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Nonadiabatic quantum fluctuations in the neutral ground state of tetrathiafulvalene-p-chloranil
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A nonadiabatic resonating Hartree-Fock method is applied to the one-dimensional extended Hubbard model
with a staggered site-diagonal potential and Su-Schrieffer-Heeger-type electron-phonon coupling to clarify
the lattice and electronic structures in the charge-density-wave (CDW) ground state. It is shown that small
spin-Peierls-type domains and large dimerized CDW domains appear in the main CDW state having an
equidistant lattice. Interference of breathing and translational motions of these domains constitutes quantum
fluctuations. The natures of different domains are analyzed by Löwdin-Feshbach partitioning method. The
present results, indicating the domains in the CDW ground state as quantum fluctuations, are consistent with
the experimentally observed THz electric-field-induced changes in the electronic dipole moment in the neutral
phase of tetrathiafulvalene-p-chloranil (TTF-CA).
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I. INTRODUCTION

Over the last century, a large body of research has investi-
gated organic charge transfer (CT) complexes, which exhibit
a lot of exotic phenomena, such as superconductivity and
photoinduced phase transition, due to the strong electron-
phonon and electron-electron interactions. The soft lattice
structures of organic CT complexes can easily change by tem-
perature or photoirradiation. With these structural changes,
they exhibit a rich variety of ground and excited states, such
as charge ordered, spin-Peierls, and superconducting states,
some of which are caused by the strong electron-electron
interaction. Thus, organic CT complexes are archetypal target
materials to experimentally investigate the many-body effects
with an eye to fundamental understanding and also practical
use.

In theory, on the other hand, it is still challenging to
simultaneously describe the electron-phonon and electron-
electron interactions. The many-variable variational Monte
Carlo (mVMC) method is a promising approach to incor-
porate all kinds of many-body effects in all dimensions [1].
The density matrix renormalization group (DMRG) method
is also a powerful approach for one-dimensional systems
[2,3]. To gain further intuitive understanding of the many-
body effects including the nonadiabatic ones in the quantized
lattice, we have recently extended a resonating Hartree-Fock
(ResHF) method to electron-phonon coupled systems. In this
method, direct products of the Slater determinants and the
coherent state representations of phonons are superposed.
All the orbitals in the Slater determinants and probability
amplitudes in the coherent states are optimized. By visual-
izing the electronic and lattice structures of the optimized
Slater determinants and coherent states, the nonadiabatic
ResHF method provides intuitive understanding of the quan-
tum fluctuations. In a previous paper, we have applied the
method to the one-dimensional extended Hubbard model with

Su-Schrieffer-Heeger (SSH)-type electron-phonon coupling
[4] and clarified the mechanism of the insulator-metal tran-
sition in doped transpolyacetylene [5,6].

In the present paper, we apply the method to the one-
dimensional extended Hubbard model with a staggered site-
diagonal potential [7–13] and SSH-type electron-phonon cou-
pling [14–17]. We focus on the electron and lattice structures
of the charge-density-wave (CDW) ground state. This model
is often used to investigate the electron and lattice structures of
tetrathiafulvalene-p-chloranil (TTF-CA). At T = 81 K, TTF-
CA exhibits a neutral-ionic phase transition, where the amount
of charge transfer from TTF molecules to CA molecules
significantly changes from 0.3 (neutral phase) to 0.6 (ionic
phase) [18–20]. Small charge transfer in the neutral phase
means large (small) electron density at TTF (CA) molecule,
and the state corresponds to the CDW state. On the other hand,
large charge transfer in the ionic phase means nearly equal
electron density at TTF and CA molecules. Interestingly, this
electronic change accompanies a structural change of the
lattice. The neutral phase has an equidistant lattice, while
the ionic phase has a dimerized lattice. As a localized spin
lies at each molecule, this ionic phase can be regarded as a
spin-Peierls state. This is attributed to the strong Coulomb
interaction in TTF-CA. Thus, TTF-CA is a good target ma-
terial to investigate the many-body effects due to both the
electron-electron interaction and electron-phonon coupling.
TTF-CA is also famous for its electronic-type ferroelectricity
in the ionic phase. In contrast to the conventional ferro-
electricity (e.g., displacive-type ferroelectricity), the charge
transfer from TTF molecules to CA molecules itself is the
origin of the electronic-type ferroelectricity [21]. Recently,
it was shown that this ferroelectricity can be controlled in a
subpicosecond time scale by THz electric fields [22]. This
success proved that TTF-CA is a promising candidate material
for ultrafast electric devices. Morimoto et al. applied a similar
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THz pulse to the neutral phase. Although this phase does
not show the ferroelectricity, they have succeeded in showing
that a large macroscopic polarization was generated by the
THz electric field [23]. They concluded that there are two
different contributions to the electric-field-induced polariza-
tion. One is a fast-following intermolecular charge transfer
and the other is a slower breathing motion of domain walls
connecting the neutral state and the ionic state. In addition, the
observed reflectivity change indicated a coherent oscillation
related to the lattice dimerization in the ionic domains. This
is because the spin-Peierls dimerization is necessary to realize
the ionic state. All these demonstrate the robustness of the
electron-electron and electron-phonon interactions in TTF-
CA and the critical importance of theoretical calculations
of the electron and lattice structures beyond the adiabatic
approximation.

