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Recent realizations of intrinsic, long-range magnetic orders in two-dimensional (2D) van der Waals materials
have ignited tremendous research interest. In this work, we employ the XXZ Heisenberg model and Monte Carlo
simulations to study a fundamental property of these emerging 2D magnetic materials, the Curie temperature (Tc).
By including both on-site and neighbor couplings extracted from first-principles simulations, we have calculated
Tc of monolayer chromium trihalides and Cr2Ge2Te6, which are of broad interest currently, and the simulation
results agree with available measurements. We also clarify the roles played by anisotropic and isotropic
interactions in deciding Tc of magnetic orders. Particularly, we find a universal, linear dependence between Tc

and magnetic interactions within the parameter space of realistic materials. With this linear dependence, we can
predict Tc of general 2D lattice structures, omitting the Monte Carlo simulations. Compared with the widely
used Ising model, mean-field theory, and spin-wave theory, this work provides a convenient and quantitative
estimation of Tc, giving hope to speeding up the search for novel 2D materials with higher Curie temperatures.
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I. INTRODUCTION

Long-range magnetic orders had been believed to hardly
survive in two-dimensional (2D) systems due to the enhanced
thermal fluctuations that make spontaneously symmetry-
breaking orders unsustainable [1,2]. In the 1960s, the Mermin-
Wagner (MW) theorem showed that such symmetry-breaking
order states are only ruled out if considering continuous
rotational symmetries and short-range interactions, indicating
the existence of 2D magnetism with anisotropic interactions
[3–5]. The recent discoveries of 2D magnetic crystals con-
firmed that magnetic anisotropy plays a crucial role in real-
izing 2D ferromagnetism [5–8]. With the help of magnetic
anisotropy, the long-range ferromagnetic (FM) order could
be established in 2D structures by opening a magnon gap
to resist the thermal agitation [7,9–11]. In early 2017, the
ferromagnetic (FM) order in pristine 2D crystals was observed
in both monolayer CrI3 and Cr2Ge2Te6 (CGT), and great
enthusiasm has been aroused for searching and exploring 2D
magnetism [6,7]. More recently, many other 2D magnetic
materials, e.g., FePS3 [12,13], Fe3GeTe2 [14,15], VSe2 [16],
MnSe2 [17], and MnBi2Te4 [18,19], have been realized by ei-
ther exfoliation from bulk structures or growth with molecular
beam epitaxy (MBE). Interesting magnetic properties, such
as room-temperature intrinsic ferromagnetism [16], magnetic
topological insulators [18,19], and electric-field/doping tun-
able magnetism [20–22], etc., have been observed in these
newborn 2D magnetic materials.

The most important character of ferromagnetism is the
phase-transition temperature, i.e., the Curie temperature (Tc),
which not only decides applications but also reflects the
intrinsic magnetic mechanism. To date, numerous theoretical
calculations have focused on this important magnetic prop-
erty [23]. Take the intensively studied monolayer CrI3 as
an example. The experimentally measured value is around

45 K [6]. The Ising model predicted an overrated Tc over
80 K [24,25] because of the overestimation of anisotropic
interactions. The spin-wave theory gave a better estimation
of 33 K [25]. However, the harmonic and mean-field approxi-
mations in the spin-wave Hamiltonian and the corresponding
magnetization introduce extra error bars. A few Monte Carlo
(MC) simulations predicted Tc in a range between 50 and
96 K, depending on their parameters and Hamiltonians
[26,27]. Importantly, recent studies [28–30] not only show
the reliability of MC simulations compared with the random
phase approximation, but further reveal direct relations be-
tween Tc and corresponding magnetic interaction strengths.
Therefore, along this direction, more works are necessary
for theoretically calculating reliable Tc of those 2D magnetic
structures and understanding anisotropic magnetic interac-
tions and their impacts on 2D magnetism.

In this work, we start from the XXZ Heisenberg model
with the magnetic interaction parameters extracted from first-
principles simulations. By using the MC simulation, we
obtain the Tc of the widely studied monolayer chromium
trihalides and CGT. Our result of monolayer CrI3 is around
42 K, which is in excellent agreement with the measurement
(45 K). More interestingly, we find that there is a univer-
sal, linear dependence between Tc and magnetic interaction
coefficients within a wide range of parameter space. As a
result, we can conveniently predict Tc of 2D Heisenberg-type
magnetic materials based on the magnetic interactions without
time-consuming MC simulations. Using the MC-simulated
magnetic phase diagram, we explain the origin of such a linear
relation and show the crucial role of anisotropic magnetic
interactions in creating and keeping 2D magnetism. This
advance can be useful for quantitatively understanding the
origin of 2D magnetism and speeding up the discovery of
novel 2D magnetic materials.
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FIG. 1. (a) The top and side views of the atomic structure of
monolayer CrI3. The magnetic Cr atoms form hexagonal lattices.
(b) The XXZ model applies to hexagonal lattices. Each site has
a localized magnetic moment, and the NN and NNN coupling
interactions are indicated.

