.

Using the values for b1 and c from Eq. (2), this requires that
cos(2θ ) < −4gcos(θ )/9, where

g ≡ Gbh0

Gs
(6)

is a dimensionless quantity estimating the ratio between the
stress jump across the fluidized layer and the stress value at
the free interface. Such a simple expression of the space inho-
mogeneity of the ion-induced stress distribution has been seen
in MD simulations [24] to play a central role for the pattern-
forming behavior. If the uniform solution is h0 = 2σ/(9Gs),
then g = ĝ and, as anticipated in the previous section, the
dynamics of Eq. (1) depends only on two parameters, the
incidence angle θ and the dimensionless ratio g.
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The critical angle for pattern formation, θc, at which
cos(2θc) = −4gcos(θc)/9, can be obtained from the equiv-
alent equation 2 cos2(θc) + 4gcos(θc)/9 − 1 = 0, which has
the solution

θc(g) = arccos

(
−g

9
+

√(g

9

)2
+ 1

2

)
. (7)

This function, graphed in Fig. 1(b), tends to 90◦ for very
large values of g and equals 0 for g = −2.25. Hence, a ripple
structure emerges for θ > θc, periodic along the x direction,
and with ripple crests along the y direction. As the value of θc

depends on g, which in turn is expected to depend on irradi-
ation conditions (like ion energy and ion/target combination)
via Gs,b, Eq. (7) implies that θc is not a universal value across
materials and energies. This lack of universality coincides
with what is experimentally known [24,25] and emerges here
for the first time as a prediction from a nonlinear thickness
evolution equation.

Additionally, note that a zero-gradient, homogeneous
stress distribution, namely, Gb = g = 0 implies θc = 45◦, ac-
cording to Eq. (1). Such a value for the critical angle was
originally predicted in Ref. [57] via kinetic arguments on
ion-induced material redistribution at the free surface. Fi-
nally, θc(g) = 0◦ for g = −2.25 and is not defined for all
(sufficiently negative) g < −2.25, which corresponds to a
Bradley-Harper (BH)-like scenario in which ripples form for
any incidence angle. Such a behavior was seminally predicted
in Ref. [58] for sputtering-dominated IBS in competition
with thermal surface diffusion. The 1D model proposed in
Ref. [24] also accounts for a similar (albeit quantitatively
different) BH-like scenario, the difference with our present
result being possibly due to the different boundary condition
employed. In what follows, we restrict ourselves to the non
BH-like scenario, to date seemingly prevalent in experiments
for clean monoatomic targets, [25] in which θc > 0◦; hence,
we consider g > −2.25.

Once a ripple pattern forms, it is predicted to have a
wavelength λ = 2π/q∗, where q∗ is the wave vector which
makes Re ω(q) a positive maximum. Thus, setting θ > θc and
optimizing Eq. (5), we obtain

λ = 2π/q∗ = 2π

√
−2γ h3

0

b1h2
0 + ch3

0

(8)

= 2π

√
−4σh0

9Gs cos(2θ ) + 4Gbh0 cos(θ )
. (9)

Actually, very close to pattern onset θ � θc, its dependence
on the incidence angle makes λ(θ ) diverge, making this ripple
formation a type-II transition in the pattern-formation termi-
nology [2]. Type-II transitions are bifurcations in which the
q∗ �= 0 stable solution branches out continuously from q = 0,
hence being characterized by a length scale which diverges
right at pattern onset (bifurcation point), akin to equilibrium
continuous phase transitions [2]. Indeed, by Taylor-expanding
the denominator of Eq. (8), we obtain

lim
θ→θ+

c

λ ≈ 2π

√
2σh0

(9Gs sin(2θc) + 2Gbh0 sin θc)(θ − θc)

∼ |θ − θc|−1/2. (10)

Although to date there are not many experimental reports
available on the value of the (critical) exponent n character-
izing the observed λ ∼ |θ − θc|−n divergence, those which
exist [24,45,56] are consistent with the n = 1/2 value which is
predicted by Eq. (10) to be universal, irrespective of, e.g., the
precise value of the critical angle. From this point of view and
continuing with the analogy with an equilibrium continuous
phase transition, θc is akin to the critical temperature Tc,
while n is analogous to the critical exponent characterizing the
divergence of the system correlation length. As is well known,
the value of Tc is not expected to be universal, as opposed to
critical exponents [59].

Another pattern feature that can be analytically extracted
within linear approximation [44,46,55] is the velocity for
transverse ripple motion, namely, the velocity at which a
local minimum of the linear ripple structure travels across the
substrate, corresponding to the phase velocity of a wave mode
[60]. Note that the imaginary part of Eq. (5) only depends
on qx, so that linear ripple motion takes place only in the x
direction. In order to compute its velocity, we simply have
to take the ratio between the imaginary part of the linear
dispersion relation and the wave vector, both being evaluated
at q = q∗, namely,

V = − Im ω(q)

qx

∣∣∣∣
q=q∗

= 3Gsh0 sin(2θ ) + 4Gbh2
0 sin(θ )

2μ
,

(11)
Perhaps even more intuitively, this result can also be obtained
by considering the kinematic condition, Eq. (A8)—which
states that the motion of the free interface is merely due
to the fluid velocity field there—to lowest order within the
perturbative expansion detailed in Appendix A. Thus under
such an approximation Eq. (A8) becomes

ht 
 −u0hx + w1 = −V hx, (12)

where V is as in Eq. (11), u0 and w1 are the lowest-order non-
trivial perturbative contributions of the u and w components
of the velocity field [given by Eqs. (A18) and (A22)], and the
last equality follows from the latter formulas after evaluation
at z = h. Indeed, Eq. (12) describes a traveling wave moving
along the x axis with constant speed V .

Provided ripples form, the condition V = 0 corresponds
to 3 cos(θ ) + 2g = 0; equivalently, this condition introduces a
g-dependent value of the incidence angle,

θv (g) = arccos

(
−2g

3

)
, (13)

which nontrivially separates experimental conditions charac-
terized by a positive or a negative (linear) velocity for ripple
transport when g ∈ (−1.5, 0). This curve is shown as a dashed
line in Fig. 1(b); to the left of the curve, the ripples move
upstream with respect to the ion incidence, while ripples
move downstream otherwise. For g < −1.5 (respectively, g >

0), the ripples always travel with a negative (respectively,
positive) velocity, to linear approximation. Interestingly, for
any fixed g ∈ (−1.5, 0), the ripple velocity changes sign from
positive (downstream) to negative (upstream) with increasing
ion incidence angle θ .

Experimentally, in-plane ripple transport has been reported
under conditions (ion energy and ion/target combination) like
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the ones we are addressing here, e.g., in Refs. [61–64]. In
particular, a dependence of the sign of the ripple transport
velocity with incidence angle has been reported in experi-
ments of 10-keV Xe+ ion irradiation of Si targets [63]. It is
worth noting that both critical angles, θc and θv , depend on
g and thus are expected to provide nonuniversal features for
different energies, ions, and target materials.