We will show that small spin-Peierls domains appear in
the CDW state in the ResHF wave function. Rather wide
dimerized CDW regions (dimerized domains) also appear in
the main CDW state with an equidistant lattice. The quan-
tum fluctuations in the CDW state can be explained by the
breathing and translational motions of these two kinds of
domains. Although our theory cannot describe the dynamics
of the electron or lattice, the present results strongly suggest
that spin-Peierls domains really exist and the almost instan-
taneous polarization response to the THz electric field would
be attributed to these spin-Peierls domains and dimerized do-
mains, inherent in the ground-state wave function as quantum
fluctuations. In the past, many researchers thought that the
CDW phase was fully understood. The CDW phase of TTF-
CA was a somewhat uninteresting state without ferroelec-
tricity. Nevertheless, the recent THz pump-probe study [23]
has demonstrated the possibility that the structures and the
motions of small local domains in the uniform CDW phase,
whose spatial/temporal monitoring is extremely difficult, can
play a critical role in the macroscopic polarization of TTF-
CA. The CDW state has come back as a challenging and
fascinating topic. By shedding light on the quantum fluctu-
ations inherent but obscured in the regular CDW phase, our
study clarifies how electronic structures and lattice structures
are mutually coupled beyond the adiabatic (classical) pictures
and thereby provides new suggestions that will serve a basis
for interpreting and controlling the ultrafast polarization of
the CDW state of TTF-CA. By using the Löwdin-Feshbach
partitioning method [24–29], we also investigate how spin-
Peierls domain states are stabilized and mutually superposed
under the influence of dimerized domain states. The present
paper provides a clear picture of quantum fluctuations in the
electron and (quantized) lattice structures of TTF-CA beyond
the adiabatic approximation.

The paper is organized as follows. In Sec. II and III,
we briefly review our model and method. In Sec. IV A,
we analyze the ResHF wave functions in terms of domain
structures and their system-size dependence. In Sec. IV B,
the nature of the quantum fluctuation is further discussed by
using Löwdin-Feshbach partitioning method. In Sec. IV C, we
provide a theoretical insight into the subpicosecond dynamics
of TTF-CA initiated by a pump pulse. Finally, we give a brief
summary in Sec. V.

II. MODEL

We use the following model Hamiltonian for the one-
dimensional chain of TTF-CA:

H = −
N∑

l=1

∑
σ=↑,↓

[t − α(ql+1 − ql )](c
†
l+1,σ

cl,σ + c†
l,σ cl+1,σ )

+�

N∑
l=1

(−1)l nl +
N∑

l=1

[
p2

l

2M
+ K

2
(ql+1 − ql )

2

]

+U
N∑

l=1

nl,↑nl,↓ + V
N∑

l=1

nl+1nl , (1)

where N is the system size. c†
l,σ (cl,σ ) is a creation (anni-

hilation) operator of an electron with spin σ at the lth site,
and the relevant number operator is given by nl,σ = c†

l,σ cl,σ .
The first term of Eq. (1) represents the transfer of electrons
with SSH electron-phonon coupling [4]. The parameters t and
α denote the transfer energy for the uniform equidistant lat-
tice and the electron-phonon coupling constant, respectively.
The operator ql denotes the lattice displacement from the
equidistant position at the lth site, which is scaled by the
lattice constant of TTF-CA in the CDW ground state with the
equidistant lattice. Due to this scaling, α has the dimension
of energy. See Supplemental Material [30] for further details
regarding the scaling. α(ql+1 − ql ) is the linear deviation of
the transfer energy from t for the equidistant lattice. This
linear deviation approximation of the transfer energy is valid
when the lattice displacement is small. In the case of TTF-CA,
the neutron diffraction experiment showed that the CDW state
has an equidistant lattice [19]. Even in the spin-Peierls ground
state, the lattice distortion is only a few percent of the lattice
constant [19]. Therefore, the linear deviation approximation
works well for TTF-CA. nl in the second term is the total
number operator of electron at the lth site, that is, nl =
nl,↑ + nl,↓. The site with odd l has the highest occupied
molecular orbital (HOMO) of the neutral TTF molecule, while
the site with even l has the lowest unoccupied molecular
orbital (LUMO) of the neutral CA molecule. 2� denotes
the energy difference between these molecular orbitals. The
third term represents the lattice Hamiltonian Hph, where we
approximately use the equal mass M for both the TTF and
CA lattice points. pl denotes the momentum of the lth lattice
point and K is the lattice elastic constant. We assume the
harmonic oscillation of the lattice. In TTF-CA, as mentioned
above, the lattice deviation from the equidistant lattice is very
small and, therefore, nonharmonic effects can be negligible.
In our Hamiltonian, since the lattice deviation is scaled by
the lattice constant, K has the dimension of energy. U in the
fourth term and V in the last term denote the on-site and
the nearest-neighbor-site Coulomb interaction, respectively.
We impose a periodic boundary condition on this model and
thus

c†
N+1,σ = c†

1,σ , qN+1,σ = q1,σ , pN+1,σ = p1,σ . (2)
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In this study, we treat not only electrons but also lattice
quantum mechanically. Using Fourier transformation,

ql = 1√
N

∑
−π<k�π

Qkeikl , pl = 1√
N

∑
−π<k�π

Pke−ikl , (3)

the lattice Hamiltonian can be rewritten as

Hph = 1

2M

∑
−π<k�π

PkP†
k + M

2

∑
−π<k�π

ω2
k Q†

kQk, (4)

where

ωk = ω

∣∣∣∣sin
k

2

∣∣∣∣, ω = 2

√
K

M
. (5)

In addition, we define the creation and annihilation operators
of a phonon with mode k as

b†
k = MωkQ†

k − iPk√
2Mh̄ωk

, bk = MωkQk + iP†
k√

2Mh̄ωk
. (6)

Thus, we get the following quantized lattice Hamiltonian

Hph =
∑

−π<k�π

h̄ωk

(
b†

kbk + 1

2

)
, (7)

where h̄ is the reduced Planck constant. From Eqs. (3) and (6),
ql and pl are given by

ql =
∑

−π<k�π

√
h̄

2MNωk
(bk + b†

−k )eikl , (8)

pl =
∑

−π<k�π

i

√
Mh̄ωk

2N
(b†

k − b−k )e−ikl . (9)