The article is organized in the following order. In Sec. II,
we present the atomic structures of our studied 2D magnetic
materials and first-principles simulation setups. In Sec. III, we
introduce the XXZ Heisenberg model and MC simulations.
In Sec. IV, the MC simulation results based on the XXZ
Heisenberg model are presented and compared with measure-
ments. In Sec. V, we reveal the linear dependence of the Tc

on magnetic interactions. In Sec. VI, we discuss the phase
diagram of 2D magnetism according to the anisotropic on-site
and exchange interactions to understand the linear dependence
and the roles played by anisotropic magnetic interactions. In
Sec. VII, we summarize the results.

II. ATOMIC STRUCTURE AND FIRST-PRINCIPLES
SIMULATION SETUPS

DFT calculations. The DFT calculations are performed
within the generalized gradient approximation (GGA) using
the Perdew-Burke-Ernzerhof (PBE) functional implemented
in the Vienna Ab Initio Simulation Package (VASP) [31,32]. A
plane-wave basis set with a kinetic energy cutoff of 450 eV
and a 5 × 5 × 1 k-point sampling grid are adopted for a 2 ×
2 × 1 supercell to mimic different magnetic configurations
for extracting magnetic interactions. The vacuum distance is
set to be 20 Å between adjacent layers to avoid spurious
interactions. The van der Waals (vdW) interaction is included
by the DFT-D2 method, [33] and spin-orbit coupling (SOC)
is always considered. We choose the Hubbard U = 2.7 e V
and Hund J = 0.7 eV parameters for Cr3+ ions, which have
been widely used in previous works [24,25,34]. The geo-
metric structure is relaxed until the force converged within
0.01 eV/Å.

Atomic structure. Monolayer chromium trihalides and CGT
share a similar lattice structure. Take monolayer CrI3 as an
example. As shown in Fig. 1(a), Cr3+ cations are arranged
in honeycomb lattices while carrying the localized magnetic
moments (3μB/Cr3+), and they are coordinated to six nearest-
neighbor I− anions, forming an edge-sharing octahedral. By
maintaining the C3 rotational symmetry, our fully relaxed
in-plane lattice constant is 6.91 Å, which well agrees with
previous published results [24,27].

III. HEISENBERG MODEL AND MC SIMULATION SETUP

The Heisenberg model is a widely employed approach to
study 2D magnetism since the early works by Mermin and
Wagner [1–4]. The Heisenberg formulism provides enriched
stages for various physics phenomena in 2D magnetism, such
as quantum critical behavior and nontrivial phase transitions,
i.e., the Berezinskii-Kosterlitz-Thouless (BKT) transition in
2D Heisenberg model with easy-plane anisotropy [3,4,35,36].
Previous works showed that 2D magnetic materials, such as
monolayer CrI3, exhibit an easy axis along the out-of-plane
direction, and the magnetic energy is approximately isotropic
along in-plane directions, making it reasonable to further
mutate the Heisenberg model into a quantum anisotropic
Heisenberg model, also called the XXZ model [6,25,37,38].

In this work, we construct the XXZ Hamiltonian by includ-
ing both on-site and coupling anisotropic magnetic interac-
tions as follows:

H =
∑

i

A
(
Sz

i

)2 +
∑
〈i, j〉

1

2

(
λ1Sz

i Sz
j + J1 �Si · �S j

)

+
∑
〈〈i, j〉〉

1

2

(
λ2Sz

i Sz
j + J2 �Si · �S j

)
. (1)

As indicated in Fig. 1(b), the interactions among those
highly localized magnetic moments can be reasonably de-
scribed by neighbor couplings which include both isotropic
exchange interaction J and anisotropic exchange coupling λ.
The subscript 1 means the nearest-neighbor (NN) coupling,
and the subscript 2 means the next NN (NNN) coupling. The
coefficient A describes the easy-axis, single-ion anisotropy.
In this work, we neglect the third NN and farther couplings
because they are an order of magnitude smaller [27,38].