IV. FULL DYNAMICS OF THE IRRADIATED LAYER

A. Numerical study

The results of the previous section have been derived
within a linear approximation. Beyond elucidating the fea-
tures of the pattern transition that takes place according to
Eq. (1), they are confined to an early time regime within which
the equation behaves similarly to its linearization around the
homogeneous solution. For related previous models of IBS-
induced viscous flow [24,44–46] the long-time (nonlinear)
surface dynamics past such an early time behavior has thus
far remained unexplored. In our present case, Eq. (1) now pro-
vides a means to additionally explore interface behavior deep
into the nonlinear regime, while still reproducing analytically
the main qualitative properties of the process within linear
regime of evolution, described in Sec. III. Unfortunately,
the strong nonlinearities occurring in Eq. (1) hamper further
analytical progress. Hence, to assess the full dynamics of the
irradiated layer, we have integrated numerically the strongly
nonlinear 2D form, Eq. (1). Also, since weakly nonlinear
formulations have played an important role in the field [25],
when indicated and for the sake of comparison, we will also
perform simulations of Eq. (3), namely, the weakly nonlinear
approximation of Eq. (1).

In order to employ physically representative values of
the equation parameters, accurate information on stress dis-
tributions is unfortunately very scarce. Hence, we consider
order-of-magnitude estimates of parameters which are based
on results for 1 keV Ar+ irradiation of Si [24,32,42], specif-
ically, Gs = 0.4 GPa, σ = 10 GPa nm, μ = 0.83 GPa min,
and h0 = 5 nm. We will study several conditions on the
stress gradient Gb within the irradiated layer, implying up to
three different values of g. For each of them, we will study
two values of the incidence angle above the corresponding
θc(g), leading to the six parameter conditions (a) through (f)
described in Table I and indicated graphically in Fig. 1(b).
Specifically, we will consider one condition for Gb = −0.1
GPa nm−1, in which the external stress becomes less com-
pressive along the ion-beam direction. This induces g =
−1.25 ≡ g1 and θc(g1) = 30.7◦. Our second stress condition
with Gb = 0.05 GPa nm−1 reverses the sign of g so that the
ion-induced stress becomes increasingly compressive along
the ion-beam direction, with g = 0.625 ≡ g2 and θc(g2) =
50.1◦. We finally consider a third value of the stress gradient,
Gb = −0.06 GPa nm−1, which induces a reduced negative
g = −0.75 ≡ g3 in such a way that the linear ripple velocity
can change sign as a function of the incidence angle. For this
parameter choice, θc(g3) = 60◦. We combine a fourth-order
Runge-Kutta scheme for time with finite differences in space,
using periodic boundary conditions and a lattice (time) step of
1 nm (10−5 min), guaranteeing that mass is conserved and that

results do not differ significantly for smaller space and time
steps. The initial thickness is h = h0, perturbed by zero-mean,
Gaussian white noise with 0.1 nm standard deviation.

B. One-dimensional systems

Many of the main features of the present pattern-forming
process can already be quite accurately retrieved when study-
ing one-dimensional systems in which the y dependence is
dropped altogether. Recall that, e.g., when ripples form, their
periodicity is along the x direction as discussed in Sec. III.
Thus, in this section, we first address this simpler setting
through numerical simulations of the 1D counterparts of the
strongly nonlinear equation Eq. (1) which, in conservative
form, reads

ht = −[a1/2 h2 + a2/3 h3 − b1 h2hx − c h3hx + γ h3hxxx]x

(14)

and, when appropriate, of its weakly nonlinear approximation
Eq. (3), namely,

h̃t = − [
ã1h̃ + (ã2/2)h̃2 + (a2/3)h̃3 − (

h2
0b1 + ch3

0

)
h̃x

− b̃1γ h3
0h̃h̃xh̃xxx + 3γ h2

0h̃h̃xxx
]

x
, (15)

where b̃1 = B̃11. Note that one advantage of the latter equa-
tion is that, while being nonlinear, it incorporates the basic
properties of the linear stages of evolution in a fully explicit
form, in contrast with Eq. (1). For instance, the linear terms in
Eq. (15) readily retrieve the linear dispersion relation, Eq. (5)
(setting qy = 0), including both, the contribution (Re ω) which
accounts for ripple formation and amplification/decay and
the contribution (Im ω) which described the ripple transport
velocity, Eq. (11). Actually, a similar consideration applies to
the 2D weakly nonlinear equation, Eq. (3), in that case for
arbitrary values of qy.

We first consider the way in which the sign of the
stress gradient across the irradiated layer influences the
dynamics. Thus Fig. 2 shows fixed-time frames of the layer
at relatively long times within the nonlinear regime, as
described by the 1D strongly nonlinear equation, Eq. (14);
the frames are taken from movies available in Ref. [65].
Specifically, movies 1D_movie_50deg_Gb=−0.1 and
1D_movie_60deg_Gb=−0.1 show the time evolution of
a 120 nm portion of the system (the actual system size
of these simulations was 300 nm) for g = g1 < 0 with
θ = 50◦ and 60◦, respectively [(a) and (b) conditions in
Table I]. Similarly, movies 1D_movie_60deg_Gb=0.05
and 1D_movie_70deg_Gb=0.05 show the time evolution
of the 1D irradiated layer for g = g2 > 0 under θ = 60◦
and 70◦, respectively [conditions (c) and (d) cases in
Table I]. The pressure and velocity fields in the irradiated
layer were solved perturbatively as functions of the
local thickness h, to which they are enslaved [36] and
are shown in these movies and in Fig. 2 (see details in
Appendix A). Figure 2 readily illustrates how, on average,
the pressure decreases with depth across the irradiated layer
for g < 0 while it increases, as intuitively expected, for
g > 0. The pressure field is not x ↔ −x symmetric, differing
markedly on both sides of the ripples, while the velocity
field also reflects the morphology of the free interface. These
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FIG. 2. Irradiated layer according to the 1D strongly nonlinear equation, Eq. (14), (no y dependence) for the parameter conditions (a)–
(d) defined in Table I. The fluid pressure (velocity) is shown as a color (vector) field and the large arrows represent the ion beam incidence
direction.

velocity fields resemble the displacement vectors obtained by
MD simulation calculated at two different snapshots [31].

Indeed, for all parameter conditions (a) through (d), a mor-
phological ripple-forming instability occurs which remains
within linear regime for tens of minutes, as in experiments
[25]. Detailed inspection of the pressure and velocity fields in
the movies allows one to trace back the origin of the instability
to the coupling between the differential exposure of initial
height perturbations to the ion beam and fluid incompressibil-
ity: fluid excess (due to slowing down) at the free interface
leads to interface corrugation due to incompressibility; for
large enough θ , such a disturbance becomes amplified and
eventually ripples form. The amplification of the most un-
stable mode of the thickness leads to a fast increase of the
global surface roughness W (t ) (root-mean-square fluctuation
of h around its mean value) with time within this linear
instability regime, the ripples being sinusoidal undulations
with a wavelength given by Eq. (8). For the sake of com-
parison, Fig. 3 shows the roughness as obtained for both,
the strongly and the weakly nonlinear equations, Eqs. (14)
and (15), for the same parameter conditions. Although some
quantitative differences exist (e.g., dynamics seem to be faster
for any given condition in g, according to the weakly nonlinear
equation) the qualitative behaviors are quite similar.

