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In this work, we study the full set of eigenstates of a px + ipy topological superconductor coupled to a particle
bath, which can be described in terms of an integrable Hamiltonian of the Richardson-Gaudin class. The results
derived in this work also characterize the behavior of an anisotropic XXZ central spin model in an external
magnetic field since both types of Hamiltonian are known to share the exact same conserved quantities, making
them formally equivalent. We show how by ramping the coupling strength (or equivalently the magnetic field
acting in the z-direction on the central spin), each individual eigenstate undergoes a sequence of gain/loss of
excitations when crossing the specific values known as Read-Green points. These features are shown to be
completely predictable for every one of the 2N eigenstates, using only two integers easily obtainable from the
zero-coupling configuration, which defines the eigenstate in question. These results provide a complete map of
the particle-number sectors (superconductor) or magnetization sectors (central spin) involved in the large number
of level crossings that occur in these systems at the Read-Green points. It further allows us to define quenching
protocols that could create states with remarkably large excitation-number fluctuations.
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I. INTRODUCTION

Since its first explanation by Bardeen, Cooper, and Schrief-
fer in 1957 [1], the theoretical description of superconducting
systems has been vastly enriched by going beyond their orig-
inal mean-field treatment of s-wave pairing interactions. An
exact solution to the reduced s-wave BCS pairing Hamiltonian
was found by Richardson in 1963 [2,3], a result that saw
an important surge in interest in the early 2000s [4,5] in
the theoretical description of experiments on superconducting
nanograins [6–8].

It was also around that time that the s-wave pairing model
was explicitly shown, in 1997, to be integrable when Cam-
biaggio et al. [9] explicitly found the set of commuting
conserved operators defining its quantum integrability. Using
an Anderson pseudospin representation, this set of commuting
operators then makes the s-wave pairing problem equivalent to
an isotropic XXX Gaudin magnet [10–12].

These ideas have then been built upon to build integrable
pairing Hamiltonians from anisotropic Richardson-Gaudin
models [13–15]. Integrable BCS pairing models with px +
ipy symmetry have then been studied beyond the common
mean-field approximation using the massive simplifications
that integrability and the Bethe ansatz solution can provide
[16–20]. Such models attract a strong interest since they can
exhibit topological superconductivity [21–23] whose occur-
rence could possibly be exploited in quantum computational
applications [24–26].

A recent result, upon which this work builds, is the obser-
vation by Claeys et al. [27]. By coupling weakly such a p + ip
superconducting system to an external bath of particles, we
break the U(1) symmetry, which enforces the conservation of
the number of Cooper pairs. In doing so, the ground state of
the system, when raising the coupling constant g, will undergo

a series of steps by systematically gaining a single Cooper
pair when the coupling goes through specific values g = gi,
dubbed Read-Green points. The resulting ground state at, and
around, these points then becomes a coherent superposition
of M and M + 1 Cooper pair states that exhibits pair number
fluctuations. This is made possible by the weak coupling to the
bath, which turns into avoided crossings, the level crossings
between number-conserving sectors that would occur at these
specific couplings in a closed (number-conserving) system.

In this work, a similar study is carried out for every
eigenstate of the system in order to characterize the behavior
of the full set of eigenstates across those Read-Green points.
We first show explicitly that a steplike structure occurs over
the (almost) complete Hilbert space and that it can be richer
for the excited states than the one the ground state under-
goes. Indeed, excited states can show both gains and losses
of excitations when g goes across a Read-Green point, and
these gains and losses can involve much more than a single
excitation. Secondly, we demonstrate that the sequence of
gains and losses can be completely predicted using only two,
state-specific, integers, which are then sufficient to know the
complete profile of excitation number that each individual
eigenstate goes through as the coupling is varied. Finally,
through this full understanding of the involved (avoided)
crossings, we discuss a quenching protocol designed to create
specific states, which should allow remarkably large number
fluctuations by hybridizing two sectors at filling factors ρ ≈ 0
and ρ ≈ 1.