To obtain the phase transition and Tc, we perform MC sim-
ulations based on the Metropolis algorithm on 2D hexagonal
lattices with a size of 40 × 40 unit cells, which contain 3200
magnetic moments. The periodic boundary condition is im-
plemented. A MC step consists of an attempt to assign a new
random direction in 3D space to one of the random magnetic
moments in the lattices. All magnetic moments point along
the out-of-plane direction at the initial state to mimic exper-
imental setups, in which the low-temperature ground state is
obtained under external assisting magnetic fields [6,7,39,40].
We run for 4 × 108 MCs (2.5 × 105 steps per site average)
to ensure that the thermal equilibrium is achieved. For each
temperature point, there are 20 independent runs to reduce the
statistical fluctuation.

The magnetization is defined as

〈mα〉 = 1

N

N∑
i=1

〈
Sα

i

〉
, (2)

where N represents the total magnetic moments in the sim-
ulated system, and 〈Sα

i 〉 indicates the time average of corre-
sponding magnetic components after the simulation achieves
thermal equilibrium. Finally, Tc can be estimated by fitting the
typical phase-transition formula:

〈mz〉 =
{

μ(Tc − T )δ, Tc > T

0, Tc < T
. (3)
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TABLE I. Extracted magnetic interaction parameters of Eq. (1), Tc of MC simulations, linear-model estimations, and experimental
measurements. The unit of parameters is meV.

A λ1 J1 λ2 J2 MC Tc (K) Model Tc (K) Expt. Tc (K) monolayer Expt. Tc (K) bulk

CrI3 −0.087 −0.085 −2.12 0.02 −0.35 42.2 42.8 45 K [6] 61 K [39]
CrBr3 −0.02 −0.016 −1.35 −0.001 −0.153 23.1 24.0 27 K [42] 37 K [51]
CrCl3 −0.007 −0.002 −0.79 0 −0.071 12.1 13.1 17 K (2 L) [42,43] 17 K [40]
Cr2Ge2Te6 −0.01 −2.71 0.0058 34.5 30 K (2 L) [7] 68 K [7]

IV. MAGNETIC PHASE TRANSITION AND Tc

First, we must obtain the coefficients of magnetic interac-
tions in the Hamiltonian of Eq. (1) by calculating total ener-
gies of different magnetic configurations. Here we consider
the FM and Néel antiferromagnetic (AFM) configurations.
The corresponding energy expressions of a unit cell are

Eout
FM/AFM = E0 + (2A ± 3λ1 ± 3J1 + 6λ2 + 6J2)S2, (4)

E in
FM/AFM = E0 + (±3J1 + 6J2)S2, (5)

in which two magnetic orientations (in-plane and out-of-plane
ones) are calculated in order to specify anisotropic couplings.
Moreover, we can flip the magnetic moment of a Cr3+ cation
in a 2 × 2 × 1 supercell to obtain more energy configurations
(normalized to one unit cell).

Eout
flip = E0 + (

2A + 3
2λ1 + 3

2 J1 + 3λ2 + 3J2
)
S2, (6)

E in
flip = E0 + (

3
2 J1 + 3J2

)
S2 . (7)

As a result, we accumulate six equations that can solve the
five magnetic interaction coefficients in Eq. (1) and reference
energy (E0).

The magnetic interaction coefficients, which are extracted
from DFT calculations, of monolayer chromium trihalides
are summarized in Table I. As expected, the isotropic NN
coupling (J1) is the strongest and has a negative sign, resulting
in the FM ground state. Both the signs of the anisotropic
NN coupling (λ1) and on-site anisotropic term (A) are neg-
ative, indicating the easy axis of magnetization is along the
z (out-of-plane) direction. Importantly, anisotropic interac-
tions are significantly weaker than isotropic ones. For ex-
ample, the isotropic NN coupling J1 is about –2.12 meV
for monolayer CrI3, and the anisotropic NN coupling λ1

is about –0.085 meV. These results are close to previous
published results [25]. Finally, as discussed in previous
works, magnetic interactions of these monolayer structures
are mainly from halogen-atom SOC mediated superexchange
interactions between Cr3+ cations [25,41]. Therefore, we
observe that magnetic interactions are reduced from CrI3

to CrBr3 to CrCl3, along the trend of lighter halogen
atoms.