At longer times, the ripples cease to be sinusoidal, non-
linearly evolving into asymmetric cross-sections, which even-
tually reach stationary amplitudes of a few nanometers. A
steady state seems to be eventually reached in which the
global surface roughness W becomes time-independent, see
Fig. 3, as is known to happen in experiments [25]. This occurs

faster for the weakly nonlinear equation than for the strongly
nonlinear form, for any value of g, with somewhat stronger
fluctuations of W around the corresponding steady-state value
in the former case too. The (nonlinear) ripple wavelength
λ (peak-to-peak distance) reached at steady state becomes
at least ten times larger than the ripple amplitude (note the
different scales for the horizontal and vertical axes in Fig. 2),
also akin to experiments and consistent with our thin-film ap-
proximation. For fixed g, namely, fixed energy and ion/target
combination, λ decreases (while global roughness and ripple
amplitude both increase) with increasing ion incidence angle
θ , dynamics being faster both within the strongly and the
weakly nonlinear descriptions (in particular, the correspond-
ing steady state is reached earlier), again in accordance with
experimental observations [25]. Finally, dynamics are also
faster for g = g1 than for g = g2 for comparable values of the
angle of incidence, cf. the movies provided in Ref. [65] and
note the time values indicated in Fig. 2. This is due to the
fact that θc is an increasing function of g, see Fig. 1(b), hence
the values of θ employed for these simulations at higher g are
closer to the corresponding critical angle, for which dynamics
are slower as explained above, and consistent (as is the faster
dynamics with increasing θ for a fixed value of g) with critical
slowing down at a type-II pattern-forming transition [2].

In all our simulations, ripple motion is readily seen to take
place along the substrate plane. Both within the linear and
the nonlinear time regimes, this motion proceeds as described
by Eq. (12), specifically in the direction implied by the sign
of V in Eq. (11): upstream for g = g1 and downstream for
g = g2, see Fig. 1(b). Remarkably, nonlinear effects do not
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FIG. 3. Temporal evolution of the surface global roughness W (t ), according to the 1D strongly nonlinear equation, Eq. (14) (left) and to
its 1D weakly nonlinear form, Eq. (15) (right). Black circles, orange squares, green diamonds, and violet triangles represent, respectively, the
parameter conditions (a)–(d) specified in Table I.

seem to substantially change such a prediction on the direction
of motion, which in principle has been derived from the
linear analysis in Sec. III. This remains the case even for
parameter conditions with g = g3, for which the direction of
ripple motion can change with the incidence angle θ . The
full dynamics of the 1D irradiated layer for such a value
of g is shown in movies 1D_movie_50deg_Gb=−0.06 and
1D_movie_70deg_Gb=−0.06 provided in Ref. [65] obtained
from numerical simulations of Eq. (14) and corresponding
to g = g3 under θ = 50◦ and 70◦, respectively [conditions
(e) and (f) in Table I]. Sample fixed-time frames of these
movies are shown in Fig. 4 for relatively long times within the
nonlinear regime. When comparing conditions (e) and (f) in
Table I, all qualitative considerations regarding wavelength
and roughness behavior still apply, analogous to the compar-
isons among cases (a) through (d) for fixed g. The most strik-
ing difference is that ripples now move downstream for con-
dition (e) (θ = 50◦), while they reverse direction and become
transported upstream for a higher θ = 70◦ under condition (f).
Experimental reports on ripple motion are comparatively few
(e.g., Refs. [62,66–68], reviewed, e.g., in Refs. [25,69]), there
being even less where the direction of motion is correlated
with the dominance of nonlinear effects and/or the stress

distribution in the irradiated layer. Hence, our present obser-
vation provides a prediction towards future model validation,
especially under conditions featuring a small sputtering rate.

The x ↔ −x asymmetry of the ripple structure can be also
underscored as a further morphological property of the ripples
in the nonlinear time regime, which is also well-documented
in experiments [25]. Recall that Eqs. (1) and (14) generalize
the equations put forward by Bertozzi et al. in Refs. [51,52]
through the additional term proportional to B, absent from the
continuum model studied in these references. Still, this model
has been characterized in detail with respect to the asymmetric
nonlinear ripple shapes it can describe [51,52] depending on
parameter conditions, so that it provides a relevant reference
case for our present continuum model. The context for the
comparison is that of shock formation, which is a natural one
in the presence of a Burgers nonlinearity. Indeed, the inviscid
Burgers equation is well known to lead to shock formation
[70]. Since in our case a1 > 0, this would imply a shock
breaking towards positive x. Neglecting the B term in Eq. (1),
this is expected to still be the case as long as g > 0 [71], which
agrees with the asymmetry found numerically for the ripples
corresponding to conditions (c) and (d) in Table I, see Fig. 2.
Considering g < 0 opens the possibility to the occurrence of

FIG. 4. Irradiated layer according to the 1D strongly nonlinear equation, Eq. (14) (no y dependence) for the parameter conditions (e) on
the left and (f) on the right defined in Table I. The fluid pressure (velocity) is shown as a color (vector) field and the large arrows represent the
ion beam incidence direction.
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FIG. 5. Free interface (top view) according to the 2D strongly nonlinear equation, Eq. (1), at t = 425 min for the cases (a)–(d) defined in
Table I. The insets display the corresponding slope distributions. The bottom images show horizontal transverse cuts along the projection of
the ion beam direction (x axis) in the middle of the corresponding 2D topography.

less standard, so-called undercompressive shocks in which
information travels away from the shock [51,52,71,72], in
contrast with classical, so-called compressive, shocks [70].
In our simulations of Eq. (14) for g < 0 with |Gb| 
 1, we
can note that the asymmetry of the ripple structure reverses
with respect to the g > 0 case, see conditions (a) and (b) in
Fig. 2, while roughly symmetric ripples are found for much
smaller values of |Gb|, see Fig. 4 for conditions (e) and (f)
in Table I. Undercompressive shocks have been previously
reported in the description of IBS systems via kinetic (rather
than hydrodynamic) continuum models [30,73–77]. The con-
nection between such undercompressive shocks and sawtooth
morphologies has been specifically addressed in Refs. [30,76],
where nonlinear effects have been demonstrated to be able
to reverse the direction of ripple motion under suitable
conditions.