II. RICHARDSON-GAUDIN MODELS

The integrability of the p + ip pairing models is funda-
mentally linked to the fact that they can be built as a linear
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combination of the set of N mutually commuting operators
given, in Anderson pseudospin representation, by

R̃i = 1

g
σ z

i +
N∑

j �=i

[
Xi j

(
σ x

i σ x
j + σ

y
i σ

y
j

) + Zi jσ
z
i σ z

j

]
. (1)

Here i = 1, 2, . . . , N labels one of the possible momenta ki

at which one can either find a Cooper pair or not. To ensure
the commutation rules [Ri, Rj] = 0 and consequently integra-
bility, one needs to have Xi j and Zi j parametrized as Xi j =√

(αεi+β )(αε j+β )

εi−ε j
and Zi j = αε j+β

εi−ε j
for arbitrary parameters α, β

and (ε1, . . . , εN ) [12,28,29].
Each of these individual conserved charges defines an

anisotropic (XXZ) central spin model in which i now labels
each of the N spins present. The operator R̃i then corresponds
to a Hamiltonian in which the central spin, of index i, feels a
z-oriented magnetic field (chosen here as Bz = 1

g ) and is also
anisotropically coupled to each of the other N − 1 individual
spins. The fermionic p + ip pairing Hamiltonian is obtained
through a well-documented [13,16–20,27,30,31] sum over
these conserved charges using the Cooper-pair realization of
the SU(2) algebra, which makes σ z

i = c†
ki

cki + c†
−ki

c−ki − 1,
while σ±

i creates or annihilates a Cooper pair in the (ki,−ki )
momentum state. The parameter g, which defines an external
magnetic field in the central spin models, now plays the role of
the pairing strength. Since both the pairing and the central spin
model are defined by the same set of commuting conserved
operators, they share the same eigenbasis, which allows us to
discuss the properties of the eigenstates of both models in the
exact same terms. Throughout this work, we will therefore use
the term “number of excitations” in order to describe either the
total number of Cooper pairs in a pairing model or the total
number of up-pointing spins in the central spin model.

The common eigenstates of the conserved charges (1),
and therefore of the corresponding superconducting pairing
model, are all such that they have a fixed total number of
excitations since each of the R̃i operators also commutes
with the operator M̂ = 1

2

∑N
i=1 σ z

i + 1 whose eigenvalues
0, 1, 2, . . . , N define this total number. This conservation
reflects an underlying U(1) symmetry. Adding an XY-plane
component to the magnetic field or equivalently for the super-
conductor by coupling it to an external particle bath will break
this symmetry. Remarkably, one can do so without breaking
the integrability of the system [20,27,29,31,32] as, indeed, the
following set of commuting operators:

Ri = γ√
αεi + β

σ x
i + λ√

αεi + β
σ

y
i + 1

g
σ z
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+
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]
, (2)

still commute with one another, therefore defining an inte-
grable model allowing us to retain the major simplifications
that integrability has to offer. Our numerical study of the
model’s eigenstates makes use of recent work [28,29,33],
which has shown explicitly that the set of eigenvalues
(r1, r2, . . . , rN ) [of the operators (R1, R2, . . . , RN ) given in
Eq. (2)], which define each individual eigenstate, are also

given by the set of solutions of a simple system of N quadratic
equations:

r2
i =

∑

j �=i

	i j r j + Ki, (3)

with 	i j = 2 αε j+β

εi−ε j
and Ki = γ 2+λ2

αεi+β
+ 1

g2 + ∑N
j �=i

( 2(αεi+β )(αε j+β )+(αε j+β )2

(εi−ε j )2 ) [33]. The knowledge of the
eigenvalues (rn

1 , . . . , rn
N ) associated with the eigenstate of

index n, |ψn〉, in conjunction with the quadratic equation they
obey, gives simple numerical access to the expectation values
〈ψn|σα

i |ψn〉 of every local spin operator i = 1, . . . , N , in any
direction α = x, y, z, by direct use of the Hellmann-Feynman
theorem [28].