With these magnetic coupling coefficients, we can obtain
the dependence of magnetization according to temperature
by MC simulations in Fig. 2. Magnetic phase transitions are
observed, and Tc is 42.2, 23.1, and 12.1 K for monolayer
CrI3, CrBr3, and CrCl3, respectively. To date, the measured
Curie temperatures of monolayer CrI3 and CrBr3 are around
45 and 27 K, respectively [6,42]. Compared with previous
results from the Ising model, mean-field theory, and spin-wave
theory, our calculation agrees better with measurements. For
CrCl3, the available measurement of the two-layer (2-L) struc-
ture is about 17 K which is slightly higher than our predicted
Tc (12 K) of monolayer. This difference may be resulted from
interlayer couplings of bilayer structures [42,43]. We have to
address that these results are sensitive to the choices of U and
J. As shown in previous works [28–30], different values of
these two parameters will change the calculated Tc because
the magnetic interactions are changed accordingly.

It must be pointed out that, although the NNN coupling J2

is significantly smaller than J1, its contribution to Tc is not
small due to the larger coordinate number of the next NN
in hexagonal lattices (N2 = 6). For chromium trihalides, we
find that including the NNN coupling raises Tc by roughly
20%–30%. It is also worth pointing out that the anisotropy
of both on-site energy and exchange interaction in CrCl3 is
quite weak. In such weakly anisotropic cases, the help of a
small external field may be needed to observe the FM phase

FIG. 2. The MC-simulated magnetism vs temperature for monolayer CrX3 (X = I , Br, Cl) with the error bar.
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FIG. 3. The fitted linear relation between Tc and corresponding parameters of the XXZ model of 2D hexagonal lattices. The MC simulation
points are solid blue points. (a–d) are the linearly fitted planes for corresponding on-site anisotropic A and NN isotropic, J1 NN anisotropic
coupling λ1 and J1, NNN anisotropic coupling λ2 and J1, and NNN isotropic coupling J2 and J1, respectively. The corresponding parameters
of monolayer CrI3 are marked as white stars.

transition. This is similar to what has been discussed in the
CGT experiment [7].

V. RELATIONSHIPS BETWEEN Tc

AND MAGNETIC INTERACTION

Although MC simulations provide a good solution to the
XXZ Hamiltonian, it is time consuming and complicated for
spreading out to specific materials that use combinations of
parameters. Since the magnetic energy and Tc are fundamen-
tally decided by magnetic interactions, it will be interesting
to explore if there is a direct relation between Tc and those
interaction coefficients.

For this purpose, we scan a much larger parameter space
by MC simulations based on the XXZ Heisenberg model
[Eq. (1)]. However, we have five parameters, i.e., A, J1, J2,
λ1, and λ2. It is impossible to cover such a five-dimensional
parameter space, and we must simplify the scanning space.
For most magnets, the NN isotropic coupling J1 is usually
the dominant factor for the amplitude of Tc. Therefore, we
carry out extensive MC simulations by varying J1 and one of
other parameters from A, λ1, λ2, and J2 while fixing the rest
(e.g., at values of monolayer CrI3). The results are shown in
Fig. 3. Surprisingly, we find that Tc for each J1 vs α (α =
A, λ1, λ2, J2) is roughly sitting in a flat plane. It indicates that
Tc of such an XXZ Heisenberg model is linearly dependent
with these coupling strengths. This qualitatively agrees with
the expressions in Refs. [28,29], which are based on the Ising
limit value with NN couplings included.

Tc can be expressed as

kBTc = (α0)AS2 + (
αz

1n1
)
λ1S2 + (α1n1)J1S2

+ (
αz

2n2
)
λ2S2 + (α2n2)J2S2. (8)

The NN and NNN coordinate number, ni, and fitted values,
αi, are listed in Table II. With this linear dependence, we
can predict Tc of 2D magnets without the MC simulation. As
shown in Table I, this model predicting Tc is very close to
MC results with an error bar of less than 1 K for monolayer
chromium trihalides. We have tried this model with another
family of 2D magnets, CGT, which has similar hexagonal
structures as chromium trihalides. Using the published mag-
netic interaction coefficients [7], our estimated Tc of mono-
layer CGT is 34.5 K, which is kind of close to the available
measured value (around 30 K under a 0.075-T external field)
of bilayer CGT [7]. It has to be pointed out that, according to
the MW theorem, this expression is no longer valid when all
the anisotropy parameters approach zero. Fortunately, such an
invalid region is small owing to the logarithmically asymptot-
ical behavior of Tc, which will be discussed in Sec. VI.

TABLE II. Extracted coefficients of the linear model in Eq. (8)
based on MC simulations.