We thereby treat {ql} and {pl} quantum mechanically.
To describe the CDW ground state of TTF-CA, we use the

following parameters:

t = 1, U = 10, V = 4.5, � = 0.65, and

h̄ω = 0.07. (10)

In practical calculations, we set h̄ = 1. The electron-phonon
coupling constant α and the lattice elastic constant K are set
at

α = 0.35, K = 0.4, (11)

which are determined to approximately realize the lattice
structures of the neutral and ionic phases of TTF-CA. The
system has an equidistant lattice in the neutral phase while
it has a dimerized lattice in the ionic phase. In the previous
paper [31], they used the parameters, as

λ = α2

tK
= 0.55, (12)

where λ is a dimensionless electron-phonon coupling constant
[32]. On the other hand, our parameters give λ = 0.31. Al-
though our λ is smaller than the previous one, the difference
does not affect the qualitative features we will describe below.
This would be because our parameter regime of U,V, and
� is rather far from the phase boundary. When using these
parameters for Eq. (1), the CDW state becomes the ground
state of this system. In this paper, the energy is scaled by

transfer energy t . For TTF-CA, t is estimated as t = 0.17 eV
by a band calculation [33]. This value of the transfer energy is
also consistent with the previously employed one in Ref. [34].
U and V are determined to approximately reproduce the
optical gap energy around 0.5 eV with t = 0.17 eV [13]. ω is
roughly estimated by using the Raman spectrum in Ref. [22].

III. METHOD

Here, we briefly review a ResHF method for a many-
fermion system. First, we prepare a basis set χ = {χi}, i =
1, . . . , N . In the present case, χi is the HOMO of TTF when
i is odd. On the other hand χi is the LUMO of CA when i is
even. We construct the occupied molecular orbitals for spin
σ of the f th Slater determinant ϕ f ,σ = [(ϕ f ,σ )

α
] by a linear

combination of the basis set, such as

(ϕ f ,σ )α =
N∑

i=1

(U f ,σ )i,αχi, (13)

where U f ,σ = [(U f ,σ )i,α] is the N × Nσ matrix satisfying
U†

f ,σU f ,σ = I. Here, Nσ is the number of electrons with spin
σ . It should be noted that we employ the different orbitals for
different spins (DODS). Then, if we define c†

i,σ as a creation
operator applying to the χ space, a creation operator f †

α,σ

applying to the ϕ f ,σ space is given by

f †
α,σ =

N∑
i=1

(U f ,σ )i,αc†
i,σ . (14)

Thus, we can define the f th Slater determinant by

|ψ f 〉 =
∏

σ=↑,↓

occ∏
α

f †
α,σ |0(e)〉, (15)

where |0(e)〉 is the vacuum of electrons. In the ResHF method,
we generate a many-body wave function by the superposition
of such Slater determinants,

|
〉 =
NS∑
f =1

Cf

NG∑
G

PG|ψ f 〉. (16)

We usually use the symmetry-broken DODS-type orbitals for
the Slater determinants. PG in Eq. (16) schematically repre-
sents symmetry projections to preserve the original symmetry
of the system, and NG is the number of these projections.
In practical calculations, we carry out the Peierls-Yoccoz
projections [35] to recover the spatial symmetry of the sys-
tem represented by DN/2. We also apply the half projection
[36,37] to the wave function to approximately obtain the
spin-singlet state. The total number of the superposition is
NS × N/2 (to recover the CN/2 translation symmetry) × 2 (to
recover the spatial inversion symmetry at the site center) × 2
(spin half projection to remove the triplet component). We
variationally determine all the unitary matrices U f ,σ (orbital
optimization) as well as the superposition coefficients. The
details of the optimization procedures are given in Ref. [38].
The Slater determinants generating the ResHF wave function
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TABLE I. Comparison of the energies E and correlation energies
ECORR obtained with the HF, ResHF, and ED methods (U = 10, V =
4.5, � = 0.65, N = 14).

Method E ECORR (%)

HF 55.580 0 0
ResHF(NS = 3) 55.217 0.363 93
ResHF(NS = 15) 55.195 0.385 99
ED 55.191 0.389 100

are nonorthogonal to each other, as

〈ψ f |ψg〉 =
∏

σ=↑,↓
det(U†

f ,σUg,σ ) �= 0. (17)

If the electron correlation is small, the perturbation or the
low order configuration interaction from the Hartree-Fock
(HF) state is accurate enough to describe the system. How-
ever, if the electron correlation is significantly large, the
interaction modifies the orbital structures deeply below the
highest occupied orbital. We call such a large correlation
effect, which cannot be described by the perturbation or low
order configuration interaction, a static correlation effect. As
the ResHF wave function has independent nonorthogonal
molecular orbital sets for different Slater determinants, it can
efficiently describe the static correlation effects, compared to
the orthogonal multiconfiguration approach which has only a
single molecular orbital set, just exchanging the occupied and
unoccupied orbitals. This is the main reason why the ResHF
wave function can describe the electron correlation effects
efficiently [39,40].