At any given value of g, i.e., of the magnetic field or the
coupling strength, each individual eigenstate can be uniquely
indexed by specifying its g = 0 parent state. Indeed, each
eigenstate at finite g can be built by deforming a given
g = 0 eigenstate (parent state) by incrementing the coupling
strength in small steps. The previously found eigenvalues
[r1(g − �g) · · · rN (g − �g)] provide an approximative solu-
tion for the eigenvalues at g that, for �g small enough,
stays within a particular solution’s basin of attraction of an
iterative Newton-Raphson algorithm. By labeling the spins
in such a way that ε1 < ε2 < ε3 < · · · < εN , we will use the
notation • for an up-spin and ◦ for a down-spin so that, for
example, the parent (g = 0) eigenstate |↑1〉 ⊗ |↓2〉 ⊗ |↓3〉 ⊗
|↑4〉 ⊗ |↓5〉 · · · ⊗ |↑N 〉 will be represented as • ◦ ◦ • ◦ · · · •,
with the symbols ordered from left to right in increasing εi

order. In the central spin model described by the Hamiltonian
R1, it means that σ1 is considered the central spin while the
environmental spins will be numbered in decreasing order of
the magnitude of their coupling to the central spin, i.e., the
closer a spin is to the central one, the larger is its coupling and
therefore the lower is its index.

III. RESULTS

Using this g-scanning algorithm for the superconductor’s
ground state, it was shown by Claeys et al. [27] that, in the
presence of weak coupling to a bath (superconductor) or an
in-plane-magnetic field (central spin) (λ, γ �= 0), the ground
state gets deformed in such a way that it gains a single Cooper
pair every time it goes through one of the specific values of
the coupling g corresponding to the Read-Green points:

|g| = 1

N − 2M − 1
∀ M = 0, 1, . . . , N/2, (4)

at which 1
|g| corresponds to an integer in the series

1, 3, 5, . . . , N − 1. This specific steplike behavior of the total
number of excitations is shown in the upper left panel of Fig. 2
of this work, while the corresponding expectation values of
the individual spins can be seen in panel (a) of Fig. 1. If we
had λ, γ = 0, the resulting number-conserving system would
show a true energy level crossing between the M and M + 1
excitation-number sectors, while here, at and around those
Read-Green points, the ground state hybridizes between those
two sectors of the Hilbert space.

Since the quadratic equations (3) give us simple access to
the properties of individual eigenstates, the same study can

205420-2



READ-GREEN POINTS AND LEVEL CROSSINGS IN XXZ … PHYSICAL REVIEW B 100, 205420 (2019)

(a)

(b)

(c)

(d)

FIG. 1. Local expectation values 〈σ z
i 〉 and 〈σ x

i 〉 = 〈σ y
i 〉 for εi = i,

γ = λ = 0.005, α = β = 1 for a selection of eigenstates, from top to
bottom: (a) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦, (b) • • • ◦ ◦ ◦ ◦ ◦, (c) • ◦ • • ◦ ◦ ◦ ◦, and
(d) ◦ • • ◦ • ◦ ◦ ◦. The vertical lines mark the Read-Green points at
1
|g| = 7, 6, 5, 4, 3, 2, 1.

be carried out, in a short amount of computation time, for
every state in a small enough system. Here we choose to do
so for the 2N = 256 states of a system of eight spins since
it is sufficient to reach clear conclusions about the system’s
generic structure. Figure 1 presents the expectation values
of σ z

i and σ x
i of four specific eigenstates as g is varied. The

parameters of the model were chosen as εi = i, α = β = 1,
and γ = λ so that, by symmetry, σ

y
i behaves exactly as σ x

i .
The ground state presented in panel (a) shows the behavior

described previously: gaining a single excitation each time 1
|g|

goes through odd integer values. As seen in [27], at these
points a strong resonance in the in-plane magnetization 〈σx〉
is also found, indicating that individual spins are in a coherent
superposition of their two σz eigenstates: |↑i〉, |↓i〉. However,
from the other eigenstates presented, we immediately see that
they too can undergo similar restructuring when going through
those specific values of 1

