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The nature of the fractional quantum Hall state at quarter filling in a wide quantum well is still under
debate. Both one-component non-Abelian and two-component Abelian orders have been proposed to describe the
system. Interestingly, these candidates received support from different experiments under disparate conditions.
In this article, we focus on non-Abelian orders from Cooper pairing between composite fermions and the Abelian
Halperin-(5,5,3) order. We discuss and predict systematically different experimental signatures to identify them
in future experiments. In particular, we address the Mach-Zehnder interferometry experiment and show that it
can identify the recently proposed 22111 parton order.
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I. INTRODUCTION

The majority of the incompressible fractional quantum
Hall (FQH) states in a two-dimensional electron gas have
odd denominators in their filling factors, which can be well
explained by the Haldane-Halperin hierarchy [1,2] and the
theory of composite fermion [3]. In particular, the latter theory
attaches 2p fluxes to an electron, such that the composite
fermions experience a reduced average effective magnetic
field. Furthermore, this magnetic field vanishes when the
filling factor of the electron gas attains ν = n + 1/2p. Thus
the system is expected to be gapless [4]. This picture received
experimental support from the observation of a well-defined
Fermi sea of composite fermions in geometric resonance
measurements at ν = 5/2 [5,6] and ν = 1/4 [7]. At the same
time, quantum Hall plateaus were observed at ν = 5/2 [8,9]
which led to a great surprise to the condensed matter society.
Nowadays, more half-integer FQH states have been observed
in different systems, such as ZnO heterostructures [10,11]
and graphene-based devices [12–14]. In order to explain the
incompressible FQH states with even-denominator filling fac-
tors, the idea of superconducting pairing between composite
fermions was introduced [15,16]. Numerous topological or-
ders have been proposed as candidates for the ν = 5/2 FQH
state [17–28]. As a result, the nature of the FQH state is
still under debate. In particular, some of these orders host
non-Abelian quasiparticle excitations, which may open the
door to topological quantum computation [29,30].

Apart from ν = 5/2, the FQH state was observed at ν =
1/4 in wide GaAs quantum wells [31–33] and monolayer
graphene at the isospin transition point [14]. In a wide
quantum well, electrons tend to minimize the energy by
concentrating themselves near to the two sides of the well.
This charge distribution leads to an effective bilayer system
[34–36]. Using the language of pseudospin, one may associate
the spin-up and spin-down states to the two lowest electronic
subbands of the system. This additional degree of freedom al-
lows the formation of the ν = 1/4 FQH state [36,37]. The two
subbands are separated by a gap �SAS, which depends on both
the width of the well and the electron density of the system. In

principle, both one-component and two-component topologi-
cal orders can be realized in a bilayer system. Which one is
preferred depends on the competition between �SAS and the
interaction between electrons in each effective layer, e2/(ε�B).
With a typical width of the quantum well w ≈ (50–60) nm
and an electron density n ≈ (2.0–2.6) × 1011 cm−2 in the
experiment [31–33], it was estimated that �SAS/(e2/ε�B) �
0.1 [36,38].

Similar to the case of ν = 5/2 FQHE, different topological
orders have been proposed to describe the ν = 1/4 FQH state
[36,38–43]. The original experiment by Luhman et al. [31]
reported that the FQH state was strengthened by tilting the
sample in a magnetic field. Since it is believed that �SAS is
reduced by the in-plane magnetic field [44,45], the experiment
was interpreted to favor a two-component topological order in
the system. By investigating the problem numerically, Papić
et al. [36] concluded that there is a competition between the
Abelian Halperin-(5,5,3) order and the non-Abelian Pfaffian
order in the system being explored in Ref. [31]. At the same
time, they pointed out that the two-component state might be
further stabilized by the in-plane magnetic field applied in the
experiment.

The effect of charge distribution on the ν = 1/4 FQH state
was examined in later experiment [32,33]. On the one hand,
Ref. [32] reported that the FQH state disappeared when the
charge density is lowered or the charge distribution was made
asymmetric. This result supported the Halperin-(5,5,3) order.
On the other hand, observation of the FQH state in a sample
with highly asymmetric charge distribution, and its disap-
pearance when the distribution became symmetric, seemingly
favored the one-component Pfaffian state [33]. Later on, an al-
ternative explanation to the result in Ref. [33] with an Abelian
two-component state based on partial subband polarization
was proposed [43].

Very recently, Faugno and his collaborators have reexam-
ined the phase diagram of the quantum well problem at ν =
1/4 [38]. Their numerical results suggested the possibility of
realizing a 22111 parton order in the system. Different from
previous proposals, the 22111 parton order is topologically
equivalent to a paired state formed by Cooper pairing of

2469-9950/2019/100(20)/205306(16) 205306-1 ©2019 American Physical Society

https://orcid.org/0000-0003-1685-8944
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.205306&domain=pdf&date_stamp=2019-11-25
https://doi.org/10.1103/PhysRevB.100.205306


KEN K. W. MA PHYSICAL REVIEW B 100, 205306 (2019)

composite fermions in the f -wave channel. At this stage,
the nature of the ν = 1/4 FQH state observed in the wide
quantum well remains unsettled. In fact, the interplay between
interlayer tunneling, charge imbalance, and the nature of
quantum Hall state in a wide quantum well can be complicated
[43,46,47]. Given that the details and the procedures in differ-
ent experiments were quite disparate, it may be possible that
different topological orders were realized in different cases.
Therefore, it is important to have a detailed list of predicted
experimental signatures to identify different topological or-
ders in future experiments. This is the main motivation of our
current paper.

In our previous work [48], we have related different topo-
logical orders for half-integer FQHE and two-dimensional
topological superconductors built by composite fermions.
Based on this connection, we have systematically classified
the orders by Kitaev’s sixteenfold way [49] and predicted
their signatures in different experiments. In this paper, we
continue our work in this direction to study different non-
Abelian orders for the FQH state at ν = 1/4. At the same
time, it is equally important to understand the experimental
signatures for Abelian orders. Since the Halperin-(5,5,3) order
was shown to be a leading candidate in this category [36],
we will examine it explicitly. From the results in this paper,
we argue that different topological orders can be identified
unambiguously by combining signatures from various exper-
iments. In turn, the question of whether a one-component or
a two-component order is realized in the wide quantum well
system under different conditions may be answered.

The paper is organized as follows. First, we discuss the
topological properties of different non-Abelian orders for ν =
1/4 FQHE and make predictions on their experimental signa-
tures in Sec. II. Then, we examine systematically the tunnel-
ing current and Fano factor in Mach-Zehnder interferometry
for each non-Abelian topological order in Sec. III. In particu-
lar, we discuss how the recent proposal on 22111 parton order
can be tested by the Mach-Zehnder inteferometry experiment.
In Sec. IV, we provide a discussion on the experimental signa-
tures for the Abelian two-component Halperin-(5,5,3) order.
The results in the previous three sections are summarized in
Sec. V. In the same section, we briefly comment on how
the nature of ν = 1/4 FQHE in the wide quantum well can
be resolved by combining different experimental signatures.
Finally, we conclude our work in Sec. VI. At the end of
the paper, three Appendixes are provided to supplement the
main text. Appendix A provides an explicit calculation on the
Chern number for a chiral l-wave paired state. Appendix B
introduces a class of simple wave functions for non-Abelian
orders by solving the Bardeen-Cooper-Schrieffer Hamilto-
nian. Appendix C provides a brief discussion of several other
two-component candidates for fractional quantum Hall state
at ν = 1/4.

II. ONE-COMPONENT NON-ABELIAN ORDERS FOR
ν = 1/4 FQHE

In this section, we focus on one-component non-
Abelian orders for the ν = 1/4 FQH state originating from
Cooper pairing between spin-polarized composite fermions.
The pairing is described by the following mean-field

Bardeen-Cooper-Schrieffer (BCS) Hamiltonian:

HBCS =
∑

k

[
ξkc†

kck + 1

2
(�∗

kc−kck + �kc†
kc†

−k)

]
. (1)

In the above equation, ξk = k2/2m − μ, with m and μ being
the effective mass and the chemical potential of the composite
fermions, respectively. Also, we set h̄ = 1 throughout the
paper. The symbol �k denotes the pairing gap function. In
this paper, we focus on the chiral l-wave pairing, such that
�k = �0(kx ± iky)l . Here, we need to clarify our notations.
In the following discussion, l is always positive. Meanwhile,
we will also call the paired state with �k = �0(kx − iky)l the
paired state with a negative �, where � = −l .