Furthermore, we give physics to the quantum fluctuations
in terms of quantum interference of the relevant states. For
this purpose, we first investigate the HF ground and excited
states and guess what states would be relevant to the correlated
ground state. This is a standard guideline for choosing trial
Slater determinants generating the ResHF wave function.
Then we optimize all the orbitals of the Slater determinants.
The orbital optimization is important to obtain the accurate
wave function. Even if we choose wrong trial Slater determi-
nants, the orbital optimization modifies the orbitals to yield
the accurate wave function. To check the accuracy of the
ResHF wave function, we carried out the exact diagonaliza-
tion (ED) calculation for the present model (U = 10,V =
4.5,� = 0.65 at N = 14). For simplicity, we employed the
adiabatically fixed equidistant lattice in this benchmark calcu-
lation. The ground state energy E and the correlation energy
ECORR of every method are shown in Table I. We note that
ECORR is defined by

ECORR = EHF − E , (18)

where EHF represents the HF energy. As can be seen in
Table I, the exact ground state energy is 55.191 in units of
t , while the unrestricted HF energy is 55.580. The ResHF
energy is 55.217 in the case of NS = 3, and it becomes 55.195
in the case of NS = 15. Thus, 93% of the exact correlation
energy is explained by the superposition of only three Slater
determinants. 99% of the correlation energy is explained with

15 Slater determinants. We can thus safely say that the ResHF
method works well for the present model.

Recently, we extended the ResHF method to electron-
phonon coupled systems. To describe the lattice, we employ
the coherent state representation of phonons, such as

|φ f 〉 = e−|z f |2/2ez f ·b† |0(ph)〉, (19)

where

z f = (z f ,1, z f ,2, . . . , z f ,N ), b† = (b†
1, b†

2, . . . , b†
N ). (20)

Here, |0(ph)〉 is the vacuum of phonons and z f ,k is the proba-
bility amplitude of the phonon with mode k in the f th lattice
state. The coherent state has nonorthogonality:

〈φ f |φg〉 = exp

[
z∗

f · zg − |z f |2 + |zg|2
2

]
�= 0. (21)

The coherent state |φ f 〉 is an eigenstate of the annihilation
operator bk and the corresponding eigenvalue is z f ,k :

bk|φ f 〉 = z f ,k|φ f 〉. (22)

Using Eqs. (8), (9), and (22), we obtain the following equa-
tions:

〈φ f |ql |φ f 〉 =
∑

−π<k�π

√
h̄

2MNωk
(z f ,k + z∗

f ,−k )eikl , (23)

〈φ f |pl |φ f 〉 =
∑

−π<k�π

i

√
Mh̄ωk

2N
(z∗

f ,k − z f ,−k )e−ikl . (24)

Since we consider the solid state, the expectation value
〈φ f |pl |φ f 〉 in Eq. (24) should be zero. Then, we obtain

z∗
f ,−k = z f ,k . (25)

Using Eq. (25), Eq. (23) can be rewritten as

〈φ f |ql |φ f 〉 =
∑

−π<k�π

√
2h̄

MNωk
z f ,keikl . (26)

We can determine the lattice structure from {z f ,k}.
The nonadiabatic ResHF wave function is constructed by

the superposition of direct products of nonorthogonal Slater
determinants |ψ f 〉 for electrons and coherent states |φ f 〉 for
phonons:

|
〉 =
NS∑
f =1

Cf

[
NG∑
G

PG(|ψ f 〉 ⊗ |φ f 〉)

]

=
NS∑
f =1

Cf

NG∑
G

PG|ψ f , φ f 〉, (27)

where Cf ’s are the superposition coefficients and NS is the
number of the nonorthogonal bases {|ψ f , φ f 〉}. By super-
posing the coherent states, we can efficiently describe large
quantum fluctuations beyond the adiabatic approximation,
such as the breathing motions of topological lattice defects.

In the present ResHF wave function, {Cf | f = 1, . . . , NS},
{U f ,σ | f = 1, . . . , NS, σ =↑,↓}, and {z f | f = 1, . . . , NS} are
variationally determined [5,38,41]. In other words, electronic
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FIG. 1. Structures of two Slater determinants and coherent states, (a) |ψ1, φ1〉 and (b) |ψ2, φ2〉, for (N, NS ) = (50, 7). The weight of each
state is the following: W1 = 0.1914 and W2 = 0.1658.

states and lattice structures are determined to minimize the
energy:

E = 〈
|H |
〉
〈
|
〉 . (28)

In the present model, we found that the spin-Peierls-type
domains in the CDW state are relevant in the HF approx-
imation (though we omit these HF results). To describe
the quantum breathing motion of such spin-Peierls domains
(quantum interference among domains of different sizes), we
superposed the Slater determinants having the spin-Peierls
domains of different sizes, as a trial wave function. Then, we
optimized all the orbitals of the Slater determinants generating
the ResHF wave function. We also employed different trial
wave functions, having topological solitons, lattice solitons,
etc. However, after the orbital optimization, these solitons
disappeared and the spin-Peierls domains appeared in the
CDW states. In addition, even though we started with the
equidistant lattice, the dimerized CDW domains appeared in
the substantial equidistant CDW state, as shown below, after
the lattice optimization.

IV. RESULTS AND DISCUSSION

A. Nonadiabatic ResHF solutions and quantum fluctuations

We apply the nonadiabatic ResHF method to the model
given by Eq. (1) in order to reveal the quantum fluctuations
of electron and lattice in the CDW ground state. We calculate

the ResHF wave function for N = 50 and N = 122 to examine
the system-size dependence. Before showing our results, we
define the following physical quantities for analyzing the
Slater determinants and coherent states:

Q f (l ) = 〈ψ f , φ f |ql |ψ f , φ f 〉, (29)

CD f (l ) = 〈ψ f , φ f |(nl − 1)|ψ f , φ f 〉, (30)

SD f (l ) = 1

2
〈ψ f , φ f |(nl,↑ − nl,↓)|ψ f , φ f 〉, (31)

Wf =
∣∣∑NG

G 〈
|PG|ψ f , φ f 〉
∣∣2

∑NS
f =1

∣∣∑NG
G 〈
|PG|ψ f , φ f 〉

∣∣2 . (32)

Q f (l ) is the lattice displacement from the equidistant position
of the lth site in the f th electron-lattice state |ψ f , φ f 〉. A
positive (negative) value of Q f (l ) indicates that the lth lattice
point moves to the right (left). CD f (l ) and SD f (l ) represent
the charge density minus 1 and the spin density at the lth site
in |ψ f , φ f 〉, respectively. In addition, Wf denotes the weight
of |ψ f , φ f 〉 in the wave function |
〉. We should note that
the denominator in Eq. (32) is not equal to 1 because of the
nonorthogonality.