|g| . We first notice that for the excited

states of the system, these can occur at every integer value 1
|g|

between 1 and N − 1, whereas the ground state only gained an
excitation at odd integer points. One also finds, by looking at
the scale of the plots, that the resonant 〈σx〉 behavior is found,
in the presented cases, only for the states of panels (a) and (d),
while panels (b) and (c) only show extremely weak in-plane
expectation values. This can be easily understood since the
full classification presented below will allow us to understand
that the eigenstate in panels (a) and (d) hybridizes between
sectors containing M and M + 1 excitations while (b) and (c)
involves two sectors that differ by more than one excitation,
sectors between which σx has no matrix element connecting
them.

To characterize these (avoided) crossings and the
excitation-number sectors that they involve, one can now
turn to the expectation value of the total excitation number
operator: 1

2

∑N
i=1 〈σ z

i + 1〉. The behavior of every one of the
2N eigenstates is presented in Fig. 2.

As one can readily see, a limited number of possible be-
haviors are exhibited. Indeed, for large subsets of eigenstates,
the plots are indistinguishable from one another, undergoing
the exact same sequence of gains and losses of excitations
as they go through the Read-Green points. For the 256 states
plotted, only 25 distinct behaviors are observed. Remarkably,
each individual state’s sequence of restructuring is entirely
predictable by specifying only two integers defined by the
structure of the g = 0 parent state, namely the number of
excitations it contains, M0, and a second integer, r (de-
fined in the next section), which can also be computed in a
simple way.

IV. CLASSIFICATION OF THE PROFILES OF
MAGNETIZATION/NUMBER OF PAIRS

As seen in Fig. 2, each g = 0 parent state defined by a given
pair (M0, r) will have the same structure as g is varied. Here,
M0 is simply the total number of up-spins (Cooper pairs) in
the parent state, and the integer r can also be found directly by
specifying the parent state’s structure. It can be calculated by
first separating the state into P contiguous blocks that contain
only “down-spins” on the left and “up-spins” on the right. For
example, a parent state given by

◦ ◦ • • • ◦ ◦ • ◦ ◦ • • • • ◦ ◦ ◦
would be grouped into P = 3 blocks:

◦ ◦ • • • ◦ ◦ • ◦ ◦ • • • • ◦ ◦ ◦ .

One then defines the excess number of “up-spins” in the
rightmost block (numbered P) as rP = max(NP

• − NP
◦ , 0),

with NP
• the number of up-spins and NP

◦ the number of
down-spins in block P. One then moves on to block P − 1
for which the number of spins up in excess is computed
after carrying over the excess number from the preceding
block so that rP−1 = max(NP−1

• + rP − NP−1
◦ , 0). The proce-

dure is kept going by computing rP−2 = max(NP−2
• + rP−1 −

NP−2
◦ , 0) until the excess number from the last block gives

us r ≡ r1 = max(N1
• + r2 − N1

◦ , 0). In the example above, the
rightmost block P = 3 leads to r3 = 2 (i.e., 4 • − 2 ◦). The
two up-spins in excess are then added to the second block
leading to r2 = 1 [i.e., 1 • + 2 • (from the third block) − 1 ◦].
This excess spin is then added to the last block finally giving
r = 2 [i.e., 3 • + 1 • (from the preceding block) − 2 ◦].
Interestingly, this specific integer r has also been shown to
give, for a given g = 0 configuration, the number of Bethe
roots that will diverge at large g for any eigenstate of the
isotropic XXX Richardson-Gaudin model [34,35].