C. Two-dimensional systems

Beyond 1D systems, nonlinear continuum models such as
Eqs. (1) and (3) are able to describe the dynamics of the
irradiated layer taking into account the full 2D dependence on
the (x, y) coordinates of the substrate plane. The qualitative
features of the pressure and velocity fields are analogous to
those seen in the previous section. Hence, here we choose
to focus on the dynamics of the free surface of the irradiated
layer. Thus, to appreciate the full 2D dependence of h(x, y, t ),
the temporal evolution of the surface morphology for a 512 ×
512 nm2 system is shown in the movies available in Ref. [65],
whose naming code follows the one employed for the 1D
movies. Figure 5 provides four top-view fixed-time frames
from these movies at relatively long times within the nonlinear
regime, corresponding to the parameter values (a) through
(d) indicated in Table I. For the sake of comparison, Fig. 6
displays analogous results from numerical simulations of the
2D weakly nonlinear equation, Eq. (3).

As expected for many KS-related systems [36,78] and as
seen in experiments [25], the ripples become increasingly dis-
ordered with continuing irradiation, this process being faster
for larger θ at fixed g. Such a behavior can be quantitatively

assessed, e.g., via the slope distributions shown in the insets
of Fig. 5, which also speak of the asymmetry of the nonlinear
ripple cross-sections, already noted in Fig. 2. Specifically,
these slope distributions are 2D plots in which the independent
variables are the space derivatives of the layer thickness, mx =
hx and my = hy, along the two coordinate directions on the 2D
topographical image; the dependent variable is the fraction of
points (using a logarithmic scale) of this topography at which
the slopes happen to equal the pair of values (mx, my); the data
processing was performed using GWYDDION 2.44 software
[79]. The fraction of points with slopes (mx = 0, my = 0)
is depicted in the center of each inset in Fig. 5. Thus the
streamwise asymmetric shape of the ripples in the nonlinear
time regime, already seen in the 1D simulations, can be quan-
titatively assessed for the full 2D topographies as well. Since
the positive slopes along the streamwise direction (x axis)
reach larger absolute values in Figs. 5(a) and 5(b), the dis-
tributions of the positive slopes along this direction (graphed
in the right sides of the corresponding insets) are wider than
the distributions for the negative slopes (graphed in the left
sides of the insets). The opposite behavior of larger absolute
values for negative slopes is found for the morphologies of
Figs. 5(c) and 5(d). These differences increase with time from
the more symmetric topographies during the linear regime to
the more asymmetric morphologies in the saturated nonlinear
stages. Regarding the slopes along the cross-stream direction
(y axis), the slope distributions are wider for more disordered
morphologies such as Fig. 5(b) than for better arranged ripples
as in Fig. 5(c).

Completely analogous results on the 2D morphological dy-
namics are provided by numerical simulations of the weakly
nonlinear equation Eq. (3), see Fig. 6. The ripple asymmetry
and the level of disorder along the cross-stream direction are
very similar to those predicted by Eq. (1) when the same
parameter values are employed. Possibly the main difference
between both continuum models is the somewhat faster dy-
namics for the weakly nonlinear equation, which was already
noted for the 1D case, see Fig. 3. This feature can be likewise
noticed in Fig. 7, where the temporal evolution of the height
global roughness W (t ) for Eqs. (1) and (3) are graphed for
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FIG. 6. Free interface (top view) according to the 2D weakly nonlinear equation, Eq. (3), at t = 425 min for the cases (a)–(d) as indicated
in Table I. The insets display the corresponding slope distributions. The bottom images show the corresponding horizontal transverse cuts
along the projection of the ion beam direction (x axis) in the middle of the topography.

the same parameter values. This figure again indicates faster
dynamics for larger θ values at a fixed value of g. The exact ex-
ponential function which is graphed as a reference [recall that
W (t ) grows exponentially with time within the linear regime]
suggests fast saturation of the roughness to a steady-state
value once nonlinear effects set in, both within the strongly
and the weakly nonlinear descriptions. However, fluctuations
around the steady state value are substantially stronger in 2D
than in 1D, specially in the case of the strongly nonlinear
equation, possibly due to the progressive disordering which
takes place along the y direction, compare Figs. 3 and 7 from
this point of view.

This interpretation is substantiated more quantitatively
by Fig. 8, which shows the power spectral density (PSD)
along the x and y directions for different values of time,
as obtained e.g., from numerical simulations of Eq. (1) for
parameter condition (a) in Table I (analogous conclusions
can be drawn for other parameter conditions, not shown).
Here, we define the 2D height PSD as PSD(q, t ) = |ĥ(q, t )|2,

where ĥ(q, t ) is the space Fourier transform of h(x, y, t ) −
h̄(t ), bar denotes space average. The PSDs shown in Fig. 8
are for 1D cuts of the 2D morphologies; equivalently, they
can be considered as the wave-vector integrals of PSD(q, t )
along the qy or qx axes, PSDx(qx, t ) = ∫

PSD(q, t ) dqy and
PSDy(qy, t ) = ∫

PSD(q, t ) dqx , respectively. The position, q∗,
of the main local maximum of PSDx by the end of the linear
regime (t = 92 min) corresponds to the (inverse of the) ripple
wavelength, which is seen to remain basically unchanged
for longer irradiation times. The existence of the secondary
maxima in PSDx moreover attests to a rather well-defined
ripple form along the x direction. However, the relative value
PSDx(q∗, t )/PSDx(qx, t ) decreases with increasing time for
qx �= q∗, as a reflection of the increasing disorder in the ripple
arrangement along the x direction seen in Fig. 6. Along the
transverse y direction no such characteristic relative maxi-
mum of PSDy exists; rather, a value of qy does separate q-
independent from q-dependent behavior in PSDy. While such
a value seems to change from the linear (compare t = 92 with

FIG. 7. Temporal evolution of the surface global roughness, W (t ), according to the 2D strongly nonlinear equation, Eq. (1), (left figure)
and to the 2D weakly nonlinear equation Eq. (3) (right figure). Black circles, orange squares, green diamonds, and violet triangles represent,
respectively, the cases (a)–(d) in Table I. As a reference, the dashed red line in the left figure graphs the exponential growth given by the
function 0.007 e0.038t .
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FIG. 8. Height power spectral density (PSD) of the free interface according to the 2D strongly nonlinear equation Eq. (1) at different times
along the streamwise direction, x axis, (left figure) and cross-stream direction, y axis, (right figure), for parameter condition (a) in Table I.

t = 230 min) to the nonlinear regime, it seems to saturate
within the latter (compare t = 230 with t = 425 min). At any
rate, the value of PSDy increases substantially for all qy from
the linear to the saturation regime, at which PSDy values are
comparable to, or even larger than, PSDx values, speaking of
the substantial disorder which also occurs in the morphology
along the y direction. Globally, the nonlinear ripple dynamics
described by our continuum model corresponds to a progres-
sive disordering of the pattern in the two substrate directions,
which takes place at a rate that depends on the value of the
incidence angle, much as seen in impurity-free experiments
[25]. From the point of view of this description and within
the physical assumptions that we have made, patterns with
improved spatial ordering are to be sought for under more
elaborate irradiation settings, such as, e.g., cases including
impurity co-deposition, the application of multiple beams
sequentially or simultaneously, and/or employing pretreated
targets, see an overview in Ref. [25].