First, we show the structures of the ResHF wave function
for N = 50 with NS = 7 configurations. To save the space,
the structures of two configurations are shown in Fig. 1. The
configuration shown in Fig. 1(a) has the largest weight, while
the one in Fig. 1(b) has the widest domain, whose characteris-
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FIG. 2. Structures of three Slater determinants and coherent states, (a) |ψ1, φ1〉, (b) |ψ2, φ2〉, and (c) |ψ3, φ3〉, for (N, NS ) = (122, 35). The
weight of each state is the following: W1 = 0.0664, W2 = 0.0629, and W3 = 0.0188.

tics will be explained below. Although the symmetry of these
configurations is broken, the symmetry of the wave function
|
〉 is restored by projection PG in Eq. (27). From the middle
and bottom panels of Fig. 1(a), we can see that the CDW struc-
ture is suppressed and the spin-density-wave (SDW) structure
arises around the 25th and 26th sites. In addition, from the
top panel of Fig. 1(a), we can see that this domain shows
the lattice dimerization. Thus, we can regard this defect as a
spin-Peierls domain. In TTF-CA, the CDW state corresponds
to the neutral state with nearly doubly occupied HOMOs of
TTF and empty LUMOs of CA, and the spin-Peierls domain
corresponds to the ionic domain generated by HOMO-LUMO
charge transfer in the neutral phase. The configuration shown
in Fig. 1(b) has a slightly wider spin-Peierls domain around
the 24th to 27th sites. The other configurations have similar
structures, though the size of the spin-Peierls domain or the
amplitude of the lattice distortion is slightly different. Thus,
the ResHF wave function clearly shows that the spin-Peierls
domain inherently exists as a quantum fluctuation in the
CDW ground state. Furthermore, the superposition of these

spin-Peierls domains of different sizes, as in Fig. 1(a) and
1(b), represents the quantum breathing motion of the spin-
Peierls domain. In addition, the Peierls-Yoccoz projections
to recover the translation symmetry represent the quantum
translational motions of the spin-Peierls domains. Thus, the
quantum fluctuations in the CDW phase are physically de-
scribed by translation and breathing motions of the spin-
Peierls domains.

Next, we show the structures of the wave function for
N = 122 with NS = 35 configurations. Figure 2 shows the
structures of three configurations. The one in Fig. 2(a) has
the largest weight, and the one in Fig. 2(b) has the widest
spin-Peierls domain among 35 configurations. These two con-
figurations have only spin-Peierls domains, while the one in
Fig. 2(c) also has wide dimerized domains explained below.
The other configurations, which are not shown here, have
similar structures. As in the case of the wave function for
N = 50, all configurations have spin-Peierls domains. From
Fig. 2(c), we can also see that the dimerization appears even in
the CDW region around the 5th to 20th and the 95th to 110th
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FIG. 3. System-size dependence of ECORR/EHF.

sites. Hereafter, we call these dimerized CDW regions dimer-
ized domains. Although such dimerized domains are relatively
large, the spin-Peierls domain stays small even in N = 122.
This would be because the energy of the spin-Peierls state
is significantly higher than the CDW state in the present
parameter regime. As a result, the superposition of wider
spin-Peierls domains cannot lower the ground state energy,
and wide spin-Peierls domains cannot exist even as a quan-
tum fluctuation. Thus, the present result strongly suggests
that the density of the spin-Peierls domain should become
zero in the thermodynamic limit. Now a question arises how
and whether such quantum fluctuations of zero-density spin-
Peierls domains can play a decisive role in the thermodynamic
limit, especially in gaining the finite correlation energy. In
the ResHF wave function, we apply the symmetry projec-
tion to all the configurations. In the thermodynamic limit,
Peierls-Yoccoz projection for each configuration to recover
the translation symmetry corresponds to the superposition
of the infinite number of (two sites, four sites,. . ., N sites)
translated configurations. The superposition of such an infinite
number of symmetry adapted configurations, each of which
contains the finite-size (zero-density) spin-Peierls domain,
would gain the finite correlation energy in the thermodynamic
limit. To validate this idea, we show in Fig. 3 the system-size
dependence of the ratio of energy difference between the
ResHF and HF states to the HF energy. As can be seen from
Fig. 3, the ratio ECORR/EHF is nearly constant and likely to
converge to a finite value in the thermodynamic limit. Thus,
we can say that the quantum fluctuations due to the finite-size
(zero-density) spin-Peierls domains can work to stabilize the
CDW ground state in the thermodynamic limit. On the other
hand, the size of a dimerized domain is rather large and its
density (the ratio of the size of the dimerized domain to the
system) seems finite in the thermodynamic limit. Translation
and breathing motions of such dimerized domains also make
quantum fluctuations in the CDW ground state. We will see
the role of the dimerized domain in the next subsection.