Since the composite fermions are spin-polarized, antisym-
metry of the wave function only allows pairing in odd-l
channels. It was shown by Read and Green [15] that the
system is in the weak pairing phase and exhibits nontrivial
topology when μ > 0. In Appendix A, we evaluate the Chern
number C for the bulk of the system exactly. It is found that
C = ±l for �k = �0(kx ± iky)l . In other words, there is a
one-one correspondence between the Chern number and the
pairing channel. Furthermore, the bulk-edge correspondence
suggests that l copropagating Majorana modes exist at the
edge of the system. This conclusion agrees with the numerical
result obtained in Ref. [50]. Note that a pair of Majorana
modes can form a Dirac fermion. Furthermore, the statistics
is Abelian if all edge modes are Dirac fermions. Given that l
is odd, there is at least one unpaired Majorana mode. Hence
the paired state with odd l is described by a non-Abelian
topological order [15].

The wave function for Pfaffian order to the ν = 1/4 FQH
state is given by

�Pf = Pf

(
1

zi − z j

)∏
i< j

(zi − z j )
4. (2)

Notice that the Gaussian exponential factor has been sup-
pressed. Here, the fourth power in the Jastrow factor fixes
the filling factor at ν = 1/4, which can also be understood
as attaching four flux quanta to an electron and turning it
into a composite fermion [3]. The Pfaffian factor originates
from the BCS pairing between composite fermions in the
� = 1 channel. Following the procedures in Ref. [48], wave
functions for other non-Abelian orders resulting from higher
l-wave pairing can be constructed iteratively for the ν = 1/4
FQHE. A more detailed discussion on composite-fermion
pairing and another class of wave functions for the l-wave
paired state can be found in Appendix B.

The conformal field theory (CFT) approach provides a sys-
tematic way to extract topological properties of a topological
order. It is conjectured that a wave function for a quantum Hall
state can be constructed from correlation function between
conformal field operators for electrons [51]. For example, the
Pfaffian wave function in Eq. (2) can be constructed from the
following correlation function:〈∏

k

Gk (zk )

〉
=

〈∏
k

ψ (zk )e4iϕρ (zk )

〉
. (3)

The complex variable zk = xk + iyk labels the positions of the
electrons on the 2D plane. Here, ψ is the Majorana mode
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and ϕρ is the Bose charged mode. As a remark, an additional
vertex operator to neutralize the background should also be
included in Gk , which is not shown here.

A. Quasiparticles and topological properties

The edge structure of the �-wave paired state consists of
two parts. First, it consists of l chiral Majorana modes, ψ j

with j = 1, 2, . . . , l . The corresponding Lagrangian density
for them with the same velocity vn is

Lψ = i
l∑

j=1

ψ j[∂t + vnsgn(�)∂x]ψ j . (4)

Depending on the sign of �, these Majorana modes can be
downstream or upstream. The second part is a single down-
stream charged mode ϕρ with velocity vρ , being described by
the following Lagrangian density:

Lρ = − 4

4π
∂xϕρ (∂tϕρ + vρ∂xϕρ ). (5)

From the edge structure, one can write down the most
relevant electron operator for the topological order as

�e = ψ je
4iϕρ . (6)

At the same time, the operator product expansion (OPE)
between a quasiparticle operator �qp and all possible electron
operators must be single valued [51]. Generically, we write
�qp = ∏

j σ jeiωϕρ . Here, σ j is the twist field with conformal
dimension hσ = 1/16 in the SU(2)2 CFT. Its fusion rule is
σ j × σ j = ψ j + I . The OPE between �qp with �e gives

lim
z→w

[�qp(z)�e(w)] ∼ (z − w)ω−1/2. (7)

The single-valuedness condition leads to ω = 1/2 + n, where
n is an integer. Thus the quasiparticle has charge

Qqp = e

4
(n + 1/2). (8)

Therefore, the most fundamental quasiparticle has charge e/8.

1. Fractional statistics

From the edge structure and the form of quasiparticle
operators, it is believed that the fractional statistics of the
quasiparticles would satisfy the sixteenfold way. In fact, this is
a universal feature of all paired states for FQHE at ν = 1/2p.
It is because the non-Abelian sector, formed by the Majorana
modes, is always described by the same CFT. Different filling
factors of the FQH system correspond to different Abelian
U(1) vertex operators for the charged mode only.

For later discussion on Mach-Zehnder interferometry in
Sec. III, we evaluate the phase accumulated when an e/8
quasiparticle makes a complete counterclockwise circle about
another e/8 quasiparticle. There are two fusion channels for
the non-Abelian neutral vortex σ formed by the Majorana
modes. Depending on the fusion channel β = ψ or I , the
phase accumulated is

φψ = φU (1) + φσσ
ψ =

(
π

8
+ 3π�

4

)
(mod 2π ), (9)

φI = φU (1) + φσσ
I =

(
π

8
− π�

4

)
(mod 2π ). (10)

The first term φU (1) = π/8 comes from the Abelian U(1)
sector, whereas the second term φσσ

β comes from the braiding
rules for neutral vortices in the sixteenfold way [48,49].

2. Central charge and thermal Hall conductance

With the edge structure discussed before, the central charge
of the topological order can be determined easily. The single
Bose mode and l Majorana modes contribute 1 and l/2 to
the central charge, respectively. These two contributions add
(subtract) when � is positive (negative). Hence the net central
charge is

c = 1 + �

2
. (11)

Existing thermal transport experiments cannot differentiate
downstream modes and upstream modes [52,53]. Thus a pos-
itive thermal Hall conductance κH is measured. Furthermore,
κH depends on whether the edge of the system is thermally
equilibrated or not. If the edge of the quantum Hall bar in
the experiment is much longer than the thermal equilibration
length, i.e., L � �th, then the edge is under full thermal
equilibration. In this scenario, one has [15,54,55]

κH = π2k2
BT

3h

∣∣∣∣1 + �

2

∣∣∣∣. (12)

This result is universal for all filling factors at ν = 1/2p.

3. Scaling dimension and tunneling exponents

Suppose quasiparticles can tunnel between two edges of
the same FQH liquid in a tunneling experiment. It was pre-
dicted that the tunneling current and conductance satisfy the
scaling laws: I ∼ V 2g−1 and G ∼ T 2g−2, respectively [56].
Here, V is the voltage difference across the two edges and T is
the temperature of the system. The tunneling exponent g is two
times the scaling dimension of the quasiparticle operator. This
exponent is universal for topological orders without upstream
edge modes (i.e., pairing in � > 0 channels).

For � < 0 (topological orders with upstream modes), the
tunneling exponents are nonuniversal in a clean sample. In-
stead, they depend on the interaction between edge modes. On
the other hand, impurities must exist in a real sample and lead
to interedge tunneling. Suppose the disorder is weak and the
corresponding interedge tunneling is a relevant process in the
sense of renormalization group (RG). Then, the edge physics
at low temperature is described by a disorder-dominated
phase. In this case, we also say that the edge is equilibrated.
Following the analysis in Refs. [23,24], one can conclude
that the tunneling exponents are universal when � � −3. The
exponents are also universal for the case with � = −1 (PH-
Pfaffian order). It is because any random coupling between
the charged mode and the single Majorana mode is irrelevant.

For simplicity, we assume the edge is equilibrated by
disorder throughout the paper. Under this assumption, the
scaling dimensions for different types of quasiparticles are

�e = 5

2
, �e/4 = 1

8
, �e/8 = l

16
+ 1

32
. (13)

Furthermore, suppose the tunneling process is dominated by
e/8 quasiparticles (see the discussion in Sec. III A). Then, one
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has

ge/8 = 2�e/8 = l

8
+ 1

16
, (14)

and the following scaling laws:

I ∼ V l/4−7/8, (15)

G ∼ T l/4−15/8. (16)

Equations (14)–(16) may provide some information to iden-
tify the topological order in the ν = 1/4 FQHE from tunnel-
ing experiment.

4. Shift and Hall viscosity

In a numerical simulation, one may place a FQH liquid
on a two-dimensional sphere. Since the sphere has a nonzero
curvature, the number of magnetic flux quanta being enclosed
(denoted as Nφ) and the number of electrons N are not simply
related only by the filling factor. To quantify the difference
from the plane geometry, the concept of shift S was defined
as [57]

Nφ = N/ν − S. (17)

It was shown that S is a topological quantum number, which
depends on the topological order in the FQH liquid [57].

Since S is a topological number, its value for different non-
Abelian orders can be found by examining the simpler form
of wave functions in Eqs. (B10) and (B13). We determine
S by finding the highest power of z1 in the wave function
and treating z̄ ∼ 1/z. This power is the same as Nφ . For
ν = 1/2p = 1/4 and � > 0, Eq. (B10) gives

Nφ = 4(N − 1) − l = 4N − (4 + l ). (18)

Similarly, one obtains from Eq. (B13) for � < 0

Nφ = 4(N − 1) + l = 4N − (4 − l ). (19)

From the definition of S in Eq. (17), the �-wave paired state
has

S = � + 1/ν = � + 4. (20)

Furthermore, the Hall viscosity is expected to be quantized
as [58,59]

ηH = ρS
4

= ρ

4
(� + 4), (21)

where ρ is the average electron density of the FQH liquid.
Note that Eqs. (12), (14), (20), and (21) agree with the results
in Ref. [38].