α0 (A) αz
1(λ1) α1 (J1) αz

2(λ1) α2(J2 ) n1 n2

Hexagonal −0.33 −0.28 −0.164 −0.35 −0.256 3 6
Square −0.34 −0.29 −0.183 −0.35 −0.257 4 4

205409-4



CURIE TEMPERATURE OF EMERGING … PHYSICAL REVIEW B 100, 205409 (2019)

FIG. 4. The fitted linear relation between Tc and corresponding parameters of the XXZ model of 2D square lattices. The MC simulation
points are solid blue points. (a–d) are the linearly fitted planes for corresponding on-site anisotropic A and NN isotropic J1, NN anisotropic
coupling λ1 and J1, NNN anisotropic coupling λ2 and J1, and NNN isotropic coupling J2 and J1, respectively.

Beyond hexagonal lattices, we also imitate the same pro-
cessing of MC simulations on 2D square lattices by the
XXZ Hamiltonian. As shown in Fig. 4, Tc for each J1 vs α

(α = A, λ1, λ2, J2) is roughly sitting in a flat plane. Therefore,
similar linear dependence is concluded, and the extracted
values of parameters of square lattices are listed in Table II.
Interestingly, the coefficients of the linear model for both
square and hexagonal lattices are similar to those shown
in Table II. Therefore, this linearity is robust for different
lattices, and the Tc expression [Eq. (8)] could be universal for
anisotropic 2D XXZ Heisenberg systems.

In fact, a linear dependence of Tc according to the magnetic
coupling coefficients has been proposed in other-level models
[44]. For instance, it can derived from the Hamiltonian in
Eq. (1) that the widely used mean-field approximation (MFA)
gives the linear relation [44]

Tc = 2S(S + 1)

3kB

(
−A − n1

2
J1 − n1

2
λ1 − n2

2
J2 − n2

2
λ2

)
. (9)

However, there are several obvious deficiencies in that
MFA result. Firstly, the MFA cannot distinguish isotropic
and anisotropic couplings due to the fact that all operators
are replaced by their thermodynamic mean values along the
out-of-plane direction. As a result, the slopes of the linear
dependence are the same for both isotropic J and anisotropic
λ. This overestimated anisotropy is a main reason for the much
larger Tc provided by the MFA. In other words, MFA shall be
appropriate for very strongly anisotropic magnetic systems.

Second, Tc is proportional to S(S + 1) in the MFA but our
model shows that Tc is proportional to S2. This discrepancy
originates from the different quantum and classic treatments

of the spin operator. To verify this point, we change the
magnetic moment in MC simulations. Meanwhile, we tune
the coupling constants simultaneously to keep the value of the
product of αS(z)

i S(z)
j (α = A, λ, J ). In Fig. 5, the simulation

shows that Tc does not change for different magnetic mo-
ments. For instance, the curve starting from 3μB is simulating
monolayer CrI3 which has a magnetic moment of m = 3 μB

(S = 3
2 ). If we reduce the magnetic moment to 1 μB(S = 1/2)

FIG. 5. The MC-simulated magnetism vs temperature for differ-
ent magnetic-moment systems. The products αS(z)

i S(z)
j (α = A, λ, J )

are fixed at the same value for different magnetic moments.
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FIG. 6. (a1,b1) are phase diagrams generated from MC simulations of the Hamiltonian of Eqs. (10) and (11), respectively. The open circles
are MC-simulated phase boundaries. (a2,b2) are amplified from the shaded area with more data points.

and increase all coupling strengths by 9 times to keep αS(z)
i S(z)

j
as a constant, the calculated Tc does not change at all. This
finding confirms the square relation between Tc and magnetic
moment. In fact, similar behavior was also noticed in pre-
vious studies about ferroelectricity of monolayer group-IV
monochalcogenides [45]. In this sense, our extracted model
Eq. (8) can be suitable for general 2D anisotropic Heisenberg
systems for both magnetic and electric polarizations, except
the S = 1

2 systems with only the single-ion anisotropy (λ =
0). Their spin-wave spectrum remains gapless, and magnetic
orders may not be maintained, which cannot be captured by
classic MC simulations [28,29].

VI. PHASE DIAGRAM OF THE ANISOTROPIC
INTERACTIONS

There is an obvious question about the linear expression
of Eq. (8): The different magnetic interactions contribute to
Tc independently. This cannot be true for the whole parameter
space. The extreme example is that when the anisotropic
interactions are zero, that formula still gives a finite Tc.
This obviously conflicts with the MW theorem [1,46]. In
other words, this linear expression can only be true within
a suitable regime (parameter space). To clarify this point,
we study the phase diagram within a much larger parameter
space, particularly for the small anisotropic regimes.