B. Nonorthogonal configuration interaction calculations and
Löwdin-Feshbach partitioning analysis

To further study the natures and the origins of quantum
fluctuations in the ResHF wave functions, we skipped the

orbital and coherent-state optimizations described in Sec. III,
thereby performing nonorthogonal configuration interaction
(NOCI) calculations. To analyze the characteristics of the
spin-Peierls domains and the dimerized domains found above,
it is worth, to begin with, separately examining two differ-
ent Hilbert spaces. P space is spanned by {|�P

i 〉}, where
|�P

1 〉 is the CDW ground state in the HF theory and the
rest of the bases [i = 2, 3, . . . , dim(P)] have a spin-Peierls
domain across 2(i − 1) sites. Hereafter the energy of |�P

1 〉
will be denoted by ECDW. Q space is spanned by {|�Q

i 〉},
each of which has a dimerized domain across 2i sites [i =
1, 2, . . . , dim(Q)]. The NOCI bases in P or Q space are
constructed by referring to the charge density, spin density,
and lattice displacement in the spin-Peierls or the dimerized
domains of the ResHF solutions. To extract simple physical
pictures, spin-Peierls or dimerized domains with homoge-
neous density/lattice structures are inserted in the regular
CDW phase, which makes sharp domain boundaries. As
compared to the ResHF wave functions (Figs. 1 and 2), the
density/lattice structures of our NOCI bases sharply change
across a domain boundary (see Fig. 4 for the spin-Peierls
and the dimerized domain whose widths are eight sites).
Every NOCI basis, like in the ResHF wave function in
Eq. (27), is a symmetry-adapted projection of the product of
a Slater determinant and a coherent state. Even though the
expansion lengths employed are short, i.e., dim(P) = 25 and
dim(Q) = 24, and no orbital and coherent-state optimizations
are performed, the NOCI method in P + Q space accounts
for 37% of the correlation energy of the ResHF method for
N = 122. This suggests that the NOCI solutions are useful
for qualitative understanding of the ResHF wave functions.

We obtained the P-space NOCI eigenstates [N = 122 and
dim(P) = 25], whose spin-Peierls domain widths were ana-
lyzed in terms of the expectation values and the standard de-
viations. The expectation value of spin-Peierls domain width
for every NOCI eigenstate, {|
P

k 〉}, is defined by

DWsp =
∑25

i=1 2(i − 1)
∣∣〈
P

k

∣∣�P
i

〉∣∣2

∑25
j=1

∣∣〈
P
k

∣∣�P
j

〉∣∣2 . (33)

The standard deviation of the expectation value is given by√√√√∑25
i=1 {2(i − 1) − DWsp}2

∣∣〈
P
k

∣∣�P
i

〉∣∣2

∑25
j=1

∣∣〈
P
k

∣∣�P
j

〉∣∣2 . (34)

In Fig. 5(a), the resultant expectation values and standard
deviations are shown by up-triangle points and vertical bars,
respectively. The corresponding eigenenergies, which are in
ascending order in the diagonalized Hamiltonian EP, are
shown in Fig. 5(b). As shown in Figs. 5(a) and 5(b), an
eigenstate with a wider spin-Peierls domain is less stable in
energy. All standard deviations of the spin-Peierls domain
width are relatively small because only the NOCI bases
with similar domain widths have close energies and have
nonvanishing off-diagonal elements in both the Hamiltonian
and the overlap matrix [Figs. S1(b) and S1(c) in the Supple-
mental Material [30]]. The NOCI bases with a small domain
across 2 or 4 sites (i.e., |�P

2 〉 and |�P
3 〉) are more stable

than the CDW basis |�P
1 〉 due to the translation of the spin-

Peierls domain incorporated in the Peierls-Yoccoz projections
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FIG. 4. Structures of the NOCI bases with a domain across eight sites: (a) spin-Peierls domain base |�P
5 〉 and (b) dimerized domain base

|�Q
4 〉 for N = 122.

(Fig. S1(a) in the Supplemental Material [30]). The super-
position of these bases accounts for the breathing motion of
the spin-Peierls domain in the most stable NOCI eigenstate,
|
P

1 〉. The breathing motion in |
P
1 〉 does not significantly

expand the domain [DWsp = 3.18 with a standard deviation
of 2.45, Fig. 5(a)] but leads to notable energy stabilization
(ECORR = 1.052, Fig. 5(b)). This is consistent with the results
of the ResHF calculations, as discussed above.

We next obtained the Q-space NOCI solutions (N = 122
and dim(Q) = 24) and analyzed their dimerized domain
widths. Similar to Eq. (33), the expectation value of dimerized
domain width for every NOCI eigenstate, {|
Q

l 〉}, is defined
by

DWdim =
∑24

i=1 2i
∣∣〈
Q

l

∣∣�Q
i

〉∣∣2

∑24
j=1

∣∣〈
Q
l

∣∣�Q
j

〉∣∣2 . (35)
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FIG. 5. Domain widths and energies of nonorthogonal configuration interaction (NOCI) eigenstates. (a) Expectation values of the spin-
Peierls domain width with standard deviations (vertical bars) and (b) energies of the P-space eigenstates {|
P

k 〉}. (c) Expectation values of the
dimerized domain width with standard deviations (vertical bars) and (d) energies of the Q-space eigenstates {|
Q

l 〉}. The horizontal baselines
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The standard deviation is given by√√√√∑24
i=1 (2i − DWdim )2

∣∣〈
Q
l

∣∣�Q
i

〉∣∣2

∑24
j=1

∣∣〈
Q
l

∣∣�Q
j

〉∣∣2 . (36)

The expectation values and the standard deviations are shown
by down-triangle points and vertical bars, respectively, in
Fig. 5(c). Most of the Q-space NOCI eigenstates, unlike the P-
space ones, have wide dimerized domains, whose widths have
a large standard deviation; for example, for the most stable
eigenstate |
Q