III. MACH-ZEHNDER INTERFEROMETRY FOR l-WAVE
PAIRED STATE AT ν = 1/4

In this section, we build on the discussion in Sec. II to
examine experimental signatures in Mach-Zehnder interfer-
ometry for each non-Abelian order. It is essential to remark
that quasiparticle statistics depends on the topological proper-
ties of the topological order, but not the precise microscopic
wave function. Indeed, different wave functions with the same
topological properties can be formulated to describe the low
energy physics of a quantum Hall system. Consequently,

FIG. 1. Illustration of an electronic Mach-Zehnder interferome-
ter. Charges propagate from source S1 to drain D1 and source S2
to drain D2, as shown by the arrows in the figure. Quasiparticle
tunneling between two edges is possible at the two quantum point
contacts, namely QPC1 and QPC2. (Adopted from Ref. [48].)

interferometry experiment may identify the topological nature
of the state and decide if it is non-Abelian. However, it cannot
determine the exact wave function of the system.

As we argued in Ref. [48], all non-Abelian topological
orders in the sixteenfold way should demonstrate the even-odd
effect in a Fabry-Pérot interferometer. As a result, this effect
cannot help us to distinguish different non-Abelian orders
for the ν = 1/4 FQH state. The ambiguity motivates us to
examine a more complicated setup, namely the Mach-Zehnder
interferometer.

Now, we briefly review the principle of an electronic Mach-
Zehnder interferometer. A more detailed discussion can be
found in Refs. [48,60,61]. A schematic plot for the interferom-
eter is shown in Fig. 1. Quasiparticles can tunnel between the
two edges of the quantum Hall liquid at the two quantum point
contacts (QPCs), with tunneling amplitudes �1 and �2. The
tunneling process is described by the following Hamiltonian:

Htun =
∫

dx[�qOAO†
B + H.c.]. (22)

The symbol Oi denotes the operator for the charge-q quasi-
particles which tunnel at the QPC from edge i = A or B,
with tunneling amplitude �q. Typically, a voltage V is applied
to S1 and leads to an electrochemical potential difference
eV between the two edges. In the experiment, the tunneling
current from source S1 to drain D2 and the corresponding
Fano noise are measured. Both quantities depend on the
magnetic flux enclosed by the loop QPC1-A-QPC2-B-QPC1
and V .

The state of D2 is described by a superselection sector in
the form (q, α), where q and α are the electric charge and
topological charge being stored in D2, respectively. When
both tunneling amplitudes at the two QPCs are small, and the
fusion channel of the tunneling particle with the topological
charge in D2 is known, the transition rate between two super-
selection sectors is given by [60]:

p(φs) = r[|�1|2 + |�2|2 + 2|u�1�2| cos (φAB + φs + δ)].

(23)

In the above equation, φAB and φs are the Aharanov-
Bohm phase and statistical phase accumulated when the
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quasiparticle encircles the whole device. Both constants r and
u depend on the voltage and the temperature. The symbol δ is
defined as δ = arg(u�2/�1).

A. Renormalization group analysis

In the present case, both charge-e/8 or charge-e/4 quasi-
particles can tunnel at the QPCs. Thus one needs to identify
which one of them dominates the process. The renormaliza-
tion group equation for the tunneling process described by
Eq. (22) is

d�q

db
= (1 − 2�q)�q. (24)

Here, �q is the scaling dimension of the operator Oi. From
Eqs. (13) and (24), one obtains the RG equations for e/4 and
e/8 quasiparticles separately:

d�e/4

db
= 3

4
�e/4, (25)

d�e/8

db
=

(
15

16
− l

8

)
�e/8. (26)

Again, we remind that the edge is assumed to be equilibrated.
Then, Eqs. (25) and (26) also hold for paired states with � < 0.
Aside from charged particles, a neutral fermion ψ can tunnel
at the QPC. The corresponding RG equation is

d�ψ

db
= (1 − 2�ψ )�ψ = 0. (27)

From the above RG analysis, the tunneling process for
the e/4 quasiparticle is always relevant. For e/8 quasiparticle
tunneling, it is relevant when l < 7. The neutral-fermion
tunneling is marginally relevant [62]. Furthermore, one has
�e/4 = 1/8 and �e/8 = l/16 + 1/32 from Eq. (13). Thus the
e/8 quasiparticle is the most relevant when l = 1 (namely
Pfaffian and PH-Pfaffian states) and should dominate the tun-
neling process in these two cases. When l = 3, 5, 7, tunneling
for both e/4 and e/8 quasiparticles are relevant. The e/4
tunneling operator has a lower scaling dimension, but what
type of particles dominates the tunneling process also depends
on their unrenormalized tunneling amplitudes. In the follow-
ing discussion, we would assume that the tunneling process
is dominated by e/8 quasiparticles when l < 7. For l > 7,
the e/8 quasiparticle tunneling becomes irrelevant. Hence the
process is taken over by e/4 quasiparticles.

B. e/8 quasiparticle tunneling

First, we examine the tunneling current and Fano factor
when the tunneling process is dominated by e/8 quasipar-
ticles. In this case, there are twelve possible superselection
sectors for D2, as shown in Fig. 2. Eight consecutive tunnel-
ing events are required for the drain to absorb one electron
charge. The bare transition rate between two sectors is given
in Eq. (23). Notice that some transition rates in Fig. 2 are
multiplied by an additional factor of 1/2. This additional
factor comes from the fusion probability of anyons. In our
case, one has equal probability of getting ψ and I when
two vortices σ are fused together. This probability can be
calculated systematically from the algebraic theory of anyons
[49].

FIG. 2. Twelve possible superselection sectors for drain D2
when the tunneling process is dominated by charge-e/8 quasipar-
ticles. The arrows show all possible transitions between different
sectors at zero temperature. The corresponding transition rates and
statistical phases are shown in blue. The phases in pi are listed in
Table I.

When an e/8 quasiparticle moves around an area with mag-
netic flux �, an Aharanov-Bohm phase φAB = π�/(4�0)
is accumulated. The symbol �0 = h/e denotes the magnetic
flux quantum. Furthermore, the statistical phase accumulated
when the quasiparticle encircles the drain D2 in the state
(ne/8, α) is given by

φs = nπ

8
+ φσα

β . (28)

The first term comes from the U(1) bosonic charged sector,
whereas the second term is contributed from the braiding be-
tween the neutral modes. The eight Chern-number-dependent
phases in the transition rates between superselection sectors
(see Fig. 2) are listed in Table I.

In this work, we only focus on the zero-temperature limit.
Hence quasiparticles can tunnel from the edge with the higher
electrochemical potential to the edge with the lower electro-
chemical potential (edge 1 to edge 2 in Fig. 1) only. The corre-
sponding transitions between different superselection sectors
occur in one direction, as shown by the arrows in Fig. 2. To
determine the tunneling current and Fano factor for each non-
Abelian order, we will employ the kinetic equation approach
in Refs. [48,61].

To start, we introduce the symbol Ps,i(t ) for the probability
that the charge sq was transferred from S1 to D2 during

TABLE I. Eight Chern-number-dependent statistical phases in
the transition rates (see Fig. 2) for the Mach-Zehnder interferom-
etry experiment on ν = 1/4 FQHE. Here, the tunneling process is
dominated by the e/8 quasiparticles.

Rate φs Rate φs

p1 π (−1 + 6C)/8 p5 π (3 + 6C)/8
p2 π (−1 − 2C)/8 p6 π (3 − 2C)/8
p3 π (1 + 6C)/8 p7 π (5 + 6C)/8
p4 π (1 − 2C)/8 p8 π (5 − 2C)/8
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the time t . Here, q is the charge of the quasiparticle which
dominates the tunneling process. The index i labels the topo-
logical charge of drain D2 at the time t . The topological charge
is not affected by the transfer of an integer number of electrons
to D2 (s → s + ne/q). The probability satisfies the following
kinetic equation:

d

dt
Pl,i(t ) =

N∑
j=1

[Pl−1, j (t )w j→i − Pl, j (t )wi→ j]. (29)

In the present case, N = 12, which is the number of possible
superselection sectors for D2. The transition rate from sector
i to sector j is denoted as wi→ j .