As we now show, the specific sequence underwent by any
(M0, r) state obeys relatively simple rules. As seen in Fig. 2,
at the Read-Green points at which an (M0, r)-state sees a loss
of excitations, it will always correspond to a loss of exactly
r excitations. Gains, on the other hand, always happen by
gaining r + 1 excitations. Moreover, they are always in strict
alternation such that, moving from g = 0, the state will, at a
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FIG. 2. z-axis magnetization of the 2N eigenstates as a function of the parameter g. The N!
(N−M )!M0! eigenstates whose parent state at g = 0

has M0 excitations are plotted in different panels. For a given M0, all states with a given integer r become (nearly) indistinguishable from one
another.

specific Read-Green point gs(M0, r), first undergo a loss of
r excitation followed at the next Read-Green point by a gain
of r + 1. This sequence will be repeated until the last point at
g= 1 is reached. This statement is also true when r = 0, which
can then be understood as a “loss of zero excitation” followed
by a gain of one as was the case for the superconducting
ground state, for example.

The last detail that remains to be specified is the specific
Read-Green point gs(M0, r) at which this “loss of r/gain of
r + 1” sequence starts. It is simple to verify that for every case
in which r = M, the loss/gain sequence begins specifically at
the Mth Read-Green point (numbering them from 1 to N − 1
in order of their magnitude |g|). For a given M0 value, one
then sees that when r goes down by 1 (from M0 to M0 − 1
to M0 − 2 and so on), the start of the sequence gets shifted
to the next Read-Green point. All in all, for g < 0, any given
eigenstate whose g = 0 parent state is defined by (M0, r) will
undergo an alternation of losses of r excitations followed by
gains of r + 1 starting with a first loss at the (2M0 − r)th RG
point:

gs(M0, r) = 1

N − 2M0 + r
. (5)

Starting at half-filling M0 = N/2, the lowest possible value
of r, namely 2M0 − N , would place |gs| beyond the last

Read-Green point, and this small subset of states are the
only ones that never undergo any such restructuring, i.e., they
never have any (avoided) crossings with states from a different
sector. For clarity, the presented case, N = 8, is also detailed
in Table I.

Each of these losses/gains corresponds, in the underlying
number-conserving U(1)-symmetric models, to a level cross-
ing between two orthogonal sectors with a different number of
excitations. These results, therefore, also provide a complete
map of the magnetization/filling-factor sectors involved in
the numerous degeneracies that occur at each of these Read-
Green points in the excitation-number-conserving systems.
Using the Bethe ansatz approach in the number-conserving
case, it was demonstrated that at each Read-Green point there
exists a duality that allows pairs of degenerate eigenstates
to be created by adding, to the state in the lowest number
sector, a given precise number of zero-energy excitations
(Cooper pairs/up-pointing spins) [14,16,17]. The number of
these zero-energy excitations defines a proper winding num-
ber, which characterizes the state’s topology. In the problem
treated here, by lifting the requirement of number conserva-
tion, each individual eigenstate, when deformed through a
Read-Green point, is no longer required to have those zero-
energy pairs and to go through the corresponding change in
its topology. Indeed, states now simply lose (or gain) the
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TABLE I. The gains/losses are presented from left to right in order of increasing |g|, i.e., g = (− 1
7 ,− 1

6 , − 1
5 , − 1

4 , − 1
3 ,− 1

2 , −1, ).
The point at which the sequence (loss −r/gain r + 1) starts is underlined and bold. The grayed-out cells are those where no gain or
loss of excitations occurs since the start of the sequence would put it at a value of g beyond the last Read-Green point |g| = 1. The
white cells correspond to values of r that are impossible by construction.

corresponding number of excitations, therefore avoiding the
modification in their topological properties (topological phase
transition).

The first point at |g| = 1
N−1 involves only a single degener-

acy between the M0 = 0 state and the single (M0 = 1, r = 1)
state. However, as one progresses to Read-Green points at
higher |g|, more and more states will become pairwise degen-
erate at the Read-Green point. At the last one (|g| = 1), only a
small minority of states (grayed-out cells) are not involved in
a level crossing. While the analytical combinatorics would be
fairly involved, one can check numerically for small values
of even N that N!