V. FURTHER DISCUSSION AND CONCLUSIONS

Summarizing our results thus far, we have derived a non-
linear continuum model of surface dynamics for solid tar-
gets which either are or become amorphous under ion-beam
bombardment at low-to-medium ion energies. Our model
builds upon the assumption that this surface nanopatterning
method is largely driven by the relaxation of the residual
stress induced by irradiation, via Newtonian viscous flow of
the topmost surface layer of the target, whose thickness is
of the order of the ion range. In order to unambiguously assess
the implications of this assumption for the full evolution of the
system, we have neglected the occurrence of erosion (sput-
tering), a working condition which has been demonstrated
experimentally very recently in the context of nanoripple
formation [31]. Still, according to these experimental results,
a negligible sputtering yield does not preclude the ensuing
surface morphological behavior from sharing many qualita-
tive features with what is seen under non-negligible sputtering
conditions [25]. Moreover, even in the latter case, the fact that
the observed critical angles for pattern formation are nonzero
suggests that onset for ripple formation is due to physical
mechanisms other than sputtering.

Previous theoretical continuum models addressing the
same class of experiments as we presently do, have been
restricted to a number of partial issues and to linear stability
analysis. In contrast, a distinctive feature of our present ap-
proach is the attempt to describe the full time evolution of the
system—from the early times at which the ripple instability
sets in to the long times at which nonlinear properties un-
fold, such as, e.g., asymmetric ripple shapes—within a single
framework, provided by a nonlinear evolution equation for the
thickness of the irradiated layer. An important requirement
is that such a model reproduces the main qualitative features
of the onset of ripple formation, which have been established
experimentally [25] and which were already amenable to prior
theoretical works dealing with the linear regime of evolution.
Such features, which are indeed reproduced by Eq. (1), in-
clude the following: (1) a type-II morphological transition
between a flat and an anisotropic rippled surface that occurs at
a nonzero critical angle θc �= 0; (2) a linear dispersion relation
consistent with the KS polynomial structure ω ∼ q2 − q4;
(3) nonuniversal values (i.e., values which can change with ion
energy and/or ion-target species combination) of θc and of the
linear ripple wavelength λ; (4) a universal (i.e., independent
of energy and atomic species) value of the critical expo-
nent which characterizes the divergence of λ(θ ) for θ � θc;
(5) faster dynamics for increasing θ > θc; and (6) a nontrivial
dependence of the velocity of ripple transport with irradiation
conditions.

To date, the ingredients and parameters entering our the-
oretical model, such as the space variation of the residual
stress distribution, and the ion-induced viscosity and surface
tension, are only known with large experimental and theoret-
ical uncertainties, as are their dependencies with irradiation
conditions, like ion energy and atomic species. Hence, the
agreement between our present model and experiments re-
mains qualitative. Nevertheless, our results provide us with
parsimonious explanations for certain experimental behaviors.
Take, for instance, the lack of universality in the value of
θc, which in our model originates in its dependence with the
dimensionless parameter g, recall Eq. (7). This fact provides
a clue to understand the disparity of critical angles reported
in the literature. In particular, it seems that low energy (E <

1 keV) Ar+ irradiation of Si targets leads to a robust value
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around 45◦ [24,42,45,80]. According to Fig. 1(b), this fact
suggests that g 
 0, physically implying that the bulk stress is
quite homogeneous in these experiments. For higher energies
[81], θc seems to be around 40◦, which would predict a
negative value of g. This implies that stress changes with
depth, perhaps a consequence of the existence of Ar bubbles
of different diameters within the amorphous layer. On the
other hand, by increasing the ion mass (Ar+ to Kr+ to Xe+), θc

also increases [24,82,83], suggesting that bulk effects become
more relevant as the ion mass increases. In general, this
type of trends in experimental parameters are suggestive of
model properties (e.g., signs and absolute values of g) to
be confirmed by, e.g., future MD simulations. In this con-
nection, recall the BH-like scenario we described above for
g < −2.25, to be realized perhaps under different irradiation
conditions, like, e.g., concurrent impurity deposition [24,25].

On the other hand, the available order-of-magnitude esti-
mates for our model parameters, once fed into our numerical
simulations, do yield patterns with typical time and length
scales that compare quite favorably with experimental re-
sults, as shown in Figs. 2 through 8. These figures even
compare well (qualitatively and semiquantitatively, in the
present sense) with specific experimental topographies at long
fluences, like, e.g., ripples produced on glass [62] or on a
Cd2Nb2O7 pyrochlore single crystal [67] under oblique angle
bombarment by 30 keV Ga+ ions. However, the predictive
power of our model is still far from being able to compute the
precise values of g for such experiments and then producing
images which accurately match the experimental topogra-
phies.

Another virtue of our present (fluid dynamical) approach
is to provide us with detailed information on the space dis-
tribution and time evolution of additional relevant physical
quantities within the irradiated layer, namely, the pressure and
velocity fields. While these are amenable to comparison with
estimates/measurements from more atomistic modeling like
MD simulations, which can eventually enable model refine-
ments, they are also instrumental to elucidate the physical
nature of the linear morphological instability, as the interplay
between differential driving and fluid incompressibility. Ac-
tually, they also allow us to make explicit the complex near-
surface dynamics which eventually unfolds into nonlinear
surface properties. Among those with ample experimental
basis [10,25] which are accounted for by the long-time evo-
lution of Eq. (1), we can quote (1) amplitude stabilization
at realistic times; (2) (lack of) ripple wavelength coarsening;
(3) small [∼O(10−1)] amplitude-to-wavelength ratios; (4)
asymmetric ripple shapes; (5) nontrivial ripple motion (e.g.,
direction reversal), contingent upon experimental conditions;
(6) ripple disordering along the two substrate directions; and
(7) enhanced ripple disorder for increasing θ > θc.

Some of these properties actually call for more detailed
experimental information which does not seem to be currently
available, and which would be interesting as further validation
of our present model. For instance, the occurrence of the crit-
ical angle θv for reversal of ripple motion, and the correlation
between the asymmetry of ripple cross sections and direction
of motion in the nonlinear stages of evolution.

Still, a number of nonlinear properties which have been
also reported experimentally [10,25] do not seem to be

captured by Eq. (1), including, e.g., (1) ripple coarsening,
(2) kinetic roughening, and (3) secondary pattern features
beyond main symmetry and wavelength.

There are many potential sources for these discrepancies,
which range from methodological to physical. (i) Even if
our continuum models are adapted to probing large scale
properties, our simulations of Eqs. (1) or (3) are still affected
by computational limitations to accessible physical times and
system sizes. (ii) Even restricted to a fluid flow description, a
number of assumptions can be relaxed and improved upon.
Thus one can consider improved (more realistic) boundary
conditions at the i/u interface, the space distribution of stress
can be more complex than that described by a linear poly-
nomial, and the constitutive relation between ion-induced
strain and stress can be generalized beyond the Newtonian
fluid approximation. (iii) A number of important physical
mechanisms need to be eventually incorporated, most notably
erosion (sputtering) [58,84] and ion implantation [85], whose
relative contributions to the morphological stability of the
surface can compete in nontrivial ways. In principle, we do not
expect substantial qualitative changes in the system behavior
from sources of types (i) and (ii); technically, the form of
the terms contributing to, e.g., the weakly nonlinear form
of the evolution equation is quite robust to detailed changes
in the form of, e.g., the space distribution of stress, which
are relatively minor to change the system behavior close to
pattern onset. Still, explicit confirmation seems in order, es-
pecially working under far-from-equilibrium conditions as in
our present context. Sources of type (iii) for different behavior
do also require explicit formulation and study, and also remain
as a topic for future work, hopefully leading eventually to
accurate predictions on system properties like θc and θv , which
correctly reflect the specific irradiation conditions.