To proceed, we introduce a generating function

fi(z, t ) =
∞∑

n=−∞
Pk+ne/q,i(t )zk+ne/q. (30)

Here k is uniquely determined by the topological sector i.
From Eq. (29), we obtain the kinetic equation for fi(z, t ):

d

dt
fi(z, t ) =

N∑
j=1

[z f j (z, t )w j→i − fi(z, t )wi→ j]. (31)

The above equation can be written in the matrix form:
ḟ (z, t ) = A · f (z, t ), with A being a 12 × 12 matrix. By the
Rohbrach theorem [63], all eigenvalues of A are non-negative
at z = 1. Also, one of them is nondegenerate and zero there.
As t → ∞, this special eigenvalue dominates the solution,
which we denote as λ(z).

In terms of fi, the average charge being transmitted during
the time interval t is given by

〈Q(t )〉 = q

(
d

dz

N∑
i=1

fi

)∣∣∣∣∣
z=1

. (32)

The tunneling current is defined as the average charge trans-
mitted per unit time:

I = lim
t→∞

〈Q(t )〉
t

= qλ′(z)
∣∣
z=1. (33)

Following the procedures in Refs. [48,64], we obtain the tunneling current for each non-Abelian topological order:

I = er

8
(|�1|2 + |�2|2)

[
1 − 2s2 + 5

4 s4 − 1
4 s6 + 1

64 s8 sin2 4γ

1 − s2

4 (7 + c1) + 5s4

16 (3 + c1) − s6

32 (5 + 3c1) − s8

64 c2(γ ) sin 4γ

]
. (34)

Here, we have defined γ = φAB + δ and the parameter s:

s = 2|u�1�2|
|�1|2 + |�2|2

. (35)

Note that the condition 0 � s � 1 must be satisfied [48],
so that the electric current flows from the edge with higher
electrochemical potential to the lower, irrespective of φAB.
Generally, there are multiple relevant operators for quasipar-
ticle tunneling at the QPCs. All these processes contribute to
the Hamiltonian in Eq. (22) and affect the possible values of s.
The renormalization group argument in Ref. [48] provides a
possible mechanism for achieving s = 1 in the limit of V → 0
and T → 0. In order to achieve the limit s = 1, it requires
|�1| = |�2|, namely a symmetric interferometer.

The coefficient c1 and function c2(γ ) in Eq. (34) depend on
the Chern number of the topological order (or, equivalently,
pairing channel for the composite fermions). They are listed

TABLE II. Coefficient c1 and the function c2(γ ) in Eq. (34) for
different Chern numbers, C. It is reminded that C = � as proven in
Appendix A.

C (mod 8) c1 c2(γ )

1 sin (π/8) cos(13π/16) sin (4γ − 3π/16)
−1 cos (π/8) cos (15π/16) sin (4γ + π/16)
3 − cos (π/8) sin (π/16) cos (4γ + π/16)
5 − sin (π/8) sin (19π/16) cos (4γ − 3π/16)

in Table II. In Fig. 3, we plot the tunneling current for each
non-Abelian order.

The corresponding Fano noise to the tunneling current is
defined as the following autocorrelation function:

S(ω) = 1

2

∫ ∞

−∞
〈I (0)I (t ) + I (t )I (0)〉eiωt dt . (36)

Our definition follows the convention in Ref. [61], such that
a prefactor 1/2 is included. In the low-frequency limit, the

FIG. 3. Prediction on tunneling current in a Mach-Zehnder in-
terferometer for different non-Abelian orders to the ν = 1/4 FQH
state. For comparison, the result for Abelian Halperin-(5,5,3) order
with flavor symmetry is also included [see Eq. (60) in Sec. IV C].
Here, we set s = 1 for demonstration.
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FIG. 4. Prediction on Fano factor in a Mach-Zehnder interferom-
eter for different non-Abelian orders to the ν = 1/4 FQH state. The
result for Abelian Halperin-(5,5,3) order with flavor symmetry is also
included for comparison. Here, we set s = 1 for demonstration.

Fano noise and the tunneling current are not independent. In
fact, they satisfy the following relation:

e∗ = S/I. (37)

The ratio e∗ is known as the Fano factor. It can be evaluated
as [48,64]

e∗ = lim
t→∞

〈δQ2(t )〉
〈Q(t )〉 = q

[
1 + λ′′(z)

∣∣
z=1

λ′(z)|z=1

]
. (38)

Here, 〈δQ2(t )〉 is the variance of the average charge transmit-
ted in the time interval t . It can be obtained from fi as follows:

〈δQ2(t )〉 = q2

(
d

dz
z

d

dz

N∑
i=1

fi

)∣∣∣∣∣
z=1

− 〈Q(t )〉2. (39)

Similar to the tunneling current, it is straightforward to
evaluate the Fano factor for each non-Abelian topological
order. However, the general expression is too lengthy to be
displayed here. The maximum Fano factor is achieved at
s = 1. In Fig. 4, we set s = 1 and plot the Fano factor against
γ for each non-Abelian topological order. It is observed that
both tunneling current and Fano factor are periodic in γ with a
period of π/4. This feature is consistent with the Byers-Yang
theorem [65]. In addition, the maximum Fano factor at s = 1
for each topological order has been determined numerically.
The results are listed in Table III.

TABLE III. Extremal values for Fano factor at s = 1. Here, γmax

and γmin are the optimal values for the Fano factor to achieve the
extremal values. Notice that both γmax and γmin are modulo π/4.

� (e∗/e)max γmax (e∗/e)min γmin

1 5.63 0.03 0.74 0.37
−1 53.2 0.77 0.44 0.50
3 1.08 0.02 0.36 0.40
5 1.93 0.75 0.50 0.39

FIG. 5. Four possible superselection sectors for drain D2 when
the tunneling is dominated by charge-e/4 quasiparticles with topo-
logical charge I . Here, D2 has an odd number of e/8 quasiparticles.
The arrows show all possible transitions between different sectors at
zero temperature. The corresponding transition rates and statistical
phases are shown in blue.

1. Signatures for 22111 parton order in ν = 1/4 FQHE

When the width of the quantum well and electron density
of the system are sufficiently large, it was recently suggested
that the 22111 parton order may describe the ground state
of the ν = 1/4 FQHE [38]. This speculated parton order is
topologically equivalent to an f -wave paired state of com-
posite fermions, i.e., pairing composite fermions in the � = 3
channel. In this case, it is observed from Fig. 3 that the
tunneling current is nearly (but not truly) symmetric about
γ = π/8 (mod π/4). This feature is absent in other paired
states. In addition, the maximum Fano factor at s = 1 is found
to be about 1.08. As shown in Fig. 4, it is rather likely for other
topological orders to exceed this maximal value. Therefore,
we suggest both the tunneling current and Fano factor mea-
surement in Mach-Zehnder interferometry can provide tight
constraints to identify the parton order.

2. Signatures for PH-Pfaffian state in ν = 1/4 FQHE

Aside from the � = 3 paired state, it is possible for the
Mach-Zehnder interferometer to identify the PH-Pfaffian or-
der (� = −1) for the ν = 1/4 FQH state. As shown in Fig. 3,
the tunneling current can reach a maximum value of 0.12 [in
units of er(|�1|2 + |�2|2)]. This value is at least 50% larger
than the maximum current that can be achieved by other
topological orders. In addition, Fig. 4 shows that the Fano
factor increases rapidly at γ ≈ π/16 (mod π/8) when s = 1.
It reaches a maximum value of about 53.2. This extremal
value is one order of magnitude larger than the corresponding
values for other paired states.

C. e/4 quasiparticle tunneling

We complete our analysis on Mach-Zehnder interferom-
etry for non-Abelian orders with a short discussion on e/4
quasiparticle tunneling. Depending on the number of e/8
quasiparticles in the drain D2, two different scenarios may
occur. We illustrate these two cases separately in Figs. 5
and 6. The most relevant charge-e/4 quasiparticles have a
trivial topological charge. The quasiparticle is described by
the vertex operator �e/4 = eiϕρ . When it encircles the drain
D2, a statistical phase

φ′
s = nπ

4
(40)

is accumulated. The symbol n denotes the number of charge-
e/8 quasiparticles in D2. It is important to notice that φ′

s does
not depend on the pairing channel of the composite fermions.

205306-7



KEN K. W. MA PHYSICAL REVIEW B 100, 205306 (2019)

FIG. 6. Four possible superselection sectors for drain D2 when
the tunneling is dominated by charge-e/4 quasiparticles with topo-
logical charge I . Here, D2 has an even number of e/8 quasiparticles.
The arrows show all possible transitions between different sectors at
zero temperature. The corresponding transition rates and statistical
phases are shown in blue.