[(N/2)!]2 states would not undergo a level
crossing at that point. While no Read-Green point will involve
degeneracies over the whole spectrum that would define a true
strong zero mode [36–38], the fraction of states not involved
in the “strongest” zero mode (at g = 1), namely N!

2N [(N/2)!]2 ,
becomes vanishingly small in the N → ∞ thermodynamic
limit.

For any given integrable Hamiltonian H (g) =∑N
i=1 αiRi(g), accidental degeneracies between two states

can actually occur at various values of g. Indeed, the energies
En = ∑N

i=1 αirn
i (g) and Em = ∑N

i=1 αirm
i (g) associated with

two distinct eigenstates can easily become equal. However,
the Read-Green points discussed in this work are radically
different since they correspond to the regular set of points g
at which two eigenstates can become degenerate for every
possible integrable Hamiltonian H (g) of this class.

The states involved in the (avoided) crossings at these
points become such that their full set of eigenvalues
(rn

1 , rn
2 , . . . , rn

N ) and (rm
1 , rm

2 , . . . , rm
N ) are identical. For any

pair of eigenstates (of index n and m), the non-negative

quantity Snm(g) =
√∑N

i=1 [rn
i (g) − rm

i (g)]2 can only become
zero when both complete sets of eigenvalues coincide. By
plotting this quantity for every pair of eigenstates, it is seen in
Fig. 3 that these “complete degeneracies” only happen at the
Read-Green points. One can also clearly see in the figure that
higher-coupling Read-Green points involve more and more of
these degeneracies.

While this study has, so far, only focused on the the g < 0
results, by symmetry, one can infer the corresponding g > 0
behavior. Indeed, at g > 0, the conserved charges (2) defining
these systems are identical to those at g < 0 after inversion of
the z-axis: ẑ → −ẑ. Consequently, after exchanging up-spins

and down-spins (◦ ↔ •), one can compute in the exact same
way as (M0, r) the equivalent (M+

0 , r+) for any parent state,
with M+

0 = N − Mm. Since z has been inverted, one then finds
that the sequence will begin with a gain of r+, followed by a
loss of r+ + 1 excitations with the sequence starting at the
positive gs(M+

0 , r+) Read-Green point. This is demonstrated
in Fig. 4 where three states sharing the same value of r but
different r+ are plotted over the full range of positive and
negative values of g.

Finally we verify that the proposed result holds for larger
system sizes and, since the Read-Green points have an under-
lying topological nature [14,16,39–41], that the prescription
holds true for arbitrary εi, i.e., different sets of XXZ integrable
coupling constants. Such evidence is presented in Fig. 5,
where three systems of N = 14 spins are compared for a given
eigenstate.

As with every other state, size, or set of parameters we
have numerically checked, the particular example presented
here confirms the validity of our main result, not only in its
capacity to predict the magnetization sequence but also in its
independence of the specific set of chosen coupling constants.

With the specific structure of avoided crossings now un-
derstood, it becomes possible to try to exploit it in order to

FIG. 3. “Distance” Snm(g) between the set of eigenvalues for
every pair of eigenstates. The zeros of these functions correspond
to the points where eigenstates n and m share a set of eigenvalues
that are common for every conserved charge.
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FIG. 4. Total z-axis magnetization for specific states in M0 = 5
(M+

0 = 3): ◦ ◦ • • • • •◦ (r = 3 and r+ = 2), • • • ◦ ◦ ◦ •• (r = 3
and r+ = 0), and ◦ • ◦ • • • • ◦ (r = 3 and r+ = 1). The vertical
lines marks the Read-Green point at g = ±1/n for n = 1, 2, . . . , 7.

create states with remarkably large number fluctuations in the
system, for example at g = 1, where the M = 0 and M =
N − 1 excitation sectors can hybridize. To do so, one would
first prepare an M = 0 state, which could be achieved by
cooling down the system in a strong z-axis oriented external
magnetic field ( 1

g > N, γ = λ = 0), where the fully polarized
M = 0 state is the ground state. Instantaneously quenching
down to weak magnetic field ( 1

g < 1), this initial state would
still project exclusively onto a single eigenstate of the new
eigenbasis: the M = 0 state (whose parent at g = 0 is de-
fined by M0 = N − 1 and r = N − 1). Adiabatically ramping
the z-axis magnetic field back to 1

g = 1 would then, after
turning on a perturbatively weak in-plane field, allow one
to reach the g = 1 state studied here. Since this state cor-