Last but not least, note that, while the morphologies de-
scribed by Eq. (1) do reproduce quite closely IBS experiments
on, e.g., glass [62,66] or Cd2Nb2O7 pyrochlore [67], they also
strongly resemble images of macroscopic fluid films flowing
down an incline [36,86]. Although the length scales of the
two problems differ by a 105 factor, timescales are notably
similar. This speaks of the huge timescale separation between
microscopic dynamics and collective behavior in IBS, at the
core of challenges to its theoretical description. In general,
the links between Eqs. (1) or (3) and nonlinear descriptions of
classic problems like fluid flow down an inclined plane attest
to the great universality that exists in the self-organization of
matter. Moreover, the large body of knowledge on nonlinear
behavior that has been developed for the macroscopic system
[36–39,53] may partially carry over to a nanoscopic setting,
thus serving to elucidate novel phenomena in nanofluidics,
a fascinating frontier for fluid dynamics. We have discussed
one such connection in Sec. IV B, related to the dynamics of
(compressive and undercompressive) shocks, but additional
ones may be foreseen, contributing to a potentially fruitful
cross-fertilization of fields.
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APPENDIX A: ANALYTICAL DERIVATION OF THE
EVOLUTION EQUATION FOR THE FREE INTERFACE

The solid flow description of IBS [24,44–46] is based on
the fact that, as a consequence of the impact of the ions and
the subsequent release of energy within the target, residual
stress is confined to a thin superficial amorphous layer. The
incoming ions induce fluidity of such an amorphous film,
characterized by a slow time relaxation. This highly viscous
flow will be assumed to be incompressible, and therefore its
velocity v verifies

∇ · v = 0. (A1)

Since the temporal derivative is not considered in the Cauchy
equation for this noninertial viscous flow, the equation de-
scribing momentum transport reduces to [4,36]

∇ · T = 0, (A2)

where the stress tensor T = TF + Text is the sum of the
fluidic contribution TF = −p I + μ(∇v + ∇vT ) (where μ,
p, and ∇v are the viscosity, the hydrostatic pressure, and
the Jacobian matrix of v, respectively) and an external con-
tribution Text due to the strain induced by the irradiation.
Equations (A1) and (A2) provide a connection between the
fluid pressure p(r, t ) and the velocity components v(r, t ) =
(u(r, t ), v(r, t ), w(r, t )) at any point r and time t . The lab-
oratory coordinate system r = (x, y, z) is chosen so that the
z axis is perpendicular to the initially planar target and the x
axis is oriented along the projection of the incoming ions on
the surface [see Fig. 1(a) in Sec. II].

Molecular dynamics (MD) simulations have shown that
the generation of stress across the damaged amorphous layer
may be characterized by a diagonal matrix with negligible
trace [24], depending only on the distance to the free surface
[24,41]. Hence, in a coordinate system (x′, y′, z′), with z′
oriented in the opposite direction to the ion beam, we assume
the irradiation-induced stress tensor to be

Text′ = τ (z′)

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠, (A3)

where the stress amplitude τ describes the cumulative damage
induced by the irradiation. We can write this tensor in the
laboratory coordinate system considering that the incidence
angle with respect to the z axis is θ and that the rotation
matrix about the negative y axis in three-dimensional space
reads

R =

⎛⎜⎝cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎞⎟⎠. (A4)

Thus, in the laboratory coordinates, the external stress ten-
sor is Text = R Text′RT . Not much is known about the local
values of the ion-induced stress across the fluidized layer; a
simple approximation is to consider a constant value for the
derivative of τ along the ion beam direction [24]. As noted in
Sec. II, remarkably very recent MD simulations [48] of Ar+

irradiation of Si for E = 30 eV (under which the sputtering
yield is negligible [31]) seem actually consistent with such a
simple variation for τ . At any rate, working in the laboratory
reference frame and within our assumptions, the contribution
of the external stress to the Stokes equation reduces to

∇ · Text = ∇′ · RT R Text′RT = (2Gb sin θ, 0, −2Gb cos θ ),
(A5)

where we have defined

Gb ≡ dτ (z′)
dz′

∣∣∣∣
z′=h

,

assumed to be a thickness-independent constant.
The incompressibility and momentum transport relations,

Eqs. (A1) and (A2), provide four equations for the pressure
and the velocity components in the fluid bulk; in order to
have a complete description they should be supplemented with
boundary conditions at the top free surface, located at z =
h(x, y, t ), and at the amorphous-crystalline surface, located at
z = 0, see Fig. 1(a). For simplicity, we will consider a planar
interface with no-slip and no-penetration conditions. Thus, at
the bottom boundary, we have v(x, y, 0, t ) = 0. At the free
surface, the stress balance reads

T · n̂ − 2σκn̂ = 0, (A6)

where σ is the surface tension, κ is the mean curvature, and n̂
is the unit normal vector. Taking the scalar product of Eq. (A6)
with the normal and tangent vectors t̂1 and t̂2 (see Appendix B
for the explicit dependence of κ , n̂, t̂1, and t̂2 with the partial
derivatives of h), we obtain three scalar equations. These
equations connect the pressure and velocity components at the
free surface with the local surface geometry there. In addition,
a so-called kinematic boundary condition is imposed also at
the free surface, whereby the time evolution of the latter is
exclusively due to fluid motion, namely, [36]

Dz

Dt

∣∣∣∣
z=h

= w(x, y, h, t ), (A7)

which, using subscripts to denote the partial derivatives, reads

ht = −u(x, y, h) hx − v(x, y, h) hy + w(x, y, h). (A8)

In principle, we could try to integrate the previous system
of equations to obtain the temporal evolution of the pressure
and velocity fields. However, due to the disordered spatio-
temporal evolution that typically characterizes this type of
systems and their fluctuating domains, this task is not easy.
Here we follow an alternative methodology based on a gradi-
ent expansion similar to the classic long-wave theory of falling
films for low flow rates [4,36]. This will lead to a closed
evolution equation for the film thickness h(x, y, t ) and will
allow us to obtain the solution for the remaining variables
in terms of this field. Thus, instead of a system of coupled
partial differential equations, we will be able to describe this
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system using a single scalar evolution equation for the local
fluid thickness.