Following similar procedures in previous discussion, one
can set up a new set of kinetic equations to determine the
tunneling current and Fano factor. When D2 has an odd
number of e/8 quasiparticles, the tunneling current takes the
form

I = er

4
(|�1|2 + |�2|2)

[
1 − s2 + s4

8 (1 + cos 4γ ′)

1 − s2

2

]
. (41)

Meanwhile, the Fano factor is given by

e∗

e
= 1 − s2

2 + s4

8 + s6

16 + s4

16 (s2 − 6) cos 4γ ′

4
(
1 − s2

2

)2 . (42)

Here, all symbols �1, �2, s are defined for the tunnel-
ing process of e/4 quasiparticles. Also, we define γ ′ =
π�/(2�0) + δ.

On the other hand, the tunneling current and Fano factor
when n is even are given by

I = er

4
(|�1|2 + |�2|2)

[
1 − s2 + s4

8 (1 − cos 4γ ′)

1 − s2

2

]
(43)

and

e∗

e
= 1 − s2

2 + s4

8 + s6

16 − s4

16 (s2 − 6) cos 4γ ′

4
(
1 − s2

2

)2 . (44)

Notice that the expressions for the two cases are shifted by
a phase of π/4 due to an additional e/8 quasiparticle in D2.
Also, the period of π/2 in both tunneling current and Fano
factor are expected [65]. Since the four sectors in D2 are
connected as in the Laughlin states, the maximum Fano factor
is e∗ = e at s = 1 [61].

In a general situation, all e/4, e/8 quasiparticles and the
neutral fermion can tunnel at the QPCs. The corresponding
tunneling current and Fano factor can be determined by solv-
ing a full set of kinetic equations. This procedure is straight-
forward but beyond the scope of our current manuscript.

IV. EXPERIMENTAL SIGNATURES OF HALPERIN-(5,5,3)
ORDER

Although we focused mainly on non-Abelian topological
orders in the previous two sections, the possibility of having
a two-component Abelian order in the ν = 1/4 FQH state
has not been completely ruled out. On the contrary, two-
component orders become favorable if the two effective layers
of 2DEG in a wide quantum well have a weak interlayer tun-
neling. Thus it is equally important to examine the experiment

signatures for two-component orders for the ν = 1/4 FQH
state.

In this section, we concentrate on the spin-unpolarized
Halperin-(5,5,3) order. It was suggested that this Abelian
order is a strong competitor to the non-Abelian orders in
describing the ν = 1/4 FQH state in a wide quantum well
[36]. Other two-component candidates, such as Halperin-
(7,7,1) and Halperin-(5,13,1) orders are rather unlikely to be
the solution. In particular, the former assumes each layer of
electron gas has a filling factor of 1/7. With such a low filling
factor, it is likely for the 2D electron gas to host a coupled
Wigner crystal rather than a FQH state [31]. For the latter, it
requires a strong density imbalance in the two effective layers.
Furthermore, the Halperin-(5,13,1) order was also eliminated
by the numerical results in Ref. [36] due to its requirement of
having an unrealistically wide quantum well. In Appendix C, a
brief discussion of several other two-component candidates is
provided. However, the numerical results in Ref. [38] suggest
that they are unlikely to be realized in the GaAs quantum well
setup.

A. Edge structure and thermal Hall conductance

We start our discussion by reviewing the edge physics of
the Halperin-(5,5,3) order, which is described by the following
Lagrangian density:

L = − 1

4π

∑
i, j

[Ki j∂tϕi∂xϕ j + Vi j∂xϕi∂xϕ j]. (45)

The corresponding two-by-two K matrix and charge vector t
are

K =
(

5 3
3 5

)
, t =

(
1
1

)
. (46)

The V matrix characterizes the interaction between the two
edge modes. The edge of the topological order has two down-
stream bosonic charged modes, ϕ1 and ϕ2. Thus the thermal
Hall conductance is predicted to be

κH = 2

(
π2k2

BT

3h

)
. (47)

B. Quasiparticles and tunneling exponents

Generically, any quasiparticle in an Abelian two-
component topological order can be represented by a vertex
operator [56]:

�q = ei(l1ϕ1+l2ϕ2 ) = eil ·ϕ. (48)

Here, we define l = (l1, l2) ∈ Z2 and ϕ = (ϕ1, ϕ2). The quasi-
particle has charge q:

q = e(lT K−1t ). (49)

Since all edge modes propagate in the same direction, the
scaling dimension of �q is independent of the interaction
between the edge modes. Specifically, one has

�q = 1
2 (lT K−1l ). (50)

Furthermore, a phase of φ12 = 2π lT
1 K−1l2 is accumulated

when a quasiparticle characterized by l1 encircles another
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TABLE IV. Experimental signatures of different proposed candidates for quantum Hall state at ν = 1/4 in a wide quantum well. The second
column classifies the topological orders into one-component (1C) or two-component (2C) states. The third column classifies the candidates
into non-Abelian and Abelian orders. All listed topological orders here have a fundamental quasiparticle with charge q = e/8. Several other
two-component candidates are discussed in Appendix C for future reference, but they are unlikely to describe the FQHE observed in the
GaAs quantum well experiment. The fourth and fifth columns give the universal tunneling exponents for e/8 and e/4 quasiparticles, with the
most relevant one being boldfaced. The sixth column provides the thermal Hall conductance (measured in units of π2k2

BT/3h). In the last
three columns, we list the expected results from interferometry. We assume the dominant process is e/8 tunneling. All non-Abelian orders
should demonstrate even-odd effect in a Fabry-Pérot interferometer. The Halperin-(5,5,3) order may also show the same effect, if they possess
flavor symmetry. The last two columns list the maximal and minimal values of the Fano factor in a shot-noise experiment with a symmetric
Mach-Zehnder interferometer (s = 1).

Candidate 1C/ 2C n-A? ge/8 ge/4 κH Even-odd effect? (e∗/e)max (e∗/e)min

Pfaffian 1C Yes 3/16 1/4 3/2 Yes 5.63 0.74
PH-Pfaffian 1C Yes 3/16 1/4 1/2 Yes 53.2 0.44
Anti-Pfaffian/ 2̄2̄11111 parton 1C Yes 7/16 1/4 1/2 Yes 1.93 0.50
22111 parton 1C Yes 7/16 1/4 5/2 Yes 1.08 0.36
Symmetric Halperin-(5,5,3) 2C No 5/16 1/4 2 Yes 1.93 0.50
One-flavor Halperin-(5,5,3) 2C No 5/16 1/4 2 No 2 43/64

quasiparticle characterized by l2, in the counterclockwise
direction.

The two most relevant electron operators for the spin-
unpolarized Halperin-(5,5,3) order are given by

�e = e5iϕ1+3iϕ2 , �e = e3iϕ1+5iϕ2 . (51)

Both of them have scaling dimension �e = 5/2. Different
from non-Abelian orders, there are two types of the most
fundamental quasiparticles. They are described by the vertex
operators

�e/8 = eiϕ1 , �e/8 = eiϕ2 . (52)

Both of them have charge e/8 and scaling dimension �e/8 =
5/32. For convenience in later discussion, we simply name
the e/8 quasiparticle described by a = (1, 0) and b = (0, 1)
as a and b quasiparticles, respectively. It is straightforward to
verify that the two operators in Eq. (52) have single-valued
OPEs with the two electron operators in Eq. (51). Lastly, we
remind that the charge-e/4 qausiparticles are characterized by
the vector l = (1, 1). Equivalently, they are described by the
vertex operator:

�e/4 = eiϕ1 eiϕ2 , (53)

which has scaling dimension �e/4 = 1/8.

1. Fractional statistics

Now, we determine the phase accumulated when an e/8
quasiparticle encircles another e/8 quasiparticle. When the
two quasiparticles are identical, one has

φ11 = φ22 = 5π

8
. (54)

If the two quasiparticles are different, then the mutual statisti-
cal phase is

φ12 = −3π

8
. (55)

These two results are important to our discussion on Mach-
Zehnder interferometry in the next subsection.

2. Tunneling exponents

From the previous discussion on scaling dimensions, the
tunneling exponents for e/8, e/4 quasiparticles and electron
for the Halperin-(5,5,3) order are

ge/8 = 5
16 , ge/4 = 1

4 , ge = 5. (56)

Notice that ge/8 are different from all tunneling exponents pre-
dicted for one-component non-Abelian orders in Sec. II (see
Table IV also). Thus the tunneling experiment may distinguish
between the Halperin-(5,5,3) order and other non-Abelian
orders, given that the tunneling process is dominated by e/8
quasiparticles.