1 〉, DWdim is 24.98 with a standard deviation of
13.81. This indicates the extensive superpositions of different
Q-space NOCI bases {|�Q

i 〉}, or in other words the large quan-
tum fluctuations of the dimerized domain, such as breathing
and translational motions. This is attributed to two primary
reasons. Firstly, the energies of the Q-space NOCI bases are
very close to ECDW regardless of the dimerized domain widths
(Fig. S2(a) in the Supplemental Material [30]). Secondly, in
the Hamiltonian and the overlap matrix (Figs. S2(b) and S2(c)
in the Supplemental Material [30]), the off-diagonal elements
among all Q-space NOCI bases are large due to the uniform
CDW electronic state and the small amplitude of dimerization
distortions. Figure 5(d) shows the eigenenergies, which are
in ascending order in the diagonalized Hamiltonian EQ. The
energies all remain close to ECDW [Fig. 5(d)]. Indeed, the
energy of |
Q

1 〉 is lower than ECDW only by 0.009. Conse-
quently, the breathing motion, as well as the translation, of
the dimerized domain makes only a little contribution to en-
ergy stabilization; meanwhile, large breathing motions do not
cause marked energy destabilization, which can facilitate the
dimerized domain expansion. This contrasts with the nature
of the spin-Peierls domains; recall that they cannot greatly
expand but still make a major contribution to the correlation
energy.

The NOCI calculation in P + Q space provides an insight
into the interference between the two kinds of domains with
different natures. To shed light on the Q-space influence on
the P-space states, for instance, it is worth studying how the
P-space eigenstates are further superposed by expanding the
Hilbert space to the larger P + Q space. By using the NOCI
eigenstates in P space and those in Q space, P + Q space is
spanned by∣∣
P

1

〉
,
∣∣
P

2

〉
, · · · ,

∣∣
P
dim(P)

〉
,
∣∣
Q

1

〉
,
∣∣
Q

2

〉
, · · · ,

∣∣
Q
dim(Q)

〉
.

(37)

We focus on the ground state, whose NOCI wave function is
written as

|
gs〉 =
dim(P)∑

k=1

DP
k

∣∣
P
k

〉 + dim(Q)∑
l=1

DQ
l

∣∣
Q
l

〉
. (38)

The expansion coefficients and the energy are determined by(
EP HPQ

HQP EQ

)(
DP

DQ

)
= Egs

(
I SPQ

SQP I

)(
DP

DQ

)
, (39)

where the Hamiltonian and the overlap matrix have nonzero
PQ and QP blocks since P and Q spaces are mutually
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FIG. 6. Influence of the dimerized-domain Q space on the spin-
Peierls-domain P space. (a) Diagonal energies and (b) the contour
map of Heff − EP in its matrix representation in the P-space eigen-
state bases, {|
P

k 〉}.

nonorthogonal. EP and EQ are the diagonal Hamiltonian
matrices whose entries are in ascending order [Figs. 5(b) and
5(d)]. Instead of directly solving this NOCI equation, we here
choose an equivalent but different approach, that is, Löwdin-
Feshbach partitioning method [24–29]. When applying this
method, we shall select P space as the model space of interest
and Q space as the external space to clarify the influence of
Q space on P space. An eigenvalue equation for the model P
space is then derived as follows:

HeffDP = EgsDP. (40)

This indicates that when an effective Hamiltonian Heff oper-
ates on its eigenstate DP, the projection of the ground state
onto the model space, it yields the ground-state energy in
Eq. (39). Such an effective Hamiltonian is given by

Heff = EP + (HPQ − EgsSPQ)

× (EgsI − EQ)−1(HQP − EgsSQP ). (41)

The second term in Eq. (41), or Heff − EP, represents the
influence of the external Q space on the model P space. Note
that EP is already diagonal, and Heff − EP is zero if there is no
Q-space influence. Hence, we will discuss the matrix structure
of Heff − EP to understand how the spin-Peierls domain states
{|
P

k 〉} are stabilized and/or mutually superposed under the
influence of the dimerized domain states {|
Q

l 〉}.
The diagonal elements and the contour map of Heff − EP,

including the off-diagonal elements, are shown in Figs. 6(a)
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and 6(b). Since EQ
l ≈ ECDW for l = 1, 2, . . . , dim(Q), as is

discussed in Fig. 5(d),

Heff − EP ≈ (HPQ − EgsSPQ)(HQP − EgsSQP )

Egs − ECDW
. (42)

The matrix structure in Fig. 6(b) is thus primarily determined
by the PQ and QP blocks of the Hamiltonian and the overlap
matrix in Eq. (39). In these blocks, Hamiltonian and overlap
matrix elements are nonvanishing between small spin-Peierls
domain states and most of the dimerized domain states with
various domain widths (Figs. S3(a) and S3(b) in the Sup-
plemental Material [30]). Therefore, the upper-left area in
Fig. 6(b), corresponding to the block of small spin-Peierls
domains, has nonzero Heff − EP elements due to the strong
influence of the dimerized-domain Q space. In Fig. 6(a),
the negligibly small diagonal (1, 1) element of Heff − EP

indicates that |
P
1 〉, the most stable eigenstate in P space, is

not further stabilized by the diagonal component. In contrast,
the large negative values of the (2, 2) and (3, 3) elements of
Heff − EP indicate that |
P

2 〉 and |
P
3 〉 states with slightly dif-

ferent spin-Peierls domain widths [Fig. 5(a)] are particularly
stabilized due to the influence of the dimerized domain states.
In addition, |
P

1 〉, |
P
2 〉, and |
P

3 〉 states mutually interact
through the off-diagonal Heff − EP elements. These Q-space
influences on both diagonal and off-diagonal elements lead to
the superposition among the three P-space states in the ground
state (Fig. 7), which is obtained after the diagonalization
of Heff . Note that this Q-space-induced superposition has
only a minor effect on the correlation energy (i.e., 0.002).
To sum up, the existence of the dimerized domain states
affects the superposition between the regular CDW state and
various spin-Peierls domain states, which can be critical when
interpreting the electric-field responses as will be explained
below.