Based on experimental results, a characteristic length,
much larger than the average film thickness, is expected to
be amplified. This has been predicted by the linear stabil-
ity analysis of the planar solution for this type of systems
[24,44–46], for which the characteristic unstable wavelength
is proportional to σ 1/2. In the following, we will consider a
dimensionless small parameter ε, defined through σ = αε−2,
where α is a proportionality constant. Hence, the occurrence
of a large characteristic length scale in the system (of the order
of ε−1) makes it natural to introduce “slow” spatial variables
on the target plane, X = εx and Y = εy, and a “slow” time
associated with the propagation of the characteristic scale,
T = εt [37,49].

We will construct the solution to the fluid flow problem in
the form of a series in powers of ε, as p = ∑∞

n=0 εn pn(X,Y, z)
and v = ∑∞

n=0 εnvn(X,Y, z). It should be noted that
time does not appear explicitly in the expansion of p and v
since these fields are adiabatically slaved to the shape of the
free interface, h. Namely, the pressure and the velocity evolve
in a timescale which is much faster than the one associated
with non-negligible variations in the film thickness. This is
a consequence of the slow relaxation time of the system
that motivates the neglect of inertial terms in comparison to
viscous forces [36].

Thus, substituting the power-series expansion of p and v in
Eqs. (A1) and (A2), we obtain the following system at zeroth
order in ε:

μ
∂2u0

∂z2
+ 2Gb sin(θ ) = 0, (A9)

μ
∂2v0

∂z2
= 0, (A10)

−∂ p0

∂z
+ 2μ

∂2w0

∂z2
− 2Gb cos (θ ) = 0, (A11)

∂w0

∂z
= 0. (A12)

The no-slip boundary condition at the bottom interface reads
v0(X, Y, 0) = 0, and the stress balance at the free surface
(z = h) reduces to

0 = μ
∂u0

∂z

∣∣∣∣
z=h

− 3

2
Gs sin(2θ ), (A13)

0 = μ
∂v0

∂z

∣∣∣∣
z=h

, (A14)

0 = 2μ
∂w0

∂z

∣∣∣∣
z=h

− p0(X, Y, h)

+ 3

2
Gs

(
cos(2θ ) + 1

3

)
− α

∂2h

∂X 2 − α
∂2h

∂Y 2 , (A15)

where

Gs ≡ −τ (z = h). (A16)

The solution of Eqs. (A9)–(A15) for the pressure and the
streamwise velocity component are, respectively, linear and
parabolic profiles in terms of the vertical coordinate. The

spanwise and cross-stream components of the velocity field
are v0 = w0 = 0. Specifically, p0 and u0 read

p0 = 3Gs cos2(θ ) − Gs + 2Gb(h − z) cos(θ )

−α
∂2h

∂X 2 − α
∂2h

∂Y 2 , (A17)

u0 = 1

2μ
[3Gs sin(2θ )z − 2Gb sin(θ )(2h z − z2)]. (A18)

Hence, we see that a negative value of τ at the free surface
z = h (i.e. Gs > 0), increases the pressure locally there. For
example, for normal incidence (θ = 0◦) on a flat surface, p0 =
2Gs. In general this pressure value also depends on the local
curvatures of the free surface and tends to decrease (increase)
for convex (concave) surfaces.

At first order in our ε expansion, the bulk equations
reduce to

μ
∂2u1

∂z2
+ α

∂3h

∂X 3 + α
∂3h

∂Y 2∂X
− 2Gb cos(θ )

∂h

∂X
= 0,

μ
∂2v1

∂z2
+ α

∂3h

∂X 3 + α
∂3h

∂Y 2∂X
− 2Gb cos(θ )

∂h

∂X
= 0,

−∂ p1

∂z
+ 2 μ

∂2w1

∂z2
+ 2Gb sin(θ )

∂h

∂X
= 0,

μ
∂w1

∂z
+ 2Gb sin(θ )

∂h

∂X
z = 0,

with the boundary conditions v1(X,Y, 0) = 0 and

μ
∂u1

∂z

∣∣∣∣
z=h

+ 3Gs cos(2θ )
∂h

∂X
= 0,

μ
∂v1

∂z

∣∣∣∣
z=h

+ 3Gs cos2(θ )
∂h

∂Y
= 0,

2μ
∂w1

∂z

∣∣∣∣
z=h

− p1(X,Y, h) = 0.

The solution at this order is

p1 = −2Gb sin(θ )(h + z)
∂h

∂X
, (A19)

u1 = − z

μ

[
3Gs cos(2θ ) + Gb cos(θ )(2h − z)

∂h

∂X

− α
(

h − z

2

)(
∂3h

∂X 3 + ∂3h

∂Y 2∂X

)]
, (A20)

v1 = − z

μ

[
3Gs cos2(θ ) + Gb cos(θ )(2h − z)

∂h

∂Y

−α
(

h − z

2

)(
∂3h

∂Y 3 + ∂3h

∂X 2∂Y

)]
, (A21)

w1 = − z2

μ
Gb sin(θ )

∂h

∂X
. (A22)

Note that, as anticipated, the temporal dependence of the
pressure and the velocity comes through the evolution of the
free interface h(x, y, t ).

The previous results allow us to write the solution for p and
v to first order as p = p0 + εp1 and v = v0 + εv1. However,
since the expansion for the incompressibility condition to
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order ε2 reads

∂w0

∂z
+ε

(
∂u0

∂X
+ ∂v0

∂Y
+ ∂w1

∂z

)
+ε2

(
∂u1

∂X
+ ∂v1

∂Y
+ ∂w2

∂z

)
= 0,

(A23)
we still should obtain w2 to ensure mass conservation for the
fluid at the present order. Repeating the previous methodol-
ogy, we can solve the system equations at order ε2 in the
expansion to find p2 and v2 as functions of h and its spatial
derivatives. For the vertical velocity component, we obtain

w2 = − z2

2μ

[(
2Gb cos(θ )

(
−h + z

3

)
− 3Gs cos(2θ )

) ∂2h

∂X 2

+
(

2Gb cos(θ )
(
−h + z

3

)
− 3Gs cos2(θ )

) ∂2h

∂Y 2

− 2Gb cos(θ )

((
∂h

∂X

)2

+
(

∂h

∂Y

)2
)

+ α
(

h − z

3

)(
∂4h

∂X 4
+ 2

∂4h

∂Y 2∂X 2
+ ∂4h

∂Y 4

)
+ α

∂h

∂X

(
∂3h

∂X 3
+ ∂3h

∂Y 2∂X

)
+α

∂h

∂Y

(
∂3h

∂Y 3
+ ∂3h

∂Y ∂X 2

)]
,

which indeed guarantees incompressibility as stated by
Eq. (A23).