C. Mach-Zehnder interferometry

Following the renormalization group analysis in Sec. III A,
both charge-e/8 and charge-e/4 quasiparticle tunneling are
relevant processes for the Halperin-(5,5,3) order. Again, we
will assume the process is dominated by the e/8 quasiparticles
in the following discussion. For the present case, we need
to take care of the two flavors of e/8 quasiparticles, namely
the a = (1, 0) and b = (0, 1) quasiparticles. In a general
situation, they have different tunneling amplitudes at the
quantum point contacts. Also, the probability of exciting them
in the FQH system can be different. A special case arises
if an exact or approximate flavor symmetry exists between
the a and b quasiparticles. Then, the Abelian topological
order can also demonstrate the even-odd effect in a Fabry-
Pérot interferometer, with the same reasoning in the case of
Halperin-(3,3,1) order [66]. In other words, the observation
of even-odd effect is not a decisive experimental signature for
identifying a one-component non-Abelian order. This subtlety
motivates us to examine Mach-Zehnder interferometry on the
(5,5,3) order. Our analysis follows closely to previous work
on the (3,3,1) order [67] and (1,1,3) order [68,69]. At the
end, we find that both predicted tunneling current and Fano
factor for the (5,5,3) order are different from those results for
non-Abelian orders in Sec. III.

Consider the situation when there are m copies of a and n
copies of b quasiparticles being stored in the drain D2 (see
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FIG. 7. Sixteen possible superselection sectors for drain D2 in
the Mach-Zehnder interferometer when the tunneling process is
dominated by e/8 quasiparticles in the Halperin-(5,5,3) order. The
red solid lines and blue dashed lines show the transitions between
different sectors when the incoming e/8 quasiparticle is an a =
(1, 0) and a b = (0, 1) quasiparticle, respectively. The corresponding
transition rates are either pa

j or pb
j , as defined in Eq. (59).

Fig. 1 for the experimental setup). We denote these superse-
lection sectors by a vector l = (m, n). The electric charge in
D2 is e(m + n)/8. When an incoming a quasiparticle encircles
the drain D2, a phase of

φa
s = 5πm

8
− 3πn

8
= π

8
(5m − 3n) (57)

will be accumulated. If the incoming particle is a b quasipar-
ticle, then the corresponding phase becomes

φb
s = 5πn

8
− 3πm

8
= π

8
(5n − 3m). (58)

Furthermore, two particles with l and l ′ = l + n1(5, 3) +
n2(3, 5) are identified. It is because the same phase would
be accumulated when an e/8 quasiparticle encircles them.
As a result, D2 can have 16 different possible superselection
sectors as illustrated in Fig. 7. Importantly, all 16 sectors are
connected. Otherwise, processes described by less relevant
operators matter.

Depending on the flavors of the incoming e/8 quasiparti-
cle, x = a or b, the transition rates between the superselection

FIG. 8. Prediction on tunneling current in a Mach-Zehnder in-
terferometer for Halperin-(5,5,3) order. In the plot, we have set
sa = sb = 1 and δa = δb in Eq. (59). Different curves correspond to
different values of η = |�b

i |2/|�a
i |2.

FIG. 9. Prediction on Fano factor in a Mach-Zehnder interfer-
ometer for Halperin-(5,5,3) order. Here, we set sa = sb = 1 and
δa = δb in Eq. (59). Different curves correspond to different values
of η = |�b

i |2/|�a
i |2.

sectors are

px
j = r

(∣∣�x
1

∣∣2 + ∣∣�x
2

∣∣2)[
1 + sx cos

(
π�

4�0
+ jπ

8
+ δx

)]
.

(59)

Here, the two symbols sx = 2|u�x
1�

x
2 |/(|�x

1 |2 + |�x
2 |2) and

δx = arg(u�x
2/�

x
1 ) are defined.

The tunneling current and Fano factor can be obtained from
the kinetic equation approach in Sec. III B by formulating a
new 16 × 16 matrix A to describe the transition rates between
the superselection sectors shown in Fig. 7. However, the
general expressions are very lengthy to display here. In order
to simplify our discussion and highlight some special cases,
we set sa = sb = 1 and δa = δb. Also, we define |�b

i |2 =
η|�a

i |2, where i = 1, 2 labels the QPCs. Here, the parameter
η characterizes the asymmetry between the two flavors of e/8
quasiparticles in the topological order. We show the tunneling
current and Fano factor for several values of η in Figs. 8 and
9, respectively.

1. Quasiparticles with flavor symmetry

Suppose there is an exact flavor symmetry between the
a and b types of e/8 quasiparticles. This scenario is cap-
tured by the setting of η = 1. Then, some superselection
sectors for D2 in Fig. 7 are identified. The end result is
shown in Fig. 10. In this case, the tunneling amplitudes

FIG. 10. Superselection sectors for D2 when an exact flavor
symmetry exists for the a = (1, 0) and b = (0, 1) quasiparticles in
the Halperin-(5,5,3) order. The transition rates satisfy pa

j = pb
j ≡ pj .
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satisfy �a
i = �b

i . Thus the transition rates in Eq. (59) simplify
to pa

j = pb
j = p j .

The corresponding tunneling current is given by Eq. (60),
which has a similar form to Eq. (34). This similarity can be
understood since both Figs. 2 and 7 have the same topology. In
order to compare with the results for non-Abelian orders, we

also plot Eq. (60) in Fig. 3. From the figure, it is observed that
the overall shape for the tunneling current for the Halperin-
(5,5,3) order is different from the results for non-Abelian
orders. This feature suggests that it can be more effective to
distinguish Abelian and non-Abelian orders for the ν = 1/4
FQH state by performing the Mach-Zehnder experiment:

I = er

4
(|�1|2 + |�2|2)

[
1 − 2s2 + 5

4 s4 − 1
4 s6 + 1

64 s8 sin2 4γ

1 − s2

4

(
7 − sin π

8

) + 5s4

16

(
3 − sin π

8

) − s6

32

(
5 − 3 sin π

8

) − s8

64 sin 3π
16 cos

(
3π
16 + 4γ

)
sin 4γ

]
. (60)

Furthermore, the maximum and minimum Fano factors
when s = 1 are found to be e∗

max ≈ 1.93e and e∗
min ≈ 0.50e.

These two values are very close to the results for the (� = 5)-
paired state. Nevertheless, the overall shape of the two curves
as a function of γ are not identical. This is illustrated in Fig. 4.

2. Tunneling by only one flavor of quasiparticles

Another special case happens when only one flavor of
e/8 quasiparticles is allowed to tunnel at the QPCs. Suppose
this quasiparticle is the a = (1, 0) particle. Then, the scenario
is captured by the setting of η = 0. In this case, the 16
superselection sectors for D2 are connected in a simple way,
analogous to the Laughlin state (simply connected by the red
solid lines in Fig. 7). In other words, it takes 16 consecutive
e/8-quasiparticle tunneling events for the drain to return to its
initial state. As a result, the periods in the tunneling current
and Fano factor reduce to π/8. Also, the Fano factor has a
maximum value of e∗ = 2e [48].

From Figs. 3, 4, 8, and 9, we find that the difference
between the experimental signatures in Mach-Zehnder inter-
ferometry for Halperin-(5,5,3) order and non-Abelian orders
become more transparent in the limit η → 0. On the other
hand, it becomes more challenging to resolve the small dif-
ference when η → 1. Therefore, it requires a combination of
different types of experiment to identify the topological order
in the ν = 1/4 FQH state.

V. SUMMARY OF EXPERIMENTAL SIGNATURES

In Table IV, we summarize the experimental signatures for
different topological orders. Based on the table, we comment
briefly on how the results may help to identify the nature of
the ν = 1/4 FQH state.

First, consider the tunneling experiment. We assume
the tunneling process is dominated by the smallest-charge
quasiparticles—in other words, the charge-e/8 quasiparti-
cles. Under this assumption, topological orders with different
numbers of Majorana modes at the edge will have different
tunneling exponents ge/8. However, the chirality of the Ma-
jorana modes cannot be determined from tunneling experi-
ment. In order to differentiate between topological orders with
upstream and downstream Majorana modes, an additional
experiment is required. This complementary experiment can
be upstream noise probing experiment or thermal Hall con-
ductance measurement. If topologically protected upstream
neutral modes are observed, then it provides a support to
the PH-Pfaffian and anti-Pfaffian orders. A Mach-Zehnder

experiment or thermal Hall conductance measurement may
differentiate between these two orders.

For topological orders having more than one Majorana
mode at the edge (including 22111 parton order and Halperin-
553 order), the situation becomes subtle. It is because the e/4
quasiparticles may dominate the tunneling process. In this
situation, one needs to employ other types of experiments
to identify different topological orders. Another tricky point
for the tunneling experiment is that it may overestimate the
tunneling exponent [24,70–73]. Thus the experiment provides
an upper bound to the tunneling exponent. This bound may
help to narrow down the set of possible candidates.

Next, the thermal Hall conductance experiment may pro-
vide a more direct probe to the topological order. If one
focuses on the Pfaffian, Halperin-553, and the 22111 parton
order, all of them have downstream edge modes only. Thus
partial thermal equilibration should not be an issue. Lastly,
all topological orders show different tunneling currents and
Fano factors in the Mach-Zehnder experiment. By combining
different experimental results, an unambiguous identification
of the topological orders in the FQH state may be achieved.