FIG. 5. Total magnetization for N = 14 spins, comparing the
state • • • ◦ • ◦ • • ◦ • ◦ ◦ ◦◦ for the three distributions: εi = i, εi =
i2, and εi = √

i. The three curves are indistinguishable and corre-
spond to the predicted result for N = 14, M0 = 7, r = 4, namely a
sequence of −4/ + 5 steps that starts at the −(2M0 − r) = 10th RG
point: gs = − 1

N−2M0+r = − 1
4 .

FIG. 6. The M = N − 1, r = N − 1 eigenstate (plotted here for
N = 8) whose remarkably large number fluctuations could, in princi-
ple, be observed through an instantaneous quench of the strong-field
ground state down to weak field, followed by an adiabatic ramping to
the Read-Green point at g = 1 where the state hybridizes the sectors
at filling factor ρ = 0 and the one at filling ρ = N−1

N ≈ 1.

responds to the hybridization of the M = 0 and M = N − 1
magnetization sectors, it should then show enormous mag-
netization (Cooper pair number) fluctuations as it involves
the fully down-polarized and the (nearly) fully up-polarized
sectors. Since the g = 1 point states at small excitation num-
ber M systematically hybridizes with states that contain a
large number of excitations N − M, even an imperfect ini-
tial polarization of the system would still exhibit such large
magnetization fluctuations since every sector at filling factor
M
N ≡ ρ < 1

2 has, at g = 1, an avoided crossing with the sector
at filling factor 1 − ρ.

Moreover, as one can see in Fig. 6, in the M = N − 1
sector the spin numbered 1 (which is the central spin for a
Hamiltonian given by R1) is nearly completely up-polarized
and so are the most strongly coupled environmental spins
(spin 2, spin 3, etc.).

Only the most weakly coupled environmental spins will
deviate from their spin-up state, and for a large system
size the (N − 1)-excitation eigenstate would see its single
down-spin spread out over a larger bath making the strongly
coupled spins even closer to perfect up-polarization. Conse-
quently, the two eigenstates involved in this hybridization,
|⇓1 ↓2 ↓3 ↓4 · · · ↓N 〉 and |⇑1 ↑2 ↑3 ↑4 · · · ↗N 〉, could pos-
sibly be used as the two basis states of a spin qubit. Since
the most strongly coupled environmental nuclear spins would
then be systematically prepared in a way that mimics the
central spin’s state and would then act together as a large
system coherently encoding the quantum information, such
a setup could possibly provide strong protection against the
decoherence induced by the environmental spin bath. Indeed,
in this state, the available channels to flip down the central
spin could only do so through the exchange terms, which
involve the most weakly coupled spin in the bath.
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V. CONCLUSION

In this work, we have shown how it is possible to fully
characterize the z-axis magnetization of every eigenstate of
the XXZ Richardson-Gaudin models in the presence of a
perturbatively weak X-Y plane magnetic field. These results
also describe the number of Cooper pairs in a px + ipy

topological superconductor weakly coupled to a particle bath.
By ramping up the coupling constant g or alternatively by
ramping down the z-axis magnetic field, each state undergoes
a series of gain/loss of magnetization at the specific values

known as Read-Green points. We demonstrate that each of
those steps, their amplitude, and the points at which they
occur when ramping up g can be known in advance, for each
given eigenstate, simply by knowing the spin configuration
at g = 0, which provides the two required integers (M0, r).
These results provide a complete map of which sectors are
involved in the numerous level crossings that occur in a
magnetization conserving XXZ model in a z-oriented field
and, equivalently, in a closed Cooper-pair-number-conserving
p + ip topological superconductor.
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