Rescaling back to the original variables, its is straightfor-
ward to obtain the expressions for p and v as functions of
h(x, y, t ) and its partial derivatives with respect to x and y.
For instance, for the pressure, we obtain

p = p0 + εp1 = 3Gs cos2(θ ) − Gs + 2Gb(h − z) cos(θ )

− σ
∂2h

∂x2 − σ
∂2h

∂y2 − 2Gb sin(θ )(h + z)
∂h

∂x
. (A24)

If we use the obtained solution for v in the kinematic con-
dition, Eq. (A8), we finally reach a closed equation for the
temporal derivative of h as a function of its spatial derivatives.
This equation reads

ht = − a1 hhx − a2 h2hx + b1 h2hxx + 2b1 hh2
x + b2 h2hyy

+ 2b2 hh2
y + c h3(hxx + hyy) + 3c h2(h2

x + h2
y

)
− γ h3(hxxxx + 2hxxyy + hyyyy )

− 3γ h2[hx(hxxx + hxyy) + hy(hxxy + hyyy)], (A25)

with

a1 = 3Gs sin(2θ )

2μ
, a2 = 2Gb sin(θ )

μ
, (A26)

b1 = 3Gs cos(2θ )

2μ
, b2 = 3Gs cos2(θ )

2μ
, (A27)

c = 2Gb cos(θ )

3μ
, γ = σ

3μ
. (A28)

Equation (A25) can be written in a more compact form using
differential operators, finally becoming Eq. (1) in Sec. II.

An alternative way to obtain Eq. (A25) is by integrating
the incompressibility condition across the fluidic layer (from
the bottom, z = 0, up to the free surface, z = h) and using

Leibniz’s integral rule. Thus we have

∂h

∂t
= − ∂

∂x

∫ h

0
u dz − ∂

∂y

∫ h

0
v dz. (A29)

Using the solutions for u and v, we get∫ h

0
u dz = a1/2 h2 + a2/3 h3 − b1 h2hx − c h3hx

+γ h3(hxxx + hxyy) ≡ Jx,∫ h

0
v dz = −b2 h2hy − c h3hy + γ h3(hxxy + hyyy) ≡ Jy,

allowing us to rewite Eq. (A25) in the conserved form ht =
−∇ · J, using the current J = (Jx, Jy ).

As indicated in Sec. II, one can perform a weakly nonlinear
expansion of Eq. (1) around a uniform-thickness solution h0 to
obtain an evolution equation with lower-order nonlinearities
for the perturbation h̃(x, y, t ). This can be particularly appro-
priate to describe the free interface in a regime with waves
of small amplitude. Substituting h(x, y, t ) = h0 + ε h̃(x, y, t )
into Eq. (A25) [or in its equivalent form, Eq. (1)], considering
the slow spatial scales and expanding up to O(ε4), one obtains
Eq. (3), which can also be written in a conserved form as
h̃t = −∇ · J̃ with

J̃ =
(

ã1h̃ + ã2h̃2 + a2

3
h̃3, 0

)
− (

h2
0B − ch3

0I
)∇h̃

− h̃ B̃ ∇h̃ + γ h3
0 ∇∇2h̃ + 3γ h2

0 h̃ ∇∇2h̃, (A30)

where ã1, ã2, B, and B̃ are defined in Sec. II of the main text.
Finally, let us recall that, much as in the macroscopic

problem of a fluid layer flowing down an inclined plane
[36], in principle, our continuum model, Eq. (A25), can be
systematically improved by considering higher-order terms in
our power expansion. This unavoidably also leads to more
involved differential equations. For instance, the next order
in our present case (to simplify the expression, we just quote
the result for one-dimensional substrates) yields the following
additional terms on the right-hand side of Eq. (14):

− 2

3μ
h2Gb sin(θ )

(
3h2 hxxx + 26h hx hxx + 21h3

x

)
,

which implies a conserved current which includes the addi-
tional term

Jhigher-order = 2

3μ
Gb sin(θ )

(
21

3
h3 h2

x + 3h4hxx

)
.

Sufficiently close to onset of pattern formation, these nonlin-
ear higher-order terms, which in principle induce additional
contributions in, e.g., the imaginary part of the linear disper-
sion relation, are expected to be quantitatively less relevant
than their lower-order counterparts [36]. Hence, in the main
text we rather focus on the nonlinear dynamics which is
already nontrivially described by Eqs. (1) and (14) for 2D and
1D substrates, respectively.
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APPENDIX B: EXPLICIT EXPRESSIONS FOR THE MEAN
CURVATURE, NORMAL, AND TANGENT VECTORS

For the sake of the reader’s convenience, we quote in this
Appendix some standard formulas from vector calculus which
have been employed in Appendix A. For these and related
expressions, see, e.g., Ref. [36].

κ =
∂2h
∂x2

(
1 + (

∂h
∂y

)2) + ∂2h
∂y2

(
1 + (

∂h
∂x

)2) − 2 ∂h
∂x

∂h
∂y

∂2h
∂y∂x

2
(
1 + (

∂h
∂x

)2 + (
∂h
∂y

)2)3/2 .

n̂ = −
∂h
∂x√

1 + (
∂h
∂x

)2 + (
∂h
∂y

)2
ex −

∂h
∂y√

1 + (
∂h
∂x

)2 + (
∂h
∂y

)2
ey

+ 1√
1 + (

∂h
∂x

)2 + (
∂h
∂y

)2
ez.

t̂1 = 1√
1 + (

∂h
∂x

)2
ex +

∂h
∂x√

1 + (
∂h
∂x

)2
ez.

t̂2 = 1√
1 + (

∂h
∂y

)2
ey +

∂h
∂y√

1 + (
∂h
∂y

)2
ez.

APPENDIX C: RELEVANT DIMENSIONLESS
PARAMETERS

In this Appendix, we show that Eq. (1) depends only on
two independent dimensionless parameters (θ and ĝ), which
allows us to summarize all the relevant information of the

model in the two-dimensional morphological diagram shown
in Fig. 1(b).

We can write the height, substrate coordinates, and time in
characteristic units as

h = ĥ0 ĥ, x = ĥ0 x̂, y = ĥ0 ŷ, t = t̂0 t̂, (C1)

where ĥ0 = 2σ/(9Gs) and t̂0 = 2μ/(3Gs) have dimensions of
length and time, respectively, and ĥ, x̂, ŷ, and t̂ are dimension-
less. Under this transformation, Eq. (1) takes the following
dimensionless form:

ĥt̂ = − sin(2θ ) ĥ ĥx̂ − 4
3 ĝ sin(θ ) ĥ2 ĥx̂ + ∇ · (ĥ2 B̂ ∇ĥ)

+ 4
9 ĝ∇ · (ĥ3 ∇ĥ) − ∇ · (ĥ3 ∇∇2ĥ), (C2)

where derivative operators are in the rescaled substrate coor-
dinates,

B̂ ≡
[

cos(2θ ) 0

0 cos2(θ )

]
, (C3)

and ĝ = Gbĥ0/Gs is the dimensionless stress ratio defined
in Eq. (4). Thus out of the five parameters which initially
enter Eq. (1), namely, θ , Gs, Gb, μ, and σ , the rescalings
made in (C1) yield the differential equation, Eq. (C2), which
only depends on the incidence angle θ and one dimensionless
combination ĝ, whose magnitude and sign determine the
full dynamics described by the continuum model. A similar
conclusion applies in the case of the weakly nonlinear model,
Eq. (3).
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