VI. CONCLUSIONS

To conclude our work, we have examined different exper-
imental signatures for non-Abelian orders from composite-
fermion pairing and the Abelian Halperin-(5,5,3) order for the
ν = 1/4 FQH state. The results are summarized in Table IV,
which provides a reference and direction for future experiment
to identify the underlying topological order in the system.

For the recently proposed 22111 parton order, it should
show a thermal Hall conductance of κH = 2.5π2k2

BT/3h,
satisfy the scaling laws I ∼ V −1/8 and G ∼ T −9/8 in tun-
neling experiment. In addition, we predicted that it should
demonstrate a more symmetric tunneling current in the Mach-
Zehnder experiment than other candidates. Furthermore, a
relatively small maximal Fano factor is expected. The last
two signatures provide tight constraints to test the proposal
in future experiments.

At the same time, we predicted that the two-component
Halperin-(5,5,3) order should show different signatures from
all the non-Abelian candidates. In particular, a measurement
of κH = 2π2k2

BT/3h may be a smoking-gun signal to identify
the Abelian order. Another possible way to identify the (5,5,3)
order comes from Mach-Zehnder interferometry. Further sup-
port may be gained from tunneling experiment if e/8 quasi-
particles dominate the tunneling process. More importantly,
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each type of experiment has its own subtleties. Therefore, the
identification of the topological order in the ν = 1/4 FQHE
requires a combination of different experimental signatures.

Lastly, some other problems on FQHE at ν = 1/4 are still
waiting for further exploration. For example, can we have
a better understanding on the phase transition in a bilayer
system, in which each layer is a quarterly filled wide quantum
well? Will a topological phase transition from a phase of
decoupled 22111 parton orders to a high-Chern-number phase
occur there? Also, what is the expected topological order
in other materials with ν = 1/4 FQHE, such as monolayer
graphene at the isospin transition point [14]?
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for valuable discussion. This work was supported by the
National Science Foundation under Grant No. DMR-1607451
and the Galkin Foundation Fellowship under the Department
of Physics at Brown University.

APPENDIX A: CHERN NUMBER FOR ODD
ANGULAR-MOMENTUM PAIRED QUANTUM HALL

STATES

In this Appendix, we examine the topological nature of
the non-Abelian orders originating from chiral l-wave pairing.
Since the corresponding BCS Hamiltonian breaks both time-
reversal symmetry and spin-rotational invariance, it is under
the symmetry class D in the Altland-Zirnbauer classification
[74]. The second homotopy group π2(S2) ∼= Z suggests that
the system is classified by an integer, namely the first Chern
number [15]. We evaluate this quantity explicitly in the fol-
lowing discussion.

In terms of field operators, the BCS Hamiltonian in Eq. (1)
in the main text can be written as

H = 1

2

∫
d2k

(2π )2

[
�†(k) �(−k)

]
(h · σ)

[
�(k)

�†(−k)

]
. (A1)

Here, �(k) is the field operator which annihilates a composite
fermion with momentum k. The three 2 × 2 Pauli matrices are
collectively denoted as σ. The operator h is given by

h =
[

Re(�k) − Im(�k)
k2

2m
− μ

]T

. (A2)

Recall that the chiral l-wave paired state has a gap function
�k = �0(kx ± iky)l . In polar coordinates, one has

h =
[
�0kl cos (lθ ) ∓ �0kl sin (lθ )

k2

2m
− μ

]T

. (A3)

From this, one further defines a unit vector ĥ = h/|h|. De-
pending on k, the unit vector ĥ can be associated to different
points on the unit sphere as shown in Fig. 11.

The Chern number captures the number of times that the
entire unit sphere is covered when one sweeps through all

FIG. 11. Unit sphere S2 spanned by ĥ when μ > 0. Here, we
choose �k = �0(kx + iky )l as the demonstration. For a fixed value
of k, ĥ sweeps out a circle with constant hz in the counterclockwise
direction (the red circle as an example). For the l-wave pairing, the
red circle is traversed for l times. When k increases from zero to ∞,
S2 is covered for l times. Hence the Chern number is expected to
be l .

possible k. Explicitly, the Chern number is given by [75]

C = 1

4π

∫
R2

ĥ · (
∂kx ĥ × ∂ky ĥ

)
d2k

= 1

4π

∫
R2

ĥ ·
[(

cos θ
∂ĥ
∂k

− sin θ

k

∂ĥ
∂θ

)

×
(

sin θ
∂ĥ
∂k

+ cos θ

k

∂ĥ
∂θ

)]
d2k. (A4)

After a direct substitution of Eq. (A3), the two-dimensional
integral becomes

C = ∓ l�2
0

2

∫ ∞

0

k2l−2
[
(l − 2) k2

2m − lμ
]

[
(�0kl )2 + (

k2

2m − μ
)2]3/2 k dk

= ± l

⎡
⎣ k2

2m − μ

2
√

(�0kl )2 + ( k2

2m − μ)2

⎤
⎦

k→+∞

k=0

= ± l

2

⎡
⎣ lim

k→+∞

⎡
⎣(

�0kl

k2

2m − μ

)2

+ 1

⎤
⎦

−1/2

+ sgn(μ)

⎤
⎦

= ± l

2
[1 + sgn(μ)]. (A5)

In the last step, the assumption |�0kl/(k2/2m − μ)| � 1 for
all values of k has been used. Therefore, C = ±l = � when
μ > 0 (weak-pairing phase). On the other hand, the Chern
number vanishes when μ < 0 (strong-pairing phase).

APPENDIX B: WAVE FUNCTIONS FOR PAIRED
QUANTUM HALL STATE AT ν = 1/2p

In this Appendix, we introduce a class of wave functions
to non-Abelian orders for the even-denominator FQH state by
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solving the BCS Hamiltonian in Eq. (1). The Hamiltonian can
be diagonalized by the following Bogoliubov transformation:

bk = ukck − vkc†
−k,

b†
k = u∗

kc†
k − v∗

kc−k,
(B1)

where |uk|2 + |vk|2 = 1. The diagonalized Hamiltonian takes
the form

HBCS =
∑

k

εkb†
kbk, (B2)

with the dispersion relation εk =
√

ξ 2
k + |�k|2 for quasiparti-

cle excitations. The wave function for the BCS ground state
is

|BCS 〉 ∼
∏

k

|uk|1/2 exp

(
1

2

∑
k

gkc†
kc†

−k

)
|vac〉 . (B3)

The symbol |vac〉 denotes the vacuum state, in which no
Bogoliubov quasiparticles are present. In momentum space,
the correlation function gk is given by

gk ∼ 1

(kx ± iky)l
. (B4)

Both the Pfaffian and PH-Pfaffian orders correspond to
the paired states with l = 1. Specifically, the former and
latter have positive and negative sign in the denominator of
gk, respectively. The wave function in the real space rep-
resentation can be obtained from the Fourier transform of
gk, i.e., g(z) = F[gk]. Here, the symbol F[ f (x)] represents
the Fourier transform of the function f (x). Finally, the wave
function for a ν = 1/2p FQH state is

�({zi}) = Pf[g(zi − z j )]
∏
i< j

(zi − z j )
2p. (B5)

The Gaussian exponential factor has been skipped in the above
equation.

To provide a demonstration of the above recipe, one can
obtain the wave function for a Pfaffian state from g(z) =
F[1/(kx + iky)] as follows. To clarify notations in the follow-
ing discussion, the holomorphic and antiholomorphic deriva-
tives are defined as

∂

∂z
= ∂

∂x
− i

∂

∂y
,

∂

∂ z̄
= ∂

∂x
+ i

∂

∂y
. (B6)

From the property of Fourier transform, one has

F[(kx + iky)F−1[g(z)]] ∼ δ(z)

�⇒ ∂

∂ z̄
g(z) ∼ δ(z)

�⇒ g(z) ∼ 1

z
= 1

x + iy
. (B7)

In the calculation, we only focus on the functional form in
each step. Hence the symbol ∼ is used. All other prefactors
can be absorbed in the normalization factor of the final wave
function. From Eq. (B5), one obtains the wave function for the

Pfaffian state (� = 1 pairing):

�Pf = Pf

(
1

zi − z j

) N∏
i< j

(zi − z j )
2p, (B8)

where N is the number of electrons in the system.
The above procedures can be applied to higher l-wave

pairing, which lead to

F
[

1

(kx + iky)l

]
∼ z̄l−1

z
. (B9)

Thus we obtain a possible wave function for the ν = 1/2p
FQHE by pairing the composite fermions in the positive �-
wave channel:

��>0({zi}) = Pf

[
(z̄i − z̄ j )l−1

zi − z j

] N∏
i< j

(zi − z j )
2p. (B10)

1. Wave functions in the lowest Landau level

a. Case 1: � > 0

Clearly, the wave function in Eq. (B10) is not confined in
the lowest Landau level (LLL). To project the wave function to
the LLL, one generally pulls all the antiholomorphic variables
z̄i to the left and replaces them by the derivatives z̄i → 2 ∂

∂zi

[76]. Then, the differentiation only acts on the polynomial
part, but not on the exponential Gaussian factor. In our present
case, this general procedure will lead to a complicated form of
wave functions. Alternatively, one may obtain a possible wave
function confined in the LLL by applying the procedures in
Ref. [27]:

�LLL
�>0 = PLLL

⎧⎨
⎩Pf

[
(z̄i − z̄ j )l−1

zi − z j

] N∏
i< j

(zi − z j )
2p

⎫⎬
⎭.