In the thermodynamic limit, the spin-Peierls domain width
would slightly increase but is unlikely to diverge to infin-
ity [Fig. 8(a)]. This suggests that the density of the spin-
Peierls domain remains zero even when considering the quan-
tum fluctuations discussed above. Nevertheless, the quantum
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ground-state properties: (a) expectation values (diamond points) and
standard deviations (vertical bars) of the spin-Peierls domain width
and (b) energy ratio of ECORR/EHF. dim(P) and dim(Q) are 25 and
24, respectively.

fluctuations affect the correlation energy. ECORR/EHF is very
likely to have a nonzero finite value in the thermodynamic
limit [Fig. 8(b)]. All of these NOCI results are consistent
with the ResHF results (see Fig. 3 for the ResHF correlation
energy).

C. Insights into the fast charge and lattice responses of TTF-CA
to femtosecond electric-field pulses

We focus on two recent pump-probe studies on the neutral
phase of TTF-CA [23,42]. One of them reported a photoin-
duced neutral-ionic (NI) transition by using 15-fs laser pulses
[42], and the other revealed that a THz pump pulse pro-
duces a large macroscopic polarization partly due to the ionic
domain expansion and shrinking [23]. In both experiments,
the observed transient reflectivity, a good probe of charge
transfer, is explained by the displacive excitation of coherent
phonons (DECP) mechanism [43]. The mechanism comprises
the following sequential processes: (i) instant intermolecular
electron transfer and (ii) subsequent decays involving coher-
ent vibrational motions. For the first process, the NI transition
study suggests that the 15-fs pump pulse would generate
ionic domains in 20 fs without spin-Peierls dimerization [42].
The THz pump-probe study also suggests an initial electronic
response without lattice motions [23]. In contrast, we found
the electron-lattice states with dimerized ionic (spin-Peierls)
and neutral (CDW) domains in the ground-state ResHF wave
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function, which is schematically shown by

|
〉 = C1|· · · D0A0D0A0 · · ·〉
+ C2|· · · D0A0 D+A− D+A− D0A0 · · ·〉
+ C3|· · · D0A0 D+A− D+A− D+A− D0A0 · · ·〉
+ C4|· · · D0A0 D0A0 D0A0 D0A0 · · ·〉
+ C5|· · · D0A0 D0A0 D0A0 D0A0 D0A0 · · ·〉 + · · · .

(43)

The underlines shown above represent the lattice dimeriza-
tion. Supposing that the weight of each electron-lattice state
in Eq. (43) is instantly changed by the pump pulse, the
expectation value of the dimerized ionic domain width can
accordingly change. For example, Franck-Condon excitation
of dimerized neutral domains will generate dimerized ionic
domains (i.e., increased populations of |C2|2 and |C3|2 and
decreased populations of |C4|2 and |C5|2). These suggest that
not only the equidistant ionic domains but also the dimerized
ionic domains can be immediately generated by a femtosec-
ond pulse.

We next discuss the subsequent process involving coherent
vibrational motions. Both experiments attribute the coherent
oscillation with a frequency of 54 cm−1 to the spin-Peierls
dimerization in the generated ionic domains [23,42]. The
THz pump-probe study further clarified that the ionic domain
expansion/shrinking, or breathing oscillations of NI domain
walls, is slowed down by the accompanying lattice dimer-
ization [23]. These indicate that the ionic domains in the
neutral phase are stabilized by the spin-Peierls mechanism,
which is consistent with the spin-Peierls domains found in
the ResHF solutions. The NOCI calculations revealed that the
spin-Peierls domain bases directly interact through the off-
diagonal P-space Hamiltonian/overlap elements. The spin-
Peierls domain bases also show the indirect interference via
the dimerized CDW domain bases, as is seen in the nondiag-
onal effective Hamiltonian. These direct and indirect interfer-
ences between different spin-Peierls domain bases can facili-
tate the NI domain wall motions under a THz electric field.

V. SUMMARY

By applying the nonadiabatic ResHF theory to the
extended Hubbard model incorporating a staggered site-
diagonal potential and the SSH electron-phonon coupling,
we clarified the quantum fluctuations in the correlated CDW
ground state of TTF-CA. We found two kinds of distinctive
domain structures: ionic domains with spin-Peierls dimer-
ization and neutral dimerized domains in the regular CDW
phase. The domain walls connecting the neutral and ionic
states have already been believed to be important especially
near the phase boundary. However, this picture is usually
discussed on the basis of the HF approximation or simplified
noninteracting models. The present research, based on the
ResHF wave functions, clarified that the ionic (or spin-Peierls)
domains inherently exist in the neutral (CDW) ground state
as quantum fluctuations even in the parameter regime rather
far from the phase boundary. We should also note that the
spin-Peierls domain has a dimerized lattice. Furthermore,
the dimerized CDW domain is a new concept, as the CDW
state is believed to exist on the equidistant lattice. The most
important point is such intuitive pictures are obtained by the
many-body theory beyond the adiabatic approximation. The
spin-Peierls domains do not easily expand in the ground state
(i.e., zero domain density in the thermodynamic limit) but still
notably contribute to the correlation energy. By contrast, the
dimerized CDW domains can greatly expand, which has little
effect on the correlation energy. The configuration interaction
calculations and the Löwdin-Feshbach partitioning indicate
that spin-Peierls domain states with different domain widths
can directly and indirectly interact. The indirect interference
is mediated by the dimerized domain states. Beyond the
conventional picture of the fast charge and lattice responses of
TTF-CA to femtosecond pulses, our intuitive visualization of
the ground-state wave function demonstrates the importance
of the quantum fluctuations. An in-depth dynamics study
on the roles of the quantum fluctuations (e.g., the dimer-
ized CDW domains as precursors facilitating the spin-Peierls
domain growth) will serve as a firm basis for the experi-
mental ultrafast control of polarization of the organic CT
family.
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