To address essential physics and avoid unnecessary com-
plexity of scanning high-dimensional parameter space, we

focus on two simplified XXZ Heisenberg models:

Ha =
∑

i

A
(
Sz

i

)2 +
∑
〈i, j〉

1

2
(J �Si · �S j ), (10)

Hb =
∑
〈i, j〉

1

2

(
λ1Sz

i Sz
j + J1 �Si · �S j

)
. (11)

The first one [Eq. (10)] focuses on how the on-site
anisotropy impacts magnetic phases, while the second one
[Eq. (11)] focuses on how the anisotropic coupling impacts
magnetic phases. The MC results are presented in Fig. 6. Both
models exhibit a similar phase diagram. There are basically
three phases: the out-of-plane FM phase, the paramagnetic
(PM) phase, and the planar phase. The planar phase is from
the positive sign of the anisotropic terms, which drive magne-
tization from the out-of-plane easy axis (z) to the easy (x − y)
plane. In the following, we mainly focus on the out-of-plane
FM and PM phases, in which the sign of the anisotropic terms
is negative.

The most striking part in the phase diagram of Fig. 6 is
how the anisotropic term (A or λ) approaches zero. The MW
theorem shows that anisotropy is necessary for holding the
long-range magnetic order, while it does not answer how the
anisotropy quantitatively impacts Tc. In Fig. 6, it shows that
a minor anisotropy can dramatically, nonlinearly increase Tc.
Our simulated behaviors around a perfect isotropic point agree
with previous scaling [47] and renormalization group [48]
analysis, in which Tc approaches zero logarithmically as the
anisotropic term decreases [49,50]. In this sense, anisotropy
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works as a seed to create the thermodynamically stable mag-
netic order while other couplings can further enhance the
magnetic order. Due to this sharp variation, the region of
divergence which adjoins the isotropic point is extremely
small. Even if we take α

|J1| ∼ −0.001 (α = A, λ), our MC
simulation still exhibits a nonzero Tc.

On the other hand, this sharp nonlinear region is so narrow
that it provides a good chance for estimating Tc by the first-
order linear approximation within a reasonable region. More
specifically, for most 2D magnetic materials, the amplitudes
of anisotropic terms are substantially smaller than that of the
isotropic NN coupling (J1), as shown in Table I. Therefore,
the true material parameter space is very narrow, which is
in the gray-colored space in Figs. 6(a1) and 6(b1). We am-
plify that regime and observe a very good linear relation in
Figs. 6(a2) and 6(b2). This is why we obtain the linear relation
between Tc and magnetic couplings in Figs. 3 and 4. Finally,
in Figs. 6(a1) and 6(b1), when the anisotropy is very large
(the far-left side), we approach the MFA limit discussed in
Sec. V. A linear relation is also observed but with different
slopes from that of realistic materials marked by gray-colored
space).

Finally, we must point out that the values of magnetic
interactions, i.e., A, J, and λ, are crucial for deciding the value
of Tc, as seen in Eq. (8). Unfortunately, it is known that it is
challenging to accurately calculate those magnetic interaction
coefficients of correlated materials by ab initio approaches.
Therefore, how to obtain reliable magnetic interactions is the
fundamental challenge for studying these materials and MC
simulations, and this is beyond the scope of this work. On
the other hand, our proposed linear model survives in a wide

range of parameter space (Figs. 3 and 4), making it robust as
long as reliable magnetic interactions are obtained.

VII. CONCLUSIONS

In this work, we have calculated the Curie temperature
Tc of the widely studied monolayer chromium trihalides and
CGT by MC simulations based on the XXZ model with mag-
netic interactions extracted from first-principles calculations.
Our calculated Tc of monolayer CrI3 agrees excellently with
measurements. Moreover, we find a universal, linear depen-
dence between Tc and magnetic interactions within the param-
eter space of realistic materials. With this linear dependence,
we can predict Tc of 2D magnets without MC simulations once
we have obtained reliable magnetic interactions. This linear
model provides insights to clarify and understand the roles of
isotropic and anisotropic magnetic interactions in deciding Tc:
The anisotropic terms typically ensure the stability for the FM
order in 2D magnets, and isotropic terms basically decide the
magnitude of Tc. It also sheds light on searching for novel 2D
materials with higher Curie temperatures by engineering the
anisotropic and isotropic magnetic interactions.
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