(B11)

Here, the lowest Landau level projection operator PLLL is
defined as [27]

PLLL{��>0} =
∫

{d2ξi}〈{zi}|{ξi}〉��>0({ξi}), (B12)

where 〈{zi}|{ξi}〉 = �i exp[−(|ξi|2 − 2ξ̄izi + |zi|2)/4l2
B]. It is

plausible that �LLL
�>0 is topologically equivalent to ��>0 in

Eq. (B10). However, a check on whether the projected wave
function truly describes a gapped phase (as required for FQH
wave functions) is still lacking.

b. Case 2: � < 0

For paired states with � < 0, a possible wave function can
be obtained by complex conjugating the Pfaffian factor in
Eq. (B10). This gives

��<0({zi}) = Pf

[
(zi − z j )|�|−1

z̄i − z̄ j

] N∏
i< j

(zi − z j )
2p. (B13)
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Similar to the previous case, one may formulate a possible
wave function in the LLL as

�LLL
�<0 = PLLL

⎧⎨
⎩Pf

[
(zi − z j )|�|−1

z̄i − z̄ j

] N∏
i< j

(zi − z j )
2p

⎫⎬
⎭.

(B14)

The lowest Landau level projection is performed in the same
way in Eq. (B12). Note that applying the above LLL projec-
tion to the PH-Pfaffian order leads to a gapless state, as argued
in Ref. [77]. The same issue may happen in other negative
�-wave paired states.

2. How about wave functions for Abelian topological orders?

In the above discussion, we have only formulated wave
functions for non-Abelian orders by pairing the composite
fermions in different odd-l channels. A natural follow-up
question is whether the same procedure can be applied to
formulate wave functions for Abelian topological orders? For
a spin-polarized or one-component system, we are not aware
of how to apply the above techniques directly on Abelian
orders. Nevertheless, one can still describe the properties of
the corresponding topological orders. It is believed that they
are still described by the sixteenfold way [48]. From this uni-
versal description, it is also possible to predict experimental
signatures for them in different experiments. However, this
discussion is beyond the scope of our current work and may
be addressed in a separate manuscript.

At the end, we want to make a short remark which may
lead to several questions for future investigation. It was shown
that the wave function for spin-unpolarized Halperin-(3,3,1)
order may be understood from the spin-triplet p-wave pairing
between spin-unpolarized composite fermions [15,78]. Is it
possible to generalize the idea to the ν = 1/4 FQHE and
lead to the wave function for the Halperin-(5,5,3) order?
Furthermore, the spin-polarized (3,3,1) order is related to its
spin-unpolarized version by a similarity transformation [24].
Thus it leads to the following question: can wave functions for
spin-polarized Abelian order be generated indirectly from the
wave functions of spin-unpolarized multicomponent Abelian
orders?

APPENDIX C: OTHER TWO-COMPONENT CANDIDATES

In this Appendix, we provide a brief discussion of several
other two-component candidates for the fractional quantum
Hall state at ν = 1/4. For simplicity, we use the symbol
�m,m,n({zi,wi}) to denote the wave function for the Halperin-
(m, m, n) order:

�(m,m,n)({zi,wi})

=
∏
i< j

(zi − z j )
m

∏
i< j

(wi − w j )
m

∏
i, j

(zi − w j )
n. (C1)

Here, zi and wi denote the coordinates for electrons in the two
different layers (or pseudospins).

1. Interlayer Pfaffian order

Similar to the ν = 2/3 bilayer FQH state [79–81], an
interlayer Pfaffian order for the ν = 1/4 FQHE can be con-
structed. The non-Abelian order has the following wave func-
tion [38,40,41]:

� inter
(6,6,2) = Pf

(
1

xi − x j

)
�(6,6,2)({zi,wi )}). (C2)

Here, xi = {zi,wi} refers to the coordinates for all electrons
in both layers. Equation (C2) suggests a shift S = 7 for the
topological order on a sphere. The edge consists of two Bose
modes φ1, φ2 and one Majorana mode ψ . All modes are
downstream, so the predicted thermal Hall conductance is
κH = (5/2)(π2k2

BT/3h). The wave function can be written as
the following correlation function of CFT operators:

� inter
(6,6,2) = 〈O({zi,wi})〉

=
〈∏

i

ψ (xi )e
6iφ1(zi )e2iφ2(zi )e2iφ1(wi )e6iφ2(w j )

〉
. (C3)

We write the CFT operator for the quasiparticle as σ eiωφ1 eiηφ2 .
By requiring it to have single-valued OPE with O({zi,wi}),
the smallest-charge quasiparticle has charge e/8 and is de-
scribed by

�e/8 = σ eiφ1/2eiφ2/2. (C4)

The operator has scaling dimension 3/32, so the expected
tunneling exponent is ge/8 = 3/16.

2. Intralayer Pfaffian order

When the interlayer correlation between electrons is
stronger, one may have an intralayer Pfaffian order to describe
the bilayer system [38]:

� intra
(6,6,2) = Pf

(
1

zi − z j

)
Pf

(
1

wi − w j

)
�(6,6,2)({zi,wi}).

(C5)

Similar to the interlayer version in Eq. (C2), the shift for
�

(6,6,2)
intra is also S = 7. However, the edge structures are dif-

ferent. For the intralayer version, there are two Bose modes.
In addition, there are two Majorana modes, ψ1 and ψ2. Each
of them is confined to a single layer. Thus one expects to
have κH = 3(π2k2

BT/3h). The smallest-charge quasiparticle
has charge e/16, described by the CFT operators:

�e/16 = σ1eiφ1/2 or σ2eiφ2/2. (C6)

Both have scaling dimension �e/16 = 11/128. Hence one has
ge/16 = 11/64. Compared to the usual charge-e/8 quasiparti-
cles in other candidates, the charge-e/16 quasiparticles would
produce a different signature in the shot noise experiment
[82].

3. Singlet 22111 parton order

The singlet 22111 parton order takes the following wave
function [38]:

�2↑↓2111 = PLLL
[
χ1({zi})χ1({wi})χ2χ

3
1

]
. (C7)

Here, χn denotes the wave function for the integer quantum
Hall state with n completely filled Landau levels. The parton
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TABLE V. Predicted experimental signatures and shifts for dif-
ferent two-component candidates for FQHE at ν = 1/4. The second
column classifies the candidates into non-Abelian and Abelian or-
ders. The third and fourth columns list the charges of fundamental
quasiparticles and their corresponding tunneling exponents. The
values are boldfaced if the quasiparticles are the most relevant in the
topological order. The fifth column gives the predicted thermal Hall
conductances, in units of π 2k2

BT/3h. Note that all candidates here
have downstream edge modes only. The last column shows the shift
of the topological order.

Candidate n-A? Qqp gqp κH S

�(5,5,3) No e/8 5/16 2 5
� inter

(6,6,2) Yes e/8 3/16 5/2 7
� intra

(6,6,2) Yes e/16 11/64 3 7
�2↑↓2111 No e/8 5/16 2 6

order has a shift S = 6, which is different from the fully spin-
polarized version in the main text. From a similar discussion
on 2↑↓21 parton order at ν = 1/2 [15,83], it is believed that
the 2↑↓2111 parton order is Abelian and can be understood as
the result of a d-wave pairing between composite fermions.
The edge structure of the parton order consists of two Bose
modes, so the predicted thermal Hall conductance is κH =
2(π2k2

BT/3h). The fundamental quasiparticle has charge e/8
with a scaling dimension �e/8 = 5/32. This leads to a pre-
dicted tunneling exponent ge/8 = 5/16.

4. Shift and predicted experimental signatures

In Table V, some predicted experimental signatures and
shifts for the two-component topological orders are summa-
rized. A combination of a tunneling experiment and a thermal
conductance experiment can distinguish the two-component
orders here and the topological orders in the main